Solar System | Popular Science https://www.popsci.com/category/solar-system/ Awe-inspiring science reporting, technology news, and DIY projects. Skunks to space robots, primates to climates. That's Popular Science, 145 years strong. Tue, 21 Nov 2023 15:20:00 +0000 en-US hourly 1 https://wordpress.org/?v=6.2.2 https://www.popsci.com/uploads/2021/04/28/cropped-PSC3.png?auto=webp&width=32&height=32 Solar System | Popular Science https://www.popsci.com/category/solar-system/ 32 32 Chaotic region shines bright with 500,000 stars in new JWST image https://www.popsci.com/science/500000-stars-jwst/ Tue, 21 Nov 2023 15:20:00 +0000 https://www.popsci.com/?p=590917
The full view of the James Webb Space Telescope’s NIRCam (Near-Infrared Camera) instrument reveals a 50 light-years-wide portion of the Milky Way’s dense center. An estimated 500,000 stars shine in this image of the Sagittarius C region, along with some as-yet unidentified features. A vast region of ionized hydrogen, shown in cyan, wraps around an infrared-dark cloud, which is so dense that it blocks the light from distant stars behind it. Intriguing needle-like structures in the ionized hydrogen emission lack any uniform orientation. Researchers note the surprising extent of the ionized region, covering about 25 light-years.
The full view of the James Webb Space Telescope’s NIRCam (Near-Infrared Camera) instrument reveals a 50 light-years-wide portion of the Milky Way’s dense center. An estimated 500,000 stars shine in this image of the Sagittarius C region, along with some as-yet unidentified features. A vast region of ionized hydrogen, shown in cyan, wraps around an infrared-dark cloud, which is so dense that it blocks the light from distant stars behind it. Intriguing needle-like structures in the ionized hydrogen emission lack any uniform orientation. Researchers note the surprising extent of the ionized region, covering about 25 light-years. NASA, ESA, CSA, STScI, Samuel Crowe (UVA)

Just in time for Sagittarius season, the newly imaged Sagittarius C region includes some star-forming hotspots.

The post Chaotic region shines bright with 500,000 stars in new JWST image appeared first on Popular Science.

]]>
The full view of the James Webb Space Telescope’s NIRCam (Near-Infrared Camera) instrument reveals a 50 light-years-wide portion of the Milky Way’s dense center. An estimated 500,000 stars shine in this image of the Sagittarius C region, along with some as-yet unidentified features. A vast region of ionized hydrogen, shown in cyan, wraps around an infrared-dark cloud, which is so dense that it blocks the light from distant stars behind it. Intriguing needle-like structures in the ionized hydrogen emission lack any uniform orientation. Researchers note the surprising extent of the ionized region, covering about 25 light-years.
The full view of the James Webb Space Telescope’s NIRCam (Near-Infrared Camera) instrument reveals a 50 light-years-wide portion of the Milky Way’s dense center. An estimated 500,000 stars shine in this image of the Sagittarius C region, along with some as-yet unidentified features. A vast region of ionized hydrogen, shown in cyan, wraps around an infrared-dark cloud, which is so dense that it blocks the light from distant stars behind it. Intriguing needle-like structures in the ionized hydrogen emission lack any uniform orientation. Researchers note the surprising extent of the ionized region, covering about 25 light-years. NASA, ESA, CSA, STScI, Samuel Crowe (UVA)

A new image from NASA’s almost two-year-old James Webb Space Telescope features new details of a portion of our galaxy’s dense center for the first time. The image includes some parts of the star-forming hotspot that astronomers are still trying to fully understand. The region is named Sagittarius C and is about 300 light-years away from Sagittarius A*, or the supermassive black hole at the center of our galaxy.

[Related: Gaze upon the supermassive black hole at the center of our galaxy.]


“There’s never been any infrared data on this region with the level of resolution and sensitivity we get with Webb, so we are seeing lots of features here for the first time,” observation team principal investigator Samuel Crowe said in a statement. “Webb reveals an incredible amount of detail, allowing us to study star formation in this sort of environment in a way that wasn’t possible previously.” Crowe is an undergraduate student at the University of Virginia in Charlottesville.

Approximate outlines help to define the features in the Sagittarius C (Sgr C) region. Astronomers are studying data from NASA’s James Webb Space Telescope to understand the relationship between these features, as well as other influences in the chaotic galaxy center. CREDITS: Image- NASA, ESA, CSA, STScI, Samuel Crowe (UVA)
Approximate outlines help to define the features in the Sagittarius C (Sgr C) region. Astronomers are studying data from NASA’s James Webb Space Telescope to understand the relationship between these features, as well as other influences in the chaotic galaxy center. CREDITS: Image- NASA, ESA, CSA, STScI, Samuel Crowe (UVA)

The image features roughly 500,000 stars and a cluster of young stars called protostars. These are stars that are still forming and gaining mass, while generating outflows that glow in the midst of an infrared-dark cloud. A massive previously-discovered protostar that is over 30 times the mass of our sun is located at the heart of this young cluster. 

The protostars are emerging from a cloud that is so dense that the light from stars behind it cannot reach the JWST. This light trick makes the region look deceptively less crowded. According to the team, this is actually one of the most tightly packed areas of the image. Smaller infrared-dark clouds dot the image where future stars are forming. 

“The galactic center is the most extreme environment in our Milky Way galaxy, where current theories of star formation can be put to their most rigorous test,” University of Virginia astronomer Jonathan Tan said in a statement

JWST’s Near-Infrared Camera (NIRCam) also captured large-scale emission from ionized hydrogen that is surrounding the lower side of the dark cloud. According to Crowe, this is the result of energetic photons that are being emitted by young massive stars. The expanse of the region spotted by JWST came as a surprise to the team and needs more investigation. They also plan to further examine the needle-like structures in the ionized hydrogen, which are scattered in multiple directions.

“The galactic center is a crowded, tumultuous place. There are turbulent, magnetized gas clouds that are forming stars, which then impact the surrounding gas with their outflowing winds, jets, and radiation,” Rubén Fedriani, a co-investigator of the project at the Instituto Astrofísica de Andalucía in Spain, said in a statement. “Webb has provided us with a ton of data on this extreme environment, and we are just starting to dig into it.”

[Related: ‘Christmas tree’ galaxy shines in new image from Hubble and JWST.]

At roughly 25,000 light-years from Earth, the galactic center is close enough for the JWST to study individual stars. This allows astronomers to collect data on both how stars form, but also how this process may depend on the cosmic environment when compared to other regions of the galaxy. One question this could help answer is if there are more massive stars in the center of the Milky Way, as opposed to on the edges of the galaxy’s spiral arms.

“The image from Webb is stunning, and the science we will get from it is even better,” Crowe said. “Massive stars are factories that produce heavy elements in their nuclear cores, so understanding them better is like learning the origin story of much of the universe.”

The post Chaotic region shines bright with 500,000 stars in new JWST image appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Elliptical galaxies may just be spiral galaxies with their arms lobbed off https://www.popsci.com/science/spiral-galaxies-v-elliptical-galaxies/ Mon, 20 Nov 2023 17:00:00 +0000 https://www.popsci.com/?p=590651
An artist’s concept of the Milky Way, which is a spiral galaxy that has a defined center. The spiral arms are made up of stars that can be wound tightly or loosely.
An artist’s concept of the Milky Way, which is a spiral galaxy. The spiral arms are made up of stars that can be wound tightly or loosely. NASA/JPL-Caltech

Scientists' simulation of the Supergalatic Plane show how collisions in dense star neighborhoods can smooth out swirling galaxies.

The post Elliptical galaxies may just be spiral galaxies with their arms lobbed off appeared first on Popular Science.

]]>
An artist’s concept of the Milky Way, which is a spiral galaxy that has a defined center. The spiral arms are made up of stars that can be wound tightly or loosely.
An artist’s concept of the Milky Way, which is a spiral galaxy. The spiral arms are made up of stars that can be wound tightly or loosely. NASA/JPL-Caltech

With their winding and buff arms made up of billions of stars, spiral galaxies offer some of the beautiful images of the universe. Our own Milky Way galaxy is a spiral galaxy, yet these types of swirling clusters are relatively scarce in a part of the universe called the Supergalactic Plane. A team of astrophysicists believes that the bright elliptical galaxies without a defined center are more common than swirling galaxies because of the difference in density of the environments found inside and outside of the Plane. The findings are described in a study published November 20 in the journal Nature Astronomy.

[Related: Behold six galactic collisions, masterfully captured by Hubble.]

Smoothing out the arms

The Supergalactic Plane is a flattened structure in the universe that extends nearly a billion light years across. Our own Milky Way galaxy is embedded within the Plane and is about 100,000 light years wide. There are dozens of enormous armless galaxy clusters called elliptical galaxies in the Plane, but not nearly as many disk-shaped galaxies with spiral arms. 

An elliptical galaxy (left) and a spiral galaxy (right). The elliptical galaxy does not have a defined center, and looks like a shining bright light. The spiral galaxy has a defined center with arms swirling around it. The image includes near-infrared light from the James Webb Space Telescope and ultraviolet and visible light from the Hubble Space Telescope.
An elliptical galaxy (left) and a spiral galaxy (right). The image includes near-infrared light from the James Webb Space Telescope and ultraviolet and visible light from the Hubble Space Telescope. CREDIT: NASA, ESA, CSA, Rogier Windhorst (ASU), William Keel (University of Alabama), Stuart Wyithe (University of Melbourne), JWST PEARLS Team, Alyssa Pagan (STScI).

According to the new study, the different distributions of elliptical and disk galaxies are a natural occurrence. Galaxies experience frequent interactions and mergers with other galaxies in the Plane because the region is so densely packed. This galactic demolition derby then turns the spiral galaxies into elliptical galaxies. The arms are smoothed out and the lack of internal structure in the elliptical galaxy and presence of dark matter leads to the growth of supermassive black holes. Since the dark matter outweighs everything else, it has the power to shape the newly formed elliptical galaxy and tends to guide the growth of the central black hole.

The stars in an elliptical galaxy also orbit around the core in random directions and are generally older than those in spiral galaxies, according to NASA

In parts of the universe away from Plane, galaxies can evolve in relative isolation. This solitude helps them preserve their spiral structure.

“The distribution of galaxies in the Supergalactic Plane is indeed remarkable,” Carlos Frenk, a study co-author and astrophysicist at Durham University in the United Kingdom, said in a statement. “It is rare but not a complete anomaly: our simulation reveals the intimate details of the formation of galaxies such as the transformation of spirals into ellipticals through galaxy mergers.”

A galactic time machine

In the study, the team used a supercomputer simulation called Simulations Beyond the Local Universe. It follows the evolution of the universe over a period of 13.8 billion years from around the time of the Big Bang up to the present. 

[Related: Hubble image captures stars forming in a far-off phantom galaxy.]

Most cosmological simulations consider random patches of the universe, which cannot be directly compared to other observations. Instead, SIBELIUS works to precisely reproduce the observed structures in space, including the Supergalactic Plane. According to the team, the final simulation is remarkably consistent with observations of our universe through telescopes.

“The simulation shows that our standard model of the universe, based on the idea that most of its mass is cold dark matter, can reproduce the most remarkable structures in the universe, including the spectacular structure of which the Milky Way is part,” said Frenk.

Scientists have been studying the separation of elliptical and spiral galaxies since the 1960s. This partitioning features prominently in a recent list of cosmic anomalies that was compiled by cosmologist and 2019 Nobel laureate Professor Jim Peebles.

“By chance, I was invited to a symposium in honor of Jim Peebles last December at Durham, where he presented the problem in his lecture,” study co-author and astrophysicist at the University of Helsinki in Finland Till Sawala said in a statement. “And I realized that we had already completed a simulation that might contain the answer. Our research shows that the known mechanisms of galaxy evolution also work in this unique cosmic environment.”

The post Elliptical galaxies may just be spiral galaxies with their arms lobbed off appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
‘Christmas tree’ galaxy shines in new image from Hubble and JWST https://www.popsci.com/science/christmas-tree-jwst/ Mon, 13 Nov 2023 16:30:00 +0000 https://www.popsci.com/?p=589447
Space Telescope with visible-light data from NASA’s Hubble Space Telescope. The resulting wavelength coverage, from 0.4 to 5 microns, reveals a vivid landscape of galaxies whose colors give clues to galaxy distances: The bluest galaxies are relatively nearby and often show intense star formation, as best detected by Hubble, while the redder galaxies tend to be more distant, or else contain copious amount of dust, as detected by JWST.
Space Telescope with visible-light data from NASA’s Hubble Space Telescope. The resulting wavelength coverage, from 0.4 to 5 microns, reveals a vivid landscape of galaxies whose colors give clues to galaxy distances: The bluest galaxies are relatively nearby and often show intense star formation, as best detected by Hubble, while the redder galaxies tend to be more distant, or else contain copious amount of dust, as detected by JWST. NASA, ESA, CSA, STScI, J. Diego (Instituto de Física de Cantabria, Spain), J. D’Silva (U. Western Australia), A. Koekemoer (STScI), J. Summers & R. Windhorst (ASU), and H. Yan (U. Missouri).

The colorful galaxy clusters are about 4.3 billion light-years away.

The post ‘Christmas tree’ galaxy shines in new image from Hubble and JWST appeared first on Popular Science.

]]>
Space Telescope with visible-light data from NASA’s Hubble Space Telescope. The resulting wavelength coverage, from 0.4 to 5 microns, reveals a vivid landscape of galaxies whose colors give clues to galaxy distances: The bluest galaxies are relatively nearby and often show intense star formation, as best detected by Hubble, while the redder galaxies tend to be more distant, or else contain copious amount of dust, as detected by JWST.
Space Telescope with visible-light data from NASA’s Hubble Space Telescope. The resulting wavelength coverage, from 0.4 to 5 microns, reveals a vivid landscape of galaxies whose colors give clues to galaxy distances: The bluest galaxies are relatively nearby and often show intense star formation, as best detected by Hubble, while the redder galaxies tend to be more distant, or else contain copious amount of dust, as detected by JWST. NASA, ESA, CSA, STScI, J. Diego (Instituto de Física de Cantabria, Spain), J. D’Silva (U. Western Australia), A. Koekemoer (STScI), J. Summers & R. Windhorst (ASU), and H. Yan (U. Missouri).

Two of the most powerful space telescopes in the universe have joined forces to showcase a panorama of colorful galaxy clusters about 4.3 billion light-years away from Earth. The image of  galaxy cluster MACS0416 is from NASA’s James Webb Space Telescope (JWST) and the Hubble Space Telescope and combines both visible and infrared light. 

[Related: Euclid telescope spies shimmering stars and galaxies in its first look at the ‘dark’ universe.]

According to NASA, MACS0416 is a pair of colliding galaxy clusters that will eventually combine to form an even bigger cluster. It includes numerous galaxies outside of the cluster and some other light sources that vary over time. The variation is likely due to a phenomenon called gravitational lensing, where light is distorted and amplified from distant background sources.

Space Telescope photo
Space Telescope with visible-light data from NASA’s Hubble Space Telescope. The resulting wavelength coverage, from 0.4 to 5 microns, reveals a vivid landscape of galaxies whose colors give clues to galaxy distances: The bluest galaxies are relatively nearby and often show intense star formation, as best detected by Hubble, while the redder galaxies tend to be more distant, or else contain copious amount of dust, as detected by JWST.  CREDIT: NASA, ESA, CSA, STScI, J. Diego (Instituto de Física de Cantabria, Spain), J. D’Silva (U. Western Australia), A. Koekemoer (STScI), J. Summers & R. Windhorst (ASU), and H. Yan (U. Missouri).

Color coding

In the image, different colors represent the varying wavelengths of light. The shortest are blue, the intermediate are green, and the longest are red. The wavelengths range from 0.4 to 5 microns and the variation creates a particularly vivid landscape of galaxies.

The colors also give clues to how far away the galaxies are. The bluest galaxies are relatively close, tend to show intense star formation, and are best detected by Hubble. The more red galaxies tend to be further away and are best spotted by JWST. Some of the galaxies also appear very red because they have a large amount of cosmic dust that tends to absorb bluer colors of starlight.

“The whole picture doesn’t become clear until you combine Webb data with Hubble data,” Rogier Windhorst said in a statement. Windhorst is an astronomer at Arizona State University and principal investigator of the PEARLS program (Prime Extragalactic Areas for Reionization and Lensing Science), which took the JWST observations.

Oh Christmas tree

While the images are pleasant to look like, they were also taken for a specific scientific purpose. The team was using their data to search for objects varying in observed brightness over time, known as transients. All of these colors twinkling together in the galaxy look like shining colorful lights on a Christmas tree. 

“We’re calling MACS0416 the Christmas Tree Galaxy Cluster, both because it’s so colorful and because of these flickering lights we find within it. We can see transients everywhere,” said astronomer Haojing Yan of the University of Missouri in Columbia said in a statement. Yan is a co-author of one paper describing the scientific results published in The Astrophysical Journal.

The team identified 14 transients across the field of view. Twelve of the transients were located in three galaxies that are highly magnified by gravitational lensing. This means that they are likely to be individual stars or multiple-star systems that are very highly magnified for a short period of time. The other two transients are located within more moderately magnified background galaxies, so they are likely to be supernovae.

More observations with JWST could lead to finding numerous additional transients and in other similar galaxy clusters. 

Godzilla and Mothra 

One of the transients stood out in particular. The star system is located in a galaxy that existed roughly three billion years after the big bang and is magnified by a factor of at least 4,000. They nicknamed the star system Mothra in a nod to its “monster nature” of being both very bright and magnified. Mothra joins another lensed star the researchers previously identified that they nicknamed “Godzilla.” In Japanese cinema, Godzilla and Mothra are giant monsters known as kaiju.

In addition to the new JWST images, Mothra is also visible in the Hubble observations that were taken nine years ago. According to the team, this is unusual, because a very specific alignment between the foreground galaxy cluster and the background star is needed to magnify a star this much. The alignment should have been eliminated by the mutual motions of the star and the cluster.

An additional object within the foreground cluster could be adding more magnification. 

“The most likely explanation is a globular star cluster that’s too faint for Webb to see directly,” astronomer Jose Diego of the Instituto de Física de Cantabria in Spain said in a statement. “But we don’t know the true nature of this additional lens yet.” Diego is also a co-author of a paper published in the journal Astronomy & Astrophysics that details this finding. 

The post ‘Christmas tree’ galaxy shines in new image from Hubble and JWST appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Here’s what a billion years does to glass on the moon https://www.popsci.com/science/lunar-glass-change5-radiation/ Thu, 09 Nov 2023 21:30:00 +0000 https://www.popsci.com/?p=588659
the surface of the moon revealing beautiful craters
Chang'e 5, China's first lunar sample-return mission, brought back a tiny amount of the moon's glass. NASA Johnson

Exposure to radiation for eons gives the stuff a stiff boost.

The post Here’s what a billion years does to glass on the moon appeared first on Popular Science.

]]>
the surface of the moon revealing beautiful craters
Chang'e 5, China's first lunar sample-return mission, brought back a tiny amount of the moon's glass. NASA Johnson

What happens to glass if you leave it out in the open for several billion years—but with no air and no running water? We can find the answers to that question by studying naturally occurring glass on the moon. The moon may lack the features that usually weather rocks or minerals on Earth, but that doesn’t make this satellite completely inert. Scientists know that prolonged exposure to radiation leaves a mark on the lunar surface. Now, new research suggests that billions of years of radiation exposure appear to stiffen lunar glass, according to a team who published their work yesterday in the journal Science Advances.

The moon may not seem like an obvious place to find glass. But tiny glass spheroids riddle the lunar regolith—the rock chips and other loose material covering the lunar surface. Meteoroids constantly bombard the material, melting it into tiny pools. As the molten regolith cools back down, it hardens into glass. 

Glass is more than just a brittle, transparent sheet that fills windows. Scientists think of the stuff as the result of a liquid cooling rapidly without its atoms slotting into a defined structure. For that reason, some scientists consider glass to be its own separate state of matter.

And, even on the moon, glass does not last for billions of years without changing. Though the moon has neither a significant atmosphere nor running water to weather rocks like on Earth, the lunar surface is subject to something that our planet’s atmosphere typically filters out: radiation. Some of it comes from the sun; some arrives as cosmic rays from far greater distances. Regardless, over billions of years of radiation exposure, the effects build up.

[Related: Why do all these countries want to go to the moon right now?]

Geologists have long been interested in how radiation affects lunar soil. “There have been 20 years’ worth of study on it,” says Rhonda Stroud, a space materials scientist at Arizona State University, who was not an author of the paper. 

Much of that work involved taking facsimiles of lunar soil, which they call simulants, and exposing them to radiation. But, Stroud says, it’s hard to know how individual material particles react by studying vast quantities of them. “Any one little dust particle or sub-millimeter glass sphere could have its own age,” she says. “Things get buried, the regolith churns.”

Green balls of moon glass.
Green glass spheres from the Apollo 15 mission. NASA

Fortunately, we have actual lunar glass on Earth in the form of samples returned by our moon missions. Most recently, we can thank the Chang’e-5 lunar lander, which lifted off from China in November 2020 and returned less than a month later bearing 3.81 lbs of souvenirs. Chang’e-5 did not land in a place on the moon that experienced many impacts—and, consequently did not return with much glass. 

Still, scientists managed to sift through Chang’e-5’s bounty and pick out five particular glassy particles, each one about the width of a human hair. They examined each particle under a transmission electron microscope, allowing them to view its structure. They also pressed a tiny probe on each particle, allowing them to test how the particle reacted to force.

The researchers then “rejuvenated” the samples by heating them up to liquid temperatures of more than 1100 degrees F, holding them there for a minute, then letting them cool. They repeated the same microscope and pressure tests on the de-aged samples, allowing them to estimate what the particles looked like before hundreds of millions or even billions of years sitting on the moon and basking in radiation.

[Related: We finally have a detailed map of water on the moon]

They found a drastic change in a property that engineers call the Young’s modulus, which measures how much force a material needs to distort by a certain length. If the researchers’ rejuvenated samples were any indication, then prolonged radiation exposure increased the Young’s modulus of the glass by as much as 70 percent. More subtly, radiation also seemed to harden some of the particles.

These discoveries can help scientists figure out how glass behaves in the soil of other worlds. And the research team believes that it might also help us understand the behavior of the glass we make on Earth. 

In fact, this paper’s authors believe that lunar glass itself may soon be useful. In their vision, moon-dwellers might sift through the lunar regolith for glass beads and convert them into glass that they could use for their vehicles or habitats.

But it is not obvious to everyone how research like this yet translates into actual infrastructure. “The radiation from solar wind is very, very slow,” Stroud says. “I don’t think we need materials to withstand billions of years.”

The post Here’s what a billion years does to glass on the moon appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The Juno spacecraft spotted evidence of a salty ocean on Jupiter’s biggest moon https://www.popsci.com/science/juno-salt-ocean-ganymede-jupiter/ Wed, 08 Nov 2023 22:00:00 +0000 https://www.popsci.com/?p=587900
Three moons and Jupiter, plus the NASA probe Juno.
Juno observed Jupiter and three of its moons, including Ganymede, furthest to the left. NASA/JPL-Caltech/SwRI/MSSS

Ganymede, the largest moon in the solar system, might be layered with ice and liquid.

The post The Juno spacecraft spotted evidence of a salty ocean on Jupiter’s biggest moon appeared first on Popular Science.

]]>
Three moons and Jupiter, plus the NASA probe Juno.
Juno observed Jupiter and three of its moons, including Ganymede, furthest to the left. NASA/JPL-Caltech/SwRI/MSSS

NASA’s Juno spacecraft has been exploring Jupiter since it arrived at the planet in 2016. In recent years, the mission has turned its attention to the gas giant’s many moons, including the hellish volcanic world Io and the ice ball Europa. Now, in research published in Nature Astronomy, the Juno team revealed new photos of Jupiter’s largest moon, Ganymede, which show evidence of salts and organic compounds. These materials are likely the residue of salty sea water from an underground ocean that bubbled up to the frozen surface of Ganymede. And, excitingly, a salty ocean indicates conditions there might be conducive to life.

Ganymede is a particularly weird place. Not only is it Jupiter’s most massive satellite, it’s the biggest moon in the whole solar system—it’s even larger than the planet Mercury. It also is the only moon to have its own magnetic field, generated from a molten metal core deep in its interior. Like other icy worlds of the outer solar system, such as Europa or possibly Pluto, Ganymede probably has an ocean lurking under its icy crust. Some studies suggest multiple seas, stacked together in a layer cake of ice sheets and oceans, hide underground.

“Because Ganymede is so big, its interior structure is more complicated” than that of smaller worlds, explains University of Arizona geologist Adeene Denton, who is not affiliated with the new work. She notes that the moon’s massive size means there’s a lot of space for interesting molecules to mix about. But that also means they’re tricky to spot, because material must cover a large distance  to get to the surface where our spacecraft can see them.

Juno finally passed close enough to Ganymede—within 650 miles, less than the distance from New York City to Chicago—to take a close look at the chemicals on its surface using its Jovian InfraRed Auroral Mapper (JIRAM). This incredible instrument tracked the composition of Ganymede’s surface in great detail, noting features as small as 1 kilometer wide. If JIRAM were looking at New York City, it would be able to map Manhattan in ten-block chunks.

[Related: Astronomers find 12 more moons orbiting Jupiter]

Importantly, material on the surface of Ganymede might tell us about the water hiding below. If there are salts above, the subsurface ocean might have that same brine. Oceans, including the ones on Earth, acquire their salt from chemical interactions where liquid water touches a rocky mantle. This kind of exchange is “one of the conditions necessary for habitability,” says lead author Federico Tosi, research scientist at the National Institute for Astrophysics in Rome, Italy.

However, other current research suggests that Ganymede doesn’t have a liquid water layer directly touching its mantle. Instead, icy crusts separate the ocean from the rock. But because the team did see these salts in the JIRAM data, it suggests they were touching at one point in the past, if not now. “This testifies to an era when the ocean must have been in direct contact with the rocky mantle,” explains Tosi.

As for the organic chemicals that Juno detected, the team still isn’t completely  sure what flavor of compound they are. They’re leaning towards aliphatic aldehydes, a type of molecule found elsewhere in the solar system that’s known as an intermediate step necessary to build more complex amino acids. These usually indicate liquid water and a rocky mantle are interacting. This definitely isn’t a detection of life, but it’s interesting for the possibility of life lurking in Ganymede’s hidden oceans. “The presence of organic compounds does not imply the presence of life forms,” says Tosi. “But the opposite is true: life requires the presence of some categories of organic compounds.”

[Related: Why a 3,000-mile-long jet stream on Jupiter surprised NASA scientists]

Unfortunately, Juno won’t have a chance to swing by Ganymede again to search for more salty shores—instead, it’s headed toward the explosive Io. The probe’s most recent survey of these minerals was a “a unique opportunity to take a close look at this satellite,” Tosi says. We won’t have to wait too much longer, though, for a second visit. In about ten years, he adds, we’ll get another chance to explore these salty waters with the ESA JUICE mission, “which is expected to achieve complete and unprecedented coverage of Ganymede.”

The post The Juno spacecraft spotted evidence of a salty ocean on Jupiter’s biggest moon appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Why the heck is Earth wet? https://www.popsci.com/science/how-did-water-get-on-earth/ Tue, 07 Nov 2023 19:30:00 +0000 https://www.popsci.com/?p=587020
A gray asteroid against the black background of our solar system.
This illustration depicts an asteroid that has been detected by a team of European astronomers using NASA’s James Webb Space Telescope. N. Bartmann (ESA/Webb), ESO/M. Kornmesser and S. Brunier, N. Risinger

Our planet started off bone dry. Then space sent ice balls and 'water balloons.'

The post Why the heck is Earth wet? appeared first on Popular Science.

]]>
A gray asteroid against the black background of our solar system.
This illustration depicts an asteroid that has been detected by a team of European astronomers using NASA’s James Webb Space Telescope. N. Bartmann (ESA/Webb), ESO/M. Kornmesser and S. Brunier, N. Risinger

Each time you take a sip of water, you’re imbibing liquid that, in all likelihood, is up to 4.5 billion years old. Earth is awash in a life-sustaining substance about as ancient as the planet itself. Astrophysicists don’t completely know where the stuff came from, but circumstantial evidence suggests that water-containing meteorites might have pummeled an infant Earth. Those rocky showers would have helped transform a bone-dry place into a unique wet world. 

Or, at least, a damper one. Although our planet is covered by an estimated 326 quintillion gallons of H2O, it’s drier than you’d imagine. Sean N. Raymond, an astronomer at France’s Laboratory of Astrophysics of Bordeaux, has compared Earth, which could be as little as 0.023 percent water, to crackers, which are around 2 percent water. That’s still a lot more moisture than we had at the beginning.

A very dry start

When the solar system first came together, some of the young planets were too hot for water. “Earth and Mars should have formed extremely dry,” says Humberto Campins, an asteroid expert at the University of Central Florida—due to their locations in the solar system’s frost line.

When the sun was coalescing out of a collapsing cloud of gas and dust 4.6 billion years ago, its tremendous heat made a boundary. Outside of it, space was cool enough for ice grains to solidify. (This helps explain why far-out Jupiter and Saturn have ocean moons.) Inside of it, heat vaporized water. Earth and the other inner planets clumped together from the dry rock and dense metal that remained. Something must have happened, some millions of years later, to nourish those planets with water. Astronomers have explored several possible scenarios. 

A white, snowy ring encircles a dry, dusty center of a forming solar system.
An artist’s impression of the frost line around a young star, with water concentrated in the snowy outer rim. A. Angelich (NRAO/AUI/NSF)/ALMA (ESO/NAOJ/NRAO)

Craters on the surface of our moon indicate that our side of the frost line was constantly hit with space rocks, including a particularly violent shower known as the Late Heavy Bombardment. Some experts think those projectiles—specifically meteorites, the bits of asteroids that fall to Earth—might have been more like cosmic water balloons. The hypothesis is supported by the 2010 discovery of a thin crust of frost on asteroid 24 Themis. More recently, NASA found water-bearing clay minerals in the near-Earth asteroid Bennu during a ground-breaking sample-retrieval mission.

Still, it’s possible that other processes were involved in delivering water to Earth, such as gas from the cloudy solar nebula that dissolved hydrogen into the planet’s magma layer. It’s also possible that there were multiple sources and steps.

“The pieces of the puzzle are not clear,” says Campins, who is a member of the team that probed Bennu’s contents. But he points to one major clue that “gives us an idea of where the water may be coming from”: the type of hydrogen that flows through our aquatic systems.

Matching elements

The most common form of hydrogen in the universe has a lone proton orbited by an electron. But there’s a slightly different version called deuterium with a proton and a neutron squished into the center. Astronomers have measured the proportion of deuterium to regular hydrogen in Earth’s water and looked for that “D-H ratio” in other objects around the solar system.

Turns out, carbonaceous chondrites, a kind of meteorite, are a pretty good match. If our solar system was once an ancient construction site, think of the chondrites as the unmelted rubble. They hail from the asteroid belt’s outer section, closer to Jupiter than Mars, which means they probably formed on the wet side of the frost line. Raymond estimates that about a single ton of carbonaceous space rocks, rich in ice and watery minerals, could have delivered 110 to 220 pounds of water to Earth. When Jupiter and Saturn’s masses “grew big really fast,” he says, the gas giant kicked those rocks toward the sun and the inner planets.

Comet 67p image taken by European Space Agency's Rosetta lander
Comet 67p documented by the European Space Agency’s Rosetta spacecraft during the first mission to pull off a comet landing. This image was taken on January 31, 2015. ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

The meteorites “contain a lot of organic goop” like carbon and other molecules associated with life, Raymond explains. They also hold volatile materials—substances that evaporate easily when heated—like water, zinc, and hydrogen from the early days of the solar system. While those can be found on our planet today, a few volatile materials are still missing. “If the carbonaceous chondrites contributed Earth’s water, they would have also contributed Earth’s noble gasses,” Campins says. But they don’t support those elements, so something else must have filled the gap. Comet 67P, closely studied in the mid-2010s by the European Space Agency’s Rosetta probe and Philae lander, has the right noble gas content, Campins notes. 

This lends to the idea that a bunch of space bodies hit Earth with noble gasses, H2O, and who knows what else. “If most of the water gets contributed by asteroid impacts and most of the noble gasses are contributed by comets,” the elemental math seems to add up, Campins says. “But I think that nature is a little bit more complicated than that…it could be that the timing of those two was not the same.” 

In fact, newer evidence emphasizes a different kind of space rock from closer to home.

Local rocks

Enstatite chondrites are meteorites with a similar composition to the original building blocks of Earth. Because they formed within the inner solar system—on our side of the asteroid belt—astronomers classify them as “non-carbonaceous.” While they don’t have as much water as their distant counterparts, they could pack some punch. A 2020 paper in the journal Science concluded that past astrophysics models vastly underestimated the amount of hydrogen in them, killing off “the old idea that the rocks in Earth’s vicinity were dry,” Raymond says. Even cooler, they have a promising D-H ratio, too.

As Raymond wrote this summer in Nautilus, a suite of more recent studies have linked nitrogen and other volatile elements on Earth to enstatite chondrites. He also highlights an analysis of Martian zinc, indicating that debris from the inner solar system transported the metal to our neighbor. If zinc existed within those meteorites, they probably carried other volatile materials—specifically, water. Mars had liquid water at one point and may have some still lurking under an ice cap.

If space rocks brought water to the Red Planet, could they have done so elsewhere? “What we’re learning here may not only be applicable to our understanding of what we should expect on Mars,” Campins says, “but about the possibility of water and organic molecules being delivered to planets around other stars, which would give you an environment that could be conducive to the formation of life.”

Putting these lines of evidence together gives us a recipe that would have involved lots of damp local rocks and a few of the more distant ice balls. Hydrogen, nitrogen, and zinc isotopes “all tell the same story” of a wet Earth, Raymond says: Previously overlooked non-carbonaceous meteorites probably supplied about 70 percent of the planet’s water, and just a dash of carbonaceous meteorites touched up its vast blue surface. 

The post Why the heck is Earth wet? appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Smithsonian unveils a very small sample of the 4.5-billion-year-old Bennu asteroid https://www.popsci.com/science/smithsonian-bennu-asteroid-samp/ Mon, 06 Nov 2023 17:30:00 +0000 https://www.popsci.com/?p=586615
A sample of Asteroid Bennu is put on public display for the first time at the Museum of Natural History in Washington, DC, on November 3, 2023. A sample collected from the 4.5-billion-year-old asteroid Bennu contains abundant water and carbon, NASA revealed, offering more evidence for the theory that life on Earth was seeded from outer space. The small black rock is located in a glass viewing pain.
A sample of Asteroid Bennu is put on public display for the first time at the Museum of Natural History in Washington, DC, on November 3, 2023. A sample collected from Bennu contains abundant water and carbon, NASA revealed, offering more evidence for the theory that life on Earth was seeded from outer space. OLIVIER DOULIERY/AFP via Getty Images

NASA’s OSIRIS-REx spacecraft dropped the samples off from the carbon-rich space rock.

The post Smithsonian unveils a very small sample of the 4.5-billion-year-old Bennu asteroid appeared first on Popular Science.

]]>
A sample of Asteroid Bennu is put on public display for the first time at the Museum of Natural History in Washington, DC, on November 3, 2023. A sample collected from the 4.5-billion-year-old asteroid Bennu contains abundant water and carbon, NASA revealed, offering more evidence for the theory that life on Earth was seeded from outer space. The small black rock is located in a glass viewing pain.
A sample of Asteroid Bennu is put on public display for the first time at the Museum of Natural History in Washington, DC, on November 3, 2023. A sample collected from Bennu contains abundant water and carbon, NASA revealed, offering more evidence for the theory that life on Earth was seeded from outer space. OLIVIER DOULIERY/AFP via Getty Images

On November 3, the Smithsonian’s National Museum of Natural History debuted a piece of the asteroid Bennu to the public for the first time. The sample was deposited on Earth by NASA’s OSIRIS-REx spacecraft on September 24. The spacecraft did not land, but instead dropped a capsule containing about nine ounces of asteroid samples down to Earth. The spacecraft continued on to a new mission called OSIRIS-APEX. It is set to explore the asteroid Apophis when it comes within 20,000 miles of Earth in 2029. 

On display is a 0.3-inch in diameter stone that weighs only 0.005-ounces. The stone was retrieved amidst rocks and dust collected by the spacecraft in 2020 after two years of exploring Bennu. 

[Related: NASA’s first asteroid-return sample is a goldmine of life-sustaining materials.]

OSIRIS-REx stands for Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer and is the first US mission to collect samples from an asteroid. The spacecraft traveled 1.4-billion-miles from Earth, to the asteroid Bennu, and then back again. Bennu is roughly 4.5 billion years old and dates back to the crucial first 10 million years of the solar system’s development. Its age offers scientists a window into what this time period looked like. The space rock is shaped like a spinning top and is about one-third of a mile across at its widest part–slightly wider than the Empire State Building is tall. It revolves around the sun between the orbits of Earth and Mars.

“The OSIRIS-REx mission is an incredible scientific achievement that promises to shed light on what makes our planet unique,” Kirk Johnson, the Sant Director of the National Museum of Natural History, said in a statement. “With the help of our partners at NASA, we are proud to put one of these momentous samples on display to the public for the first time.”

The sample was labeled OREX-800027-0 by NASA scientists at Houston’s Johnson Space Center and is being stored in a nitrogen environment to keep it safe from contamination. CT scans of the displayed stone revealed that it is composed of dozens of smaller rocks. The fragments were fused back together at some point and the entire stone was changed by the presence of water. The alterations to the stone produced clays, iron oxides, iron sulfides, and carbonates as its major minerals and even carbon

A view of the outside of the OSIRIS-REx sample collector. Dark sample material from asteroid Bennu can be seen on the middle right. Scientists have found evidence of both carbon and water in initial analysis of this material. The bulk of the sample is located inside.
A view of the outside of the OSIRIS-REx sample collector. Sample material from asteroid Bennu can be seen on the middle right. Scientists have found evidence of both carbon and water in initial analysis of this material. The bulk of the sample is located inside. CREDIT: NASA/Erika Blumenfeld & Joseph Aebersold.

The samples from this mission hold chemical clues to our solar system’s formation. Evidence of essential elements like carbon in the rocks outside of the main sample container have already been uncovered by NASA scientists. These early samples also contain some water-rich minerals. Scientists believe that similar water-containing asteroids bombarded Earth billions of years ago, which provided the water that eventually formed our planet’s first oceans.

[Related: NASA’s OSIRIS mission delivered asteroid samples to Earth.]

“Having now returned to Earth without being exposed to our water-rich atmosphere or the life that fills every corner of our planet, the samples of Bennu hold the promise to tell us about the water and organics before life came to form our unique planet,” museum meteorite curator Tim McCoy said in a statement. McCoy has worked on the OSIRIS-REx mission for nearly two decades as part of an international team of scientists.

According to Space.com, a sizable crowd turned out to see the space rock and NASA Administrator Bill Nelson and other space agency and Smithsonian officials were present at the unveiling ceremony. Additional Bennu samples will be on display at a later date and at the Alfie Norville Gem & Mineral Museum at the University of Arizona in Tucson and Space Center Houston, next to to NASA’s Johnson Space Center.

The post Smithsonian unveils a very small sample of the 4.5-billion-year-old Bennu asteroid appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
First NASA images from Lucy’s flyby reveal that ‘Dinky’ is not alone https://www.popsci.com/science/nasa-lucy-dinkinesh-images/ Fri, 03 Nov 2023 16:30:00 +0000 https://www.popsci.com/?p=585945
A large asteroid with a smaller asteroid orbiting it. This image shows the “moonrise” of the satellite as it emerges from behind asteroid Dinkinesh as seen by the Lucy Long-Range Reconnaissance Imager. This image was taken by NASA’s Lucy spacecraft at 12:55 p.m. EDT on November 1, 2023, within a minute of closest approach, from a range of approximately 270 miles. From this perspective, the satellite is behind the primary asteroid. The image has been sharpened and processed to enhance contrast.
This image shows the “moonrise” of the satellite as it emerges from behind asteroid Dinkinesh as seen by the Lucy Long-Range Reconnaissance Imager. This image was taken by NASA’s Lucy spacecraft at 12:55 p.m. EDT on November 1, 2023, within a minute of closest approach, from a range of approximately 270 miles. From this perspective, the satellite is behind the primary asteroid. The image has been sharpened and processed to enhance contrast. NASA/Goddard/SwRI/Johns Hopkins APL/NOAO

Scientists have discovered that the asteroid Dinkinesh is actually a binary pair.

The post First NASA images from Lucy’s flyby reveal that ‘Dinky’ is not alone appeared first on Popular Science.

]]>
A large asteroid with a smaller asteroid orbiting it. This image shows the “moonrise” of the satellite as it emerges from behind asteroid Dinkinesh as seen by the Lucy Long-Range Reconnaissance Imager. This image was taken by NASA’s Lucy spacecraft at 12:55 p.m. EDT on November 1, 2023, within a minute of closest approach, from a range of approximately 270 miles. From this perspective, the satellite is behind the primary asteroid. The image has been sharpened and processed to enhance contrast.
This image shows the “moonrise” of the satellite as it emerges from behind asteroid Dinkinesh as seen by the Lucy Long-Range Reconnaissance Imager. This image was taken by NASA’s Lucy spacecraft at 12:55 p.m. EDT on November 1, 2023, within a minute of closest approach, from a range of approximately 270 miles. From this perspective, the satellite is behind the primary asteroid. The image has been sharpened and processed to enhance contrast. NASA/Goddard/SwRI/Johns Hopkins APL/NOAO

The freshly released images from NASA’s Lucy spacecraft’s first asteroid flyby reveal that Dinkinesh is actually a binary pair. A binary asteroid pair has a larger main asteroid and a smaller satellite orbiting around it. In the weeks leading up to the flyby, the Lucy team had wondered if Dinkinesh was actually a binary system because Lucy’s instruments detected the brightness of the asteroid changing over time. This is a sign that something is getting in the way of the light, likely a body orbiting the main space rock. 

[Related: NASA spacecraft Lucy says hello to ‘Dinky’ asteroid on far-flying mission.]

From a preliminary analysis of the first available images, the team estimates that the larger asteroid body is roughly 0.5 miles at its widest and that the smaller body is about 0.15 miles in size.

A series of images of the binary asteroid pair, Dinkinesh, as seen by the terminal tracking camera (T2CAM) on NASA’s Lucy spacecraft during its closest approach on Nov. 1, 2023. The images were taken 13 seconds apart. The apparent motion of the two asteroids is due to the motion of the spacecraft as it flew past at 10,000 mph (4.5 km/s). These images have been sharpened and processed to enhance contrast. Credit: NASA/Goddard/SwRI/ASU
A series of images of the binary asteroid pair, Dinkinesh, as seen by the terminal tracking camera (T2CAM) on NASA’s Lucy spacecraft during its closest approach on Nov. 1, 2023. The images were taken 13 seconds apart. The apparent motion of the two asteroids is due to the motion of the spacecraft as it flew past at 10,000 mph (4.5 km/s). These images have been sharpened and processed to enhance contrast. Credit: NASA/Goddard/SwRI/ASU

Dinkinesh is another name for the Lucy fossil that this mission is named after. The 3.2 million-year-old skeletal remains of a human ancestor were found in Ethiopia in 1974. The name Dinkinesh means “marvelous” in the Amharic language

“Dinkinesh really did live up to its name; this is marvelous,” Hal Levison, Lucy principal investigator from the Southwest Research Institute, said in a statement. “When Lucy was originally selected for flight, we planned to fly by seven asteroids. With the addition of Dinkinesh, two Trojan moons, and now this satellite, we’ve turned it up to 11.”

The November 1 encounter primarily served as an in-flight test of the asteroid-studying spacecraft. It specifically focused on testing the system that allows it to autonomously track an asteroid as it whizzes by at 10,000 miles per hour. The team calls this its terminal tracking system.

“This is an awesome series of images. They indicate that the terminal tracking system worked as intended, even when the universe presented us with a more difficult target than we expected,” Lockheed Martin guidance and navigation engineer Tom Kennedy said in a statement. “It’s one thing to simulate, test, and practice. It’s another thing entirely to see it actually happen.”

It will take up to a week for the remainder of the data from the flyby to be downloaded to Earth. This week’s encounter was carried out as an engineering check, but the team’s scientists are hoping this data will help them glean insights into the nature of small asteroids.

“We knew this was going to be the smallest main belt asteroid ever seen up close,” NASA Lucy project scientist Keith Noll said in a statement. “The fact that it is two makes it even more exciting. In some ways these asteroids look similar to the near-Earth asteroid binary Didymos and Dimorphos that DART saw, but there are some really interesting differences that we will be investigating.”

[Related: Why scientists are studying the clouds of debris left in DART’s wake.]

The Lucy team plans to use this first flyby data to evaluate the spacecraft’s behavior and  prepare for its next close-up look at an asteroid. This next encounter is scheduled for April 2025, when Lucy is expected to fly by the main belt asteroid 52246 Donaldjohanson. This asteroid is named after American paleoanthropologist Donald Johnson, one the scientists who discovered the Lucy fossils.

Launched in October 2021, NASA’s Lucy mission is the first spacecraft set to explore the Trojan asteroids. This group of primitive space rocks is orbiting our solar system’s largest planet Jupiter. They orbit in two swarms, with one moving  ahead of Jupiter and the other lagging behind it. 

There are about 7,000 asteroids in this belt, with the largest asteroid estimated to be about 160 miles across. The asteroids are similar to fossils and represent the leftover material that is still hanging around after the giant planets including Saturn, Jupiter, Uranus, and Neptune formed.

Lucy will then travel into the leading Trojan asteroid swarm. After that, the spacecraft will fly past six Trojan asteroids, including binary asteroids like Dinkinesh: Eurybates and its satellite Queta, Polymele and its yet unnamed satellite, Leucus, and Orus

In 2030, Lucy will return to Earth for yet another bump that will gear it up for a rendezvous with the Patroclus-Menoetius binary asteroid pair in the trailing Trojan asteroid swarm. This mission is scheduled to conclude some time in 2033.

The post First NASA images from Lucy’s flyby reveal that ‘Dinky’ is not alone appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
NASA spacecraft Lucy says hello to ‘Dinky’ asteroid on far-flying mission https://www.popsci.com/science/lucy-dinkinesh-flyby/ Thu, 02 Nov 2023 14:00:00 +0000 https://www.popsci.com/?p=585527
yeah! caption is A size comparison of Dinkinesh (shown in blue) and other main asteroid belt objects Bennu and (2867) Steins.
yeah! caption is A size comparison of Dinkinesh (shown in blue) and other main asteroid belt objects Bennu and (2867) Steins. NASA/Goddard/University of Arizona

NASA confirmed that the spacecraft successfully completed the first asteroid flyby of its 12-year mission.

The post NASA spacecraft Lucy says hello to ‘Dinky’ asteroid on far-flying mission appeared first on Popular Science.

]]>
yeah! caption is A size comparison of Dinkinesh (shown in blue) and other main asteroid belt objects Bennu and (2867) Steins.
yeah! caption is A size comparison of Dinkinesh (shown in blue) and other main asteroid belt objects Bennu and (2867) Steins. NASA/Goddard/University of Arizona

On November 1, NASA’s Lucy spacecraft successfully completed its first asteroid flyby. The 56 feet-long spacecraft came within 230 miles of the asteroid Dinkinesh aka “Dinky.” This fairly small space rock is in the main asteroid belt between Mars and Jupiter. 

[Related: Meet Lucy: NASA’s new asteroid-hopping spacecraft.]

Dinkinesh is the first of 10 asteroids the probe will visit over the next 10 years. The asteroid is about 10 to 100 times smaller than the Jupiter Trojan asteroids that are the main target of the Lucy mission. Dinkinesh is another name for the Lucy fossil that this mission is named after. The 3.2 million-year-old skeletal remains of a human ancestor were found in Ethiopia in 1974.

Lucy zoomed by Dinkinesh at about 10,000 miles per hour.  This encounter was the first in-flight test of the spacecraft’s terminal tracking system. 

“The Lucy operations team has confirmed that NASA’s Lucy spacecraft has phoned home after its encounter with the small main belt asteroid, Dinkinesh,” NASA wrote in a blog post. “Based on the information received, the team has determined that the spacecraft is in good health and the team has commanded the spacecraft to start downlinking the data collected during the encounter.”

It will take NASA up to a week to download the data on how Lucy performed during this first in-flight test during the encounter. NASA planned for the high-resolution grayscale camera onboard Lucy to take a series of images every 15 minutes. Dinkinesh has been visible to Lucy’s Long Range Reconnaissance Imager (L’LORRI) as a single point of light since early September. The team began to use L’LORRI to assist with the navigation of the spacecraft. 

Lucy’s thermal infrared instrument (L’TES) should also begin to collect data. Since L’TES was not designed to observe an asteroid quite as small as Dinkinesh, the team is interested to see if it can detect the half-mile wide asteroid and measure its temperature during the encounter.

Astronomers plan to use the data from this approach to gain a better understanding of small near-Earth asteroids and if they originate from larger main belt asteroids. 

Launched in October 2021, NASA’s Lucy mission is the first spacecraft set to explore the Trojan asteroids. These are a group of primitive space rocks orbiting our solar system’s largest planet Jupiter. They orbit in two swarms, with one ahead of Jupiter and the other lagging behind it. Lucy is expected to provide the first high-resolution images of what these space rocks look like. 

There are about 7,000 asteroids in this belt with the largest about 160 miles across. The asteroids are similar to fossils and represent the leftover material that is still hanging around after the giant planets including Uranus, Neptune, Jupiter, and Saturn formed.

[Related: New image reveals a Jupiter-like world that may share its orbit with a ‘twin.’]

In 2024, Lucy will return towards Earth for a second gravity push that will give it the energy needed to cross the solar system’s main asteroid belt. It is expected to observe asteroid 52246 Donaldjohanson in 2025. This asteroid is named after American paleoanthropologist Donald Johnson, one the scientists who discovered the Lucy fossils.

It will then travel into the leading Trojan asteroid swarm. After that, the spacecraft will fly past six Trojan asteroids: Eurybates and its satellite Queta, Polymele and its yet unnamed satellite, Leucus, and Orus

In 2030, Lucy will return to Earth for yet another bump that will gear it up for a rendezvous with the Patroclus-Menoetius binary asteroid pair in the trailing Trojan asteroid swarm. This mission is scheduled to end some time in 2033.

The post NASA spacecraft Lucy says hello to ‘Dinky’ asteroid on far-flying mission appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
What astronomers learned from a near-Earth asteroid they never saw coming https://www.popsci.com/science/asteroid-nt1-earth-planetary-defense/ Wed, 01 Nov 2023 14:00:00 +0000 https://www.popsci.com/?p=584794
The Milky Way galaxy shines above a dark space telescope in the foreground.
Haleakalā, Hawaii, is the site of one of the four telescopes that make up the Asteroid Terrestrial-impact Last Alert System. University of Hawaii

No one spotted space rock 2023 NT1 until two days after it missed us.

The post What astronomers learned from a near-Earth asteroid they never saw coming appeared first on Popular Science.

]]>
The Milky Way galaxy shines above a dark space telescope in the foreground.
Haleakalā, Hawaii, is the site of one of the four telescopes that make up the Asteroid Terrestrial-impact Last Alert System. University of Hawaii

In the summer, astronomers spotted an airplane-sized asteroid—large enough to potentially destroy a city—on an almost-collision course with Earth. But no one saw the space rock until two days after it had zoomed past our planet. 

This asteroid, named 2023 NT1, passed by us at only one-fourth of the distance from Earth to the moon. That’s far too close for comfort. Astronomers weren’t going to let this incident go without a post-mortem. They’ve recently dissected what went wrong and how we can better prepare to defend our planet from future impacts, in a new paper recently posted to the preprint server arXiv.

We know from history that asteroids can cause world-shattering events and extinctions—just look at what happened to the dinosaurs. The study team estimated that, if NT1 hit Earth, it could have the energy of anywhere from 4 to 80 intercontinental ballistic missiles. “2023 NT1 would have been much worse than the Chelyabinsk airburst,” says University of California, Santa Barbara astronomer Philip Lubin, a co-author on the new work, referring to the meteor that exploded over a Russian city in 2013. As devastating as that would be, it’s “not an existential threat like the 10-kilometer hit that killed our previous tenants,” he adds.

The asteroid-monitoring system ATLAS, the “Asteroid Terrestrial-impact Last Alert System”—four telescopes in Hawaii, Chile, and South Africa—discovered NT1 after the rock flew by. ATLAS’s entire purpose is to scour the skies for space rocks that might threaten Earth. So with this set of eyes on the sky, how did we miss it? 

It turns out that Earth has what Brin Bailey, UC Santa Barbara astronomer and lead author on the paper, calls a “blindspot.” Any asteroid coming from the direction of the sun gets lost in the glare of our nearest star.” There’s another way for asteroids to sneak up on us, too: the smaller the asteroid, the harder it is for our telescopes to spot them, even when the rocks come from parts in the sky away from the sun.

[Related: NASA’s first asteroid-return sample is a goldmine of life-sustaining materials]

“Currently, there is no planetary defense system which can mitigate short-warning threats,” Bailey says. “While NT1 has no chance of intercepting Earth in the future, it serves as a reminder that we do not have complete situational awareness of all potential threats in the solar system,” they add. That leads to Lesson #1: We simply need better detection methods for planetary defense. 

If we can manage to detect an asteroid with a few years’ warning, we might be able to redirect it with the technology recently tested by NASA’s Double-Asteroid Redirection Test (DART) mission.For a case with very little warning, such as NT1, though, we’d need a different approach—that’s Lesson #2. Bailey and colleagues propose a method they call “Pulverize It” (PI). 

PI’s plan is exactly what it sounds like: break the asteroid into tiny pieces, small enough to burn up in the atmosphere or fall to the ground as much less dangerous little rocks. They’d do this by launching one or multiple rockets to send arrays of small impactors to space. The impactors—six-foot-long, six-inch-thick rods—would smash into the asteroid like buckshot, efficiently dismantling it. “Had we intercepted it [NT1] even one day prior to impact, we could have prevented any significant damage,” claims Lubin.

It sounds simple enough, but some astronomers aren’t quite convinced. “I think the PI method is impractical even though it does not violate the laws of physics,” says University of California, Los Angeles astronomer Ned Wright, who was not involved in the new work. “When a building is demolished by implosion using explosive charges, a weeks-long testing and planning phase is needed in order to place the charges in the right locations and set up the proper timing. The PI method seeks to do this measuring, planning, and placing the explosives all within a period of 1 minute or so just before the spacecraft hits the asteroid.”

[Related: NASA’s first attempt to smack an asteroid was picture perfect]

Lubin points out that unlike a careful demolition on Earth, the goal is a sudden, bomb-like explosion—an event that needs less prep to pull off. But whether we use PI or another line of defense, it’s clear that we need to plan ahead. Not only is there the hazy threat of an asteroid coming out of nowhere, there are two specific, extremely risky events headed our way: asteroid Apophis’ near flyby in 2029, and close approaches from the even larger Bennu (recently sampled by NASA’s OSIRIS-REx mission) in 2054, 2060, and 2135.

“Humanity now possesses the technology to robustly detect and defend the planet if we choose to do so,” says Lubin. “And a variety of people are working hard to ensure we can.”

This story has been updated: An earlier version indicated that the asteroid-destroying impactors would be filled with explosives. While that may be an option, most forms of the “Pulverize It” method use non-explosive metal rods.

The post What astronomers learned from a near-Earth asteroid they never saw coming appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
You can see three meteor showers at their peak and a full Beaver Moon this November https://www.popsci.com/science/november-2023-sky-gazer-guide/ Tue, 31 Oct 2023 12:21:56 +0000 https://www.popsci.com/?p=584425
Beaver moon sets behind Rocca Calascio castle in Calascio, Italy, on November 9, 2022. November full moon takes this name because during this month beavers fill the banks of rivers and build their dams and dens to take refuge in view of winter.
Beaver moon sets behind Rocca Calascio castle in Calascio, Italy, on November 9, 2022. November full moon takes this name because during this month beavers fill the banks of rivers and build their dams and dens to take refuge in view of winter. Lorenzo Di Cola/NurPhoto via Getty Images

A very radiant Venus also awaits sky-gazers.

The post You can see three meteor showers at their peak and a full Beaver Moon this November appeared first on Popular Science.

]]>
Beaver moon sets behind Rocca Calascio castle in Calascio, Italy, on November 9, 2022. November full moon takes this name because during this month beavers fill the banks of rivers and build their dams and dens to take refuge in view of winter.
Beaver moon sets behind Rocca Calascio castle in Calascio, Italy, on November 9, 2022. November full moon takes this name because during this month beavers fill the banks of rivers and build their dams and dens to take refuge in view of winter. Lorenzo Di Cola/NurPhoto via Getty Images
November 2-3Jupiter at Opposition
November 5-6Southern Taurids Meteor Shower Predicted Peak
November 9Moon and Venus Conjunction
November 11 through 13Northern Taurids Meteor Shower Predicted Peak
November 18Leonids Meteor Shower Predicted Peak
November 27Full Beaver Moon

As the darkest nights of the year approach in the Northern Hemisphere, the night skies will light up, giving us a chance to see three meteor showers. Our closest planetary neighbor Venus will also be particularly radiant this month. It is also the time of year to keep an eye out for the Aurora Borealis. Here are some of the events to look out for this month. If you happen to get any stellar sky photos, please tag us and include #PopSkyGazers.

[Related: Astronomers find 12 more moons orbiting Jupiter.]

November 2 to 3 – Jupiter at Opposition

The month kicks off with our solar system’s largest planet appearing at its biggest and brightest state of the year, which is called opposition. Jupiter hits opposition at 12 a.m. EDT on November 3 and will be visible in the eastern horizon for skygazers in the Northern Hemisphere. 

According to Larry Wassterman from the Lowell Observatory in Arizona, opposition occurs when a planet, Earth, and the sun lie along a straight line with Earth in the middle. The planet and the sun are on the opposite sides of Earth so they are considered in opposition. 

“The planet is as close to the Earth as possible and will appear as big and as bright as it can ever get. This is a great time to take a look and discover Jupiter in opposition for yourself. During Jupiter’s opposition, Earth will pass between Jupiter and the Sun, and the proximity will make Jupiter appear larger in the sky. On the day of opposition, Jupiter rises when the Sun sets,” Wassterman writes

November 5 and 6 – Southern Taurids Meteor Shower Predicted Peak 

November’s first meteor shower is predicted to peak November 5th and 6th. Both of the Taurids meteor showers don’t have very definite peaks. The meteors ramble along in space and are especially noticeable from late October into early November, when both the Southern and Northern Taurids overlap. 

According to EarthSky, under dark skies with no moon, both South Taurids produce about five meteors per hour and 10 total when the North and South Taurids overlap. Fireballs are also possible, like the ones that appeared in 2022. Taurid meteors are slower than those from other meteor showers, but can be very bright.  

The Taurids are visible almost everywhere on Earth, except for the South Pole

[Related: Meteorites older than the solar system contain key ingredients for life.]

November 9 – Moon and Venus Conjunction

Already the brightest planet in our solar system, Venus will shine particularly brilliantly early this month. Venus will put on a show in the eastern horizon at 2:55 AM EST. As the morning continues Venus will shift upwards, and be one teach one degree to the upper right by the time morning twilight begins at about  5:44 a.m. EST. For some viewers, the moon will pass in front of Venus, blocking it from view at this time. 

Visibility will be best in northern Canada, most of Greenland, Iceland, Svalbard, west Russia, most of Europe, parts of north Africa, and most of the Middle East.

November 11 through 13 – Northern Taurids Meteor Shower Predicted Peak

Due to the moon’s phases, the best chance for seeing the Northern Taurids this month is from November 11 through the 13. Ideal viewing times will be around midnight because the moon will only be about 2 percent full that night. The sky will be darker and more primed for you to spot any meteors under clear skies.

November 18 – Leonids Meteor Shower Predicted Peak

For the Leonids, the night sky will be free of moonlight when the shower is predicted to peak on November 18th. For best viewing, watch late on the night of November 17 until dawn on November 18. The morning of November 17 may also be worthwhile for viewing. It is possible to see 10 to 15 Leonid meteors per hour under a moonless sky. 

The Leonid meteor shower is famous for producing one of the greatest meteor storms in living history. On November 17, 1966, there were thousands of meteors per minute during a 15-minute span. Leonid meteor storms sometimes happen in cycles of 33 to 34 years, but this cycle did not occur during the 1990s as anticipated. 

The Leonids will be visible in both hemispheres.

[Related: The moon is 40 million years older than we thought, according to crystals collected by Apollo astronauts.]

November 27 – Full Beaver Moon

November’s full moon will reach peak illumination on November 27 at 4:16 a.m. EST. The moon will also appear very full and close on the night of November 26. According to the Farmer’s Almanac, it is called the Beaver Moon in reference to the time of year when beavers begin to shelter in their lodges, after storing up food for the winter. This was also when beavers pelts are at their thickest.

Some other names for November’s full moon include the Whitefish Moon or Adikomemi-giizis in Anishinaabemowin (Ojibwe), the Little Winter Moon or Gahsá’kneh in Seneca, and the Leaf Fall Moon or Yapa Huktugere Nuti in the Catawba language.

The same skygazing rules that apply to pretty much all space-watching activities are key this month: Go to a dark spot away from the lights of a city or town and let the eyes adjust to the darkness for about a half an hour. 

The post You can see three meteor showers at their peak and a full Beaver Moon this November appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Uranus has a weird infrared aurora https://www.popsci.com/science/infrared-aurora-uranus/ Mon, 30 Oct 2023 15:00:00 +0000 https://www.popsci.com/?p=584297
An artist's rendition of the infrared aurora superimposed on a Hubble Space Telescope photograph of Uranus. The planet is blue with a white ring around it and the aurora is shown in red at its poles.
An artist's rendition of the infrared aurora superimposed on a Hubble Space Telescope photograph of Uranus. NASA, ESA, and M. Showalter (SETI Institute) for the background image of Uranus

Confirmed for the first time, Uranus's unique aurora could help astronomers determine if other planets could support life.

The post Uranus has a weird infrared aurora appeared first on Popular Science.

]]>
An artist's rendition of the infrared aurora superimposed on a Hubble Space Telescope photograph of Uranus. The planet is blue with a white ring around it and the aurora is shown in red at its poles.
An artist's rendition of the infrared aurora superimposed on a Hubble Space Telescope photograph of Uranus. NASA, ESA, and M. Showalter (SETI Institute) for the background image of Uranus

For the first time, astronomers using data from the Keck II telescope have detected the presence of an infrared aurora on the planet Uranus. The discovery could shed light on some of the unknown properties of the magnetic fields of our solar system’s planets. It could also help explain why a planet so far from the sun is hotter than it should be. The findings are described in a study published on October 23 in the journal Nature Astronomy

[Related: Uranus got its name from a very serious authority.]

The NIRSPEC instrument (Near InfraRed SPECtrograph) at the Keck Observatory in Hawaii  was used to collect 6 hours of observations of Uranus in 2006. The study’s authors carefully studied 224 images to find signs of a specific particle–ionized triatomic hydrogen or H3+. They found evidence of H3+ in the data after collisions with charged particles. The emission created an infrared auroral glow over Uranus’ northern magnetic pole. The image itself is an artist’s rendition of the infrared aurora, superimposed on a Hubble Space Telescope image of Uranus.

Uranian auroras vs. Earth auroras

Auroras on the planet Uranus are caused when charged particles from the sun interact with the planet’s magnetic field the same way they do on Earth. The particles are funneled along magnetic field lines toward the magnetic poles. When they enter the Uranian atmosphere, the charged particles bump into atmospheric molecules. This causes the molecules to glow. 

The dominant gasses in Uranus’ atmosphere are hydrogen and helium and they are at much lower temperatures than on Earth. The presence of these gasses at these temperatures cause Uranus’ auroras to predominantly glow at ultraviolet and infrared wavelengths. By comparison, auroras on Earth come from oxygen and nitrogen atoms colliding with the charged particles and the colors are mostly blue, green, and red and can generally be seen with the human eye at the right latitudes. 

Uranus and Neptune are unusual planets in our solar system because their magnetic fields are misaligned with the axes in which they spin. Astronomers haven’t found an explanation for this, but clues could lie in Uranus’s aurora. 

Measuring the infrared

In the study, a team of astronomers used the first measurements of the infrared aurora at Uranus since investigations into the planet began in 1992. The ultraviolet aurorae of Uranus was first observed 1986, but the infrared aurora has not been observed until now, according to the team. 

By analyzing specific wavelengths of light emitted from the planet. With this data, they can analyze the light called emission lines from these planets, which is similar to a barcode. In the infrared spectrum, the lines emitted by the H3+ particles will have different levels of brightness depending on how hot or cold the particle is and how dense this layer of the atmosphere is. The lines then act like a thermometer taking the planet’s temperature.

The astronomers found that there were distinct increases in H3+ density in Uranus’s atmosphere with little change in temperature. This is consistent with ionization that is caused by the presence of an infrared aurora. These measurements can help astronomers understand the magnetic fields on the other outer planets in the solar system. They could also scientists identify other planets that are suitable for supporting life.

[Related: Ice giant Uranus shows off its many rings in new JWST image.]

“The temperature of all the gas giant planets, including Uranus, are hundreds of degrees Kelvin/Celsius above what models predict if only warmed by the sun, leaving us with the big question of how these planets are so much hotter than expected? One theory suggests the energetic aurora is the cause of this, which generates and pushes heat from the aurora down towards the magnetic equator,” study co-author and University of Leicester PhD student Emma Thomas said in a statement

Clues to life on exoplanets

According to Thomas, most of the exoplanets astronomers have discovered are in the sub-Neptune category, so they are a similar size as Neptune and Uranus. Similar magnetic and atmospheric characteristics could also exist on these exoplanets. Uranus’s aurora directly connects to the planet’s magnetic field and atmosphere, so studying it can help astronomers make predictions about the atmospheres and magnetic fields and their suitability for supporting life.

These results may also provide insight into a rare phenomenon on Earth called geomagnetic reversal. This occurs when the north and south poles switch hemisphere locations. According to NASA, pole reversals are pretty common in Earth’s geologic history and the last one occurred roughly 780,000 years ago. Paleomagnetic records show that over the last 83 million years, Earth’s magnetic poles have reversed 183 times. They’ve also reversed at least several hundred times in the past 160 million years. The time intervals between these reversals have fluctuated, but average about 300,000 years.

“We don’t have many studies on this phenomena and hence do not know what effects this will have on systems that rely on Earth’s magnetic field such as satellites, communications and navigation,” said Thomas. “However, this process occurs every day at Uranus due to the unique misalignment of the rotational and magnetic axes. Continued study of Uranus’s aurora will provide data on what we can expect when Earth exhibits a future pole reversal and what that will mean for its magnetic field.”

The post Uranus has a weird infrared aurora appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A sneak peek at the lunar camera destined for the Artemis missions https://www.popsci.com/technology/hulc-lunar-camera-artemis/ Fri, 27 Oct 2023 16:29:33 +0000 https://www.popsci.com/?p=583966
Man holding HULC lunar camera in rocky outdoor environment
Artemis astronauts will return to the moon with high-powered cameras like the HULC. ESA–A. Romeo

NASA augmented parts of commercially available and mirror-less cameras to handle the moon’s harsh environment.

The post A sneak peek at the lunar camera destined for the Artemis missions appeared first on Popular Science.

]]>
Man holding HULC lunar camera in rocky outdoor environment
Artemis astronauts will return to the moon with high-powered cameras like the HULC. ESA–A. Romeo

When humans finally return to the moon as part of NASA’s Artemis program, they’ll arrive with a bevy of high-tech equipment to capture new, awe-inspiring glimpses of Earth’s satellite. But cameras have come a long way since the Apollo missions. In 2023, some incredibly advanced options are already almost moon-ready right off the shelf.

According to a recent update from the European Space Agency, engineers collaborating with NASA are finalizing a Handheld Universal Lunar Camera (HULC) with real-world testing in the rocky, lunar-esque vistas of Lanzarote, Spain. While resilient enough to travel to the moon, HULC’s underpinning tech derives from commercially available professional cameras featuring high light sensitivities and cutting-edge lenses. To strengthen the lunar documentation device, researchers needed to add a blanket casing that is durable enough to protect against ultra-fine moon dust, as well as the moon’s extreme temperature swings ranging between -208 and 250 degrees Fahrenheit. At the same time, the covering can’t impede usage, so designers also created a suite of ergonomic buttons compatible with astronaut spacesuits’ thick gloves.

[Related: Check out this Prada-designed Artemis III spacesuits.]

So far, HULC has snapped shots in near pitch-black volcanic caves, as well as in broad daylight to approximate the lunar surface’s vast spectrum of lighting possibilities. According to the ESA, HULC will also be the first mirrorless handheld camera used in space—such a design reportedly offers quality images in low light scenarios.

Woman using HULC lunar camera in underground cave
Credit: ESA / A. Romeo

Even with the numerous alterations and adjustments, the HULC is still not quite ready for the Artemis III mission, currently scheduled for 2025. The ESA reports that at least one version of the camera will soon travel to the International Space Station for additional testing.

“We will continue modifying the camera as we move towards the Artemis III lunar landing,” Jeremy Myers, NASA lead on the HULC camera project, told the ESA on October 24. “I am positive that we will end up with the best product–a camera that will capture Moon pictures for humankind, used by crews from many countries and for many years to come.”

Images of Buzz Aldrin and Neil Armstrong striding across the lunar surface during the Apollo 11 moonwalk instantly became iconic photographs in 1969, but they were only a preview of many more to come. Over the next three years, 10 more astronauts documented their visits to the moon using an array of video and photographic cameras. When humans finally return as part of the Artemis program, HULC will be in tow to capture new, awe-inspiring glimpses of Earth’s satellite.

The post A sneak peek at the lunar camera destined for the Artemis missions appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Earth-like plate tectonics may have shaped Venus billions of years ago https://www.popsci.com/science/venus-plate-tectonics/ Fri, 27 Oct 2023 15:00:00 +0000 https://www.popsci.com/?p=583943
A computer-generated three-dimensional perspective view of the surface of Venus. Venus has a surface temperature of over 800 degrees Fahrenheit.
A computer-generated three-dimensional perspective view of the surface of Venus. Venus has a surface temperature of over 800 degrees Fahrenheit. NASA/JPL-Caltech

A new study bolsters the theory that microbial life could have existed on our sister planet.

The post Earth-like plate tectonics may have shaped Venus billions of years ago appeared first on Popular Science.

]]>
A computer-generated three-dimensional perspective view of the surface of Venus. Venus has a surface temperature of over 800 degrees Fahrenheit.
A computer-generated three-dimensional perspective view of the surface of Venus. Venus has a surface temperature of over 800 degrees Fahrenheit. NASA/JPL-Caltech

Despite being our closest planetary neighbor, Venus is a pretty inhospitable place. It is about 100 times hotter than Earth and spacecraft exploring its thick atmosphere have been crushed in only two hours. However, Venus may have once had tectonic plate movements that are similar to what occurred during Earth’s early days. The new finding gives astronomers some novel scenarios to evaluate regarding the possibility of early life on Venus, its evolutionary past, and the history of the solar system. The findings are described in a study published October 26 in the journal Nature Astronomy

[Related: We finally know why Venus is absolutely radiant.]

In the study, researchers used atmospheric data from Venus and computer modeling to show that the composition of the planet’s current atmosphere and surface pressure could have only resulted from an early form of plate tectonics. This process is critical to life and involves multiple continental plates pushing, pulling, and sliding beneath one another. 

On Earth, these plate tectonics have intensified over billions of years. This process has formed new continents, mountains, and led to the chemical reactions that stabilized Earth’s surface temperature. It also created an environment that is more conducive for life to develop.

Venus went in the opposite direction and has surface temperatures of 867 degrees Fahrenheit, hot enough to melt lead. Astronomers have always believed that Venus has a “stagnant lid.” This means that the planet’s surface only has a single plate with minimal amounts of give, so most of the gasses remain trapped beneath the outer crust lid.

The team used current data on Venus’ atmosphere as the endpoint for these models and started by assuming Venus has had a stagnant lid through its entire existence. They were quickly able to see that computer simulations recreating the planet’s current atmosphere didn’t match up with where Venus is now. 

Next, the team simulated what would have had to happen on Venus for the planet to get to its current state. They eventually matched the numbers almost exactly when they accounted for limited tectonic movement early in Venus’ history followed by the stagnant lid model that exists today.

Due to the abundance of nitrogen and carbon dioxide present in Venus’ atmosphere, the team believes that Venus must have had plate tectonics about 4.5 billion to 3.5 billion years ago after the planet formed. They suggest that like on Earth, this early tectonic movement would have been limited in terms of the number of plates moving around and in how much they shifted. The process also would have been occurring on Venus and Earth at the same time. 

“One of the big picture takeaways is that we very likely had two planets at the same time in the same solar system operating in a plate tectonic regime—the same mode of tectonics that allowed for the life that we see on Earth today,” study co-author and Brown University planetary geophysicist Matt Weller said in a statement

[Related: A private company wants to look for life just above Venus.]

According to the team, this further bolsters the possibility that microbial life existed on ancient Venus. It also shows that at one point, both Earth and Venus were even more alike than scientists previously thought before diverging. Both planets are about the same size, have the same mass, density, and volume and live in the same solar neighborhood.

The work also shows the possibility that plate tectonics on all planets might simply come down to timing, so life itself may also be a product of the perfect timing. 

“We’ve so far thought about tectonic state in terms of a binary: it’s either true or it’s false, and it’s either true or false for the duration of the planet,” study co-author and Brown University geobiologist and geophysicist Alexander Evans said in a statement. “This shows that planets may transition in and out of different tectonic states and that this may actually be fairly common. Earth may be the outlier. This also means we might have planets that transition in and out of habitability rather than just being continuously habitable.”

Understanding the transition of tectonic states will be important for future studies of nearby moons and distant exoplanets. Jupiter’s fourth largest moon Europa has already shown evidence of Earth-like plate tectonics.

“We’re still in this paradigm where we use the surfaces of planets to understand their history,” Evans said. “We really show for the first time that the atmosphere may actually be the best way to understand some of the very ancient history of planets that is often not preserved on the surface.”

Future NASA DAVINCI missions will measure gasses in Venus’ atmosphere and could help solidify this study’s findings and the details of how this happened may hold important implications for Earth.

“That’s going to be the next critical step in understanding Venus, its evolution and ultimately the fate of the Earth,” Weller said. “What conditions will force us to move in a Venus-like trajectory, and what conditions could allow the Earth to remain habitable?”

The post Earth-like plate tectonics may have shaped Venus billions of years ago appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The moon is 40 million years older than we thought, according to crystals collected by Apollo astronauts https://www.popsci.com/science/moon-age-apollo-17-sample/ Mon, 23 Oct 2023 11:00:00 +0000 https://www.popsci.com/?p=581809
NASA astronaut Harrison Schmitt is standing on the moon’s surface next to a large split lunar boulder, with a roving vehicle on the other side of the boulder.
On December 13, 1972, scientist-astronaut Harrison Schmitt is photographed standing next to a huge, split lunar boulder during the third Apollo 17 extravehicular activity at the Taurus-Littrow landing site. NASA/Gene Cernan

Fresh analysis on vintage lunar samples gives us a more precise age and history for the moon.

The post The moon is 40 million years older than we thought, according to crystals collected by Apollo astronauts appeared first on Popular Science.

]]>
NASA astronaut Harrison Schmitt is standing on the moon’s surface next to a large split lunar boulder, with a roving vehicle on the other side of the boulder.
On December 13, 1972, scientist-astronaut Harrison Schmitt is photographed standing next to a huge, split lunar boulder during the third Apollo 17 extravehicular activity at the Taurus-Littrow landing site. NASA/Gene Cernan

The moon is our closest neighbor in space and the only celestial body humans have set foot on, yet we are still learning about it. In fact, Earth’s moon might actually be 40 million years older than scientists previously believed. By conducting an atom-by-atom analysis on crystals that were brought back by Apollo astronauts in 1972, a team of geochemists and plenary scientists now calculate that the igneous orb is at least 4.46 billion years old. The findings are described in a study published today in the journal Geochemical Perspectives Letters.

Intertwined fates

Based on samples recovered from the moon’s surface, we know that it formed more than four billion years ago when a giant object the size of Mars crashed into a very young Earth. The largest piece of the planet that broke off during that collision became our moon, and has been intertwined with the solar system ever since. 

[Related: How old is Earth?]

“Life on Earth has evolved with the moon, and the moon has an influence on life on Earth,” study co-author and cosmochemist Philipp Heck tells PopSci. “It inspires us, which is reflected in cultural heritage, but it also has other beneficial effects like stabilizing Earth’s rotational axis.” 

Heck is a curator for the meteorite collection at the Field Museum in Chicago and a professor at the University of Chicago. He says that studying the moon also helps us understand our own planet because of the topographical differences.

“Earth’s surface is much, much younger because there’s so much geologic activity [here] from volcanism and weathering,” explains Heck. “The moon’s surface is essentially an archive of solar system dynamics. This is a record that we don’t have on Earth, but our planet’s evolution is tied to these impacts that happened in the early solar system.”

A historical perspective

In the study, the team looked at moon dust brought back by the Apollo 17 crew. The 1972 lunar landing included NASA geologist Harrison Schmidt, who collected multiple rocks to study back on Earth. His samples contain very small crystals that were created billions of years ago and can help indicate when the moon was formed.

Apollo 17 astronaut Harrison Schmitt stands on the moon's surface in 1972. Schmitt is probing various moon rocks and collecting samples to return back to Earth.
Apollo 17 astronaut Harrison Schmitt in 1972, covered in lunar dust. NASA

The energy created by the impact from the object that struck Earth and created the moon melted the rock that eventually became the lunar surface. That offers a clue to the elements that existed on the celestial body since its emergence versus the ones that appeared much later. For example, zirconium, a silver metal found on both the Earth and the moon, could not form and survive on the molten lunar surface: Any zircon crystals that are currently present on the moon must have formed after the magma ocean cooled. Determining the age of these structures can thus reveal the minimum possible age for the moon, assuming that they emerged right after the impact.

Looking atom by atom

Researchers have previously suggested that the moon is older than estimated, but this new study is the first to use an analytical method called atom probe tomography to pinpoint the age from the oldest known lunar crystal retrieved by humans.

“In atom probe tomography, we start by sharpening a piece of the lunar sample into a very sharp tip using a focused ion beam microscope, almost like a very fancy pencil sharpener,” study co-author and planetary scientist Jennika Greer said in a statement. “Then, we use UV lasers to evaporate atoms from the surface of that tip. The atoms travel through a mass spectrometer, and how fast they move tells us how heavy they are, which in turn tells us what they’re made of.”

This atom-by-atom analysis revealed how much of the zircon crystals had undergone radioactive decay—a process where atoms that have an unstable configuration shed some protons and neutrons. They then transform into different elements, like how uranium decays into lead. Based on the amount of conversion and the known half-lives of different chemical isotopes, experts can estimate the age of the sample.

A scientist named Jennika Greer works with an atom probe in a lab. She is holding a long, metal tube and looking towards a special microscope.
Lead author Jennika Greer working with the atom probe. Dieter Isheim/Northwestern University

“Radiometric dating works a little bit like an hourglass,” Heck said in a statement. “In an hourglass, sand flows from one glass bulb to another, with the passage of time indicated by the accumulation of sand in the lower bulb. Radiometric dating works similarly by counting the number of parent atoms and the number of daughter atoms they have transformed to. The passage of time can then be calculated because the transformation rate is known.”

The team working with the Apollo 17 sample found that the proportion of lead isotopes (the daughter atoms created during the decay) indicated that the crystals were about 4.46 billion years old, so the moon must at least be that old too. While this puts the moon’s age back 40 million years, that’s still a very short time compared to the universe’s roughly 13.7 billion-year history

“It’s amazing being able to have proof that the rock you’re holding is the oldest bit of the moon we’ve found so far. It’s an anchor point for so many questions about the Earth. When you know how old something is, you can better understand what has happened to it in its history,” Greer said.

From Apollo to Artemis

In future studies, clues pulled from these decades-old samples could be pooled with those from samples taken by upcoming Artemis lunar missions. Artemis III is scheduled for 2025 and will land on and explore the lunar South Pole. The Apollo 17 mission collected samples from the Taurus-Littrow valley on the eastern edge of Mare Serenitatis, so crystals from a different region of the moon could yield unimaginable discoveries. 

[Related: Scientists have new moon rocks for the first time in nearly 50 years]

“I am convinced that there is older stuff on the moon—we just haven’t found it yet. I even think we have older zircons in the Apollo samples. This is really the power of sample return,” says Heck. 

A mixture of new samples and future advances in technology could further anchor the timeline of how our solar system was formed and beyond.  “Maybe in 50 or 100 years or even later, new generations of scientists will have the tools we can only dream about today to address scientific questions we can’t even think about today,” says Heck. “These templates are a legacy for future generations.”

The post The moon is 40 million years older than we thought, according to crystals collected by Apollo astronauts appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This private lander could be the first US machine on the moon this century https://www.popsci.com/science/nova-c-moon-south-pole/ Sun, 22 Oct 2023 17:00:00 +0000 https://www.popsci.com/?p=581635
Pale craters on the moon's lunar surface, with dark shadows below.
A top-down view of the lunar south pole. NASA/Goddard Space Flight Center Scientific Visualization Studio

The NOVA-C spacecraft, launching in November, should help pave the way for Artemis astronauts.

The post This private lander could be the first US machine on the moon this century appeared first on Popular Science.

]]>
Pale craters on the moon's lunar surface, with dark shadows below.
A top-down view of the lunar south pole. NASA/Goddard Space Flight Center Scientific Visualization Studio

NASA plans to return humans to the moon in 2025 with the Artemis III mission. Before that, the space agency will conduct a vital preliminary mission in November 2024, when the Artemis II mission flies a crew of astronauts in lunar orbit for the first time since the 1970s. But the “important first step” toward those goals, as NASA put it in a recent blog post, is the planned launch of the IM-1 mission carrying the NOVA-C lunar lander in a few weeks. It will attempt to land several NASA science experiments near Malapert A, a crater in the southern lunar polar region. Those studies could help NASA prepare for astronaut operations in the area in 2025. 

Unlike the Artemis missions, though, NOVA-C isn’t a big NASA project. Instead, the truck-sized craft designed to ferry small payloads to the lunar surface was built, and will be operated by, the small Texas-based company Intuitive Machines. 

If it succeeds in landing near the lunar south pole, NOVA-C will be the first US soft landing on the moon since the 1970s, and the first ever commercial landing on the moon that hasn’t crashed or failed. So why is a small spacecraft built by a relatively small company a key part of NASA’s big moon program?

“There is a pattern that we have now seen of NASA trying to move to more commercial solutions and services, rather than do it all on their own,” says Wendy Whitman Cobb, a space policy expert and instructor at the US Air Force School of Advanced Air and Space Studies. It’s much like NASA’s Commercial Crew and Cargo programs, which contracted with SpaceX to fly astronauts and supplies to the International Space Station aboard its Dragon space capsules. 

[Related: Why do all these countries want to go to the moon right now?]

Now NASA is turning to commercial companies to prepare the way for humanity’s return to the moon. Intuitive Machines was one of the first companies to receive a contract—for $77 million— under NASA Commercial Lunar Payload Services, or CLPS program, back in 2019. NASA designed CLPS to fund private sector companies interested in building small, relatively inexpensive spacecraft to fly experiments and rovers to the moon, allowing NASA to simply purchase room on the spacecraft rather than developing and operating it themselves. 

A blue and black spacecraft on the moon's gray surface, in a computer illustration.
An illustration of Intuitive Machines’ NOVA-C lander on the lunar surface. Intuitive Machines/NASA

In the case of NOVA-C, five NASA payloads will ride along with devices from universities including Louisiana State and Embry-Riddle Aeronautical University. ”The NASA payloads will focus on demonstrating communication, navigation and precision landing technologies, and gathering scientific data about rocket plume and lunar surface interactions, as well as space weather and lunar surface interactions affecting radio astronomy,” the space agency wrote in a blog post about the mission. 

“We don’t still don’t know a lot about the moon,” Whitman Cobb adds. The moon has variable gravity depending on where there are more metallic materials. “Finding out where those places are, how lunar dust is going to kick up when you’re trying to land or take off—all of these things are really key.”

That’s why NASA is sending payloads to ride along with NOVA-C. But the reason NOVA-C is landing where it is, about 300 kilometers from the south pole, has more to do with how the whole world is now thinking about the moon.

NOVA-C was originally destined to land in the Oceanus Procellarum, one of the large, dark areas known as mares, or “seas,” on the lunar surface. But in May, NASA and Intuitive Machines announced the change in plans and the new target near the south pole. 

[Related: We finally have a detailed map of water on the moon]

”The decision to move from the original landing site in Oceanus Procellarum was based on a need to learn more about terrain and communications near the lunar South Pole,” NASA announced in a blog post at the time. “Landing near Malapert A also will help mission planners understand how to communicate and send data  back to Earth from a location that is low on the lunar horizon.”

The reasons NASA wants to land near the lunar south pole with Artemis, and why the recent and successful Chandrayaan 3 mission of India, and the failed Russian Luna 25 mission, both targeted the lunar south pole are twofold: research and resources, according to Richard Carlson, a lunar geologist who retired from the Carnegie Institute for Science in 2021.  

“Both north and south polar regions have permanently shadowed craters where water has been detected from orbit,” he says. ”The real question is whether that water is a one micron surface coating of water on a few grains, or whether it’s a substantial abundance of water. Water of course being useful for a lot of things, from drinking water to turning it into hydrogen and oxygen, which is rocket fuel.”

The other motivation for going to the south pole is that it’s geologically very different from where the Apollo missions landed, according to Carlson. “They all landed on a pretty small portion of the moon on the Earth facing side of the moon on the nice flat mares, and that’s a rather unusual part of the moon geologically,” he says. ”If you think of studying the Earth this way, the Apollo lunar program would have basically landed on, let’s say, just North America, and that’s it.”

The lunar south polar region is much more geologically varied, with tall mountains and ridges, as well as rocks dug out from deep within the moon and scattered over the region by impact craters billions of years ago, Carlson says. But of course, such a landscape has its downsides for spacecraft coming from Earth. 

“You look at the pictures of the places that they selected [for Artemis III] and I wouldn’t want to land there. I mean, they’re really rough,” he says. “If we land on a rock, the spacecraft is going to fall over.” Sending small, uncrewed craft like NOVA-C to the moon’s south polar ahead of Artemis astronauts will test how difficult landing there really is. 

After all, as Witman Cobb notes, touching down anywhere on the moon is really hard. Before the failed Luna 25 landing on August 21, there were two failed commercial lunar landings. The Israeli company SpaceIL saw its Beresheet lander crash land in 2019, while the Hakuto-R M1 lander from Japanese company ispace crashed in April. 

”We haven’t seen a commercial company be successful in landing on the moon yet,” Whitman Cobb says. ”That’s really fascinating when you think about our capability of landing humans on the moon in the 1960s, and 1970s. That today, with all of the technology that we now have, this is still a really, really difficult thing to do.”

The post This private lander could be the first US machine on the moon this century appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The best telescopes under $500 in 2023 https://www.popsci.com/gear/best-telescopes-under-500/ Mon, 27 Jun 2022 13:00:00 +0000 https://www.popsci.com/?p=451591
The best telescopes under $500 are a great starting point
Stan Horaczek

Looking to stargaze on a budget? We’ve got the goods on the best affordable telescopes.

The post The best telescopes under $500 in 2023 appeared first on Popular Science.

]]>
The best telescopes under $500 are a great starting point
Stan Horaczek

We may earn revenue from the products available on this page and participate in affiliate programs. Learn more ›

Best overall Celestron StarSense Explorer DX 130AZ is the best overall telescope under $500. Celestron StarSense Explorer DX 130AZ
SEE IT

A solid build and specs, paired with smartphone-guided sky recognition technology, makes this telescope perfect for starry-eyed explorers.

Best for viewing planets Sky-Watcher Skymax 102mm Maksutov-Cassegrain Telescope is the best for viewing planets. Sky-Watcher Skymax 102mm Maksutov-Cassegrain Telescope
SEE IT

This telescope punches above its weight class in size and power, making it an ideal scope for checking out neighboring orbs.

Best for kids Orion Observer II 60mm AZ Refractor Telescope Starter Kit is the best for kids. Orion Observer II 60mm AZ Refractor Telescope Starter Kit
SEE IT

The entire package is designed to inspire kids during the window where they stare curiously out of the windows.

Telescopes under $500 can provide a passport to the universe without emptying your wallet. In their basic function, telescopes are our connection to the stars. For millennia, humankind has gazed skyward with wonder into the infinite reaches of outer space. And as humans are a curious bunch, our ancestors devised patterns in the movements of celestial bodies, gave them names, and built stories around them. The ancient Egyptians, Babylonians, and Greeks indulged in star worship. But you don’t have to follow those lines to geek out over the vastness of the night sky. It’s just so cool. Fortunately, whatever your motivation for getting under the stars, there is an affordable option for you on our list of the best telescopes under $500.

How we chose the best telescopes under $500

The under-$500 telescope market is crowded with worthy brands and models, so we looked at offerings in that price range from several well-known manufacturers in the space. After narrowing our focus based on personal experience, peer suggestions, critical reviews, and user impressions, we considered aperture, focal length, magnification, build quality, and value to select these five models.

The best telescopes under $500: Reviews & Recommendations

To get the best views of the stars, planets, and other phenomena of outer space, not just any old telescope will get the job done. There are levels of quality and a wide range of price points and features to sort through before you can be sure you’re making the right purchase for what you want out of your telescope, whether it’s multi-thousands, one of the best telescopes for under $1,000, or one of our top picks under $500.

Best overall: Celestron StarSense Explorer DX 130AZ

Celestron

SEE IT

Why it made the cut: Solid build and specs, paired with the remarkable StarSense Explorer app, make this telescope a perfect introduction to celestial observation.

Specs

  • Focal length: 650mm
  • Aperture: 130mm, f/5
  • Magnification: 65x, 26x

Pros

  • App aids in finding stars
  • Easy to operate
  • Steady altazimuth mount

Cons

  • Eyepieces are both low power

Newbies to astronomy today can have a decidedly different experience than beginners who started stargazing before smartphones were a thing. Instead of carting out maps of the night sky to find constellations, the StarSense Explorer series from Celestron, including the DX 130AZ refractor, makes ample use of your device to bring you closer to the stars. 

With your smartphone resting in the telescope’s built-in dock, the StarSense Explorer app will find your location using the device’s GPS and serve up a detailed list of celestial objects viewable in real time. Looking for the Pleiades cluster? This app will tell you how far away it is from you and then lead you there with on-screen navigation. The app also includes descriptions of those objects, tips for observing them, and other useful info. 

The StarSense Explorer ships with an altazimuth mount equipped with slow-moving fine-tuning controls for both axes so you can find your target smoothly. And for those times you want to explore the night sky without tethering a smartphone, the scope’s red dot finder will help you zero in on your targets. The two eyepieces, measuring 25mm and 10mm, are powerful enough to snag stellar views of the planets but not quite enough to see the details a high-powered eyepiece would deliver.

Best for viewing planets: Sky-Watcher Skymax 102mm Maksutov-Cassegrain Telescope

Sky-Watcher

SEE IT

Why it made the cut: This telescope punches above its weight class in size and power, making it an ideal scope for viewing planets.

Specs

  • Focal length: 1300mm
  • Aperture: 102mm, f/12.7
  • Magnification: 130x, 52x

Pros

  • Great for viewing planets and galaxies
  • Sharp focus and contrast
  • Powerful

Cons

  • Not ideal for deep-space viewing

Let’s be real—most consumers in the market for a moderately priced telescope are in it to gain spectacular views of the planets and galaxies, but probably not much else. And it’s easy to see why. Nothing makes celestial bodies come alive like viewing them in real time, in all their colorful glory.

If that sounds like you, allow us to direct you to the Sky-Watcher Skymax 102, a refracting telescope specializing in crisp views of objects like planets and galaxies with ample contrast to make them pop against the dark night sky. The Skymax 102 is based on a Maksutov-Cassegrains design that uses both mirrors and lenses, resulting in a heavy-hitting scope in a very compact and portable unit. A generous 102mm aperture pulls in plenty of light to illuminate the details in objects, and the 1300mm focal length results in intense magnification.

Two included wide-angle eyepieces measuring 25mm and 10mm deliver 130x and 52x magnification, respectively. The package also includes a red-dot finder, V-rail for mounting, 1.25-inch diagonal viewing piece, and a case for transport and storage. Look no further if you’re looking for pure colors across a perfectly flat field in a take-anywhere form factor.

Best for astrophotography: William Optics GuideStar 61 

William Optics

SEE IT

Why it made the cut: Top-notch specs and an enviable lens setup make this telescope ideal for astrophotography.

Specs

  • Focal length: 360mm
  • Aperture: f/5.9
  • Magnification: 7x (with 2-inch eyepiece)

Pros

  • Well-appointed specs
  • Sturdy, durable construction
  • Carrying case included

Cons

  • Flattener is an extra purchase

Sometimes you want to share more than descriptions of what you see in the night sky, and that’s where this guidescope comes in, helping you to focus on the best full-frame image. You can go as deep into the details (not to mention debt) as your line of credit will allow in your quest to capture the most impressive images of space. Luckily, though, this is a worthy option at a reasonable price. 

The Williams Optics Guide Star 61 telescope is a refracting-type scope with a 360mm focal length, f/5.9 aperture, and 61mm diameter well-suited to capturing sharp images of planets, moon, and bright deep-sky objects. The GS61 shares many specs with the now-discontinued Zenith Star 61, including focal length, aperture, and diameter, as well as the FPL53 ED doublet lens for high-contrast images.

The scope’s optical tube is about 13 inches long and weighs just 3 lbs.—great for traveling with the included carrying case—with a draw-tube (push-pull) focuser for coarse focusing and a rotating lens assembly for fine focus. Attaching a DSLR camera to the Guide Star 61 is a fairly easy job, but note that the flattener for making that connection is a separate purchase.

Best for kids: Orion Observer II 60mm AZ Refractor Telescope Starter Kit

Orion

SEE IT

Why it made the cut: The entire package is designed to get kids exploring space right out of the box.

Specs

  • Focal length: 700mm
  • Aperture: 60mm, f/11.7
  • Magnification: 70x, 28x

Pros

  • Capable of detailed views of moon and planets
  • Lightweight construction
  • Lots of handy accessories

Cons

  • Not enough optical power to reach deep space

Parents have a limited window of time to recognize and develop their kids’ interests, so kindle a fascination with the stars through a star projector and then fan it with a telescope. That’s what makes the Orion Observer II such a great buy. Seeing the craters on the moon or the rings of Saturn for the first time can affirm your kids’ curiosity about space and expand their concept of the universe—and they can get those goosebumps while learning through this altazimuth refractor telescope.

The Orion Observer II is built to impressive specifications, with a 700mm focal length that provides 71x magnification for viewing the vivid details of planets in our solar system. True glass lenses (not plastic) are a bonus at this price point, and combined with either included Kellner eyepieces (25mm and 10mm), the telescope delivers crisp views of some of space’s most dazzling objects. 

Kids and parents can locate celestial objects with the included red-dot finder. The kit also includes MoonMap 260, a fold-out map that directs viewers to 260 lunar features, such as craters, valleys, ancient lava flows, mountain ranges, and every U.S. and Soviet lunar mission landing site. An included copy of Exploring the Cosmos: An Introduction to the Night Sky gives a solid background before they go stargazing. And with its aluminum tube and tripod, the entire rig is very portable, even for young ones, with a total weight of 4.3 pounds. Find more options for the best telescopes for kids here. (And/or go the opposite direction with a microscope for kids—a love of science begets more science.)

Celestron

SEE IT

EDITOR’S NOTE: Popular Science has teamed up with Celestron on a line of products. The decision to include this model in our recommendations was made by our reviewer independently of that relationship, but we do earn a commission on its sales—all of which helps power Popular Science.

Why it made the cut: With its feature set, portability, and nice price point, this scope is ready for some serious stargazing without a serious investment.

Specs

  • Focal length: 400mm
  • Aperture: 70mm, f/5.7
  • Magnification: 168x

Pros

  • Bluetooth remote shutter release
  • Ships with two eyepieces
  • Pack included

Cons

  • Lacks optical power for deep space

Getting out of town, whether camping in the wilderness or driving in the countryside, is one of the attractions of stargazing. Out in the great wide open, far away from streetlights, the stars explode even to the naked eye. Add a handy telescope like the Popular Science Celestron Travel Scope 70 Portable Telescope—our pick for the best portable telescope under $500—and you’ll see much farther into space. The fact that it’s as affordable as it is moveable just adds to the value.

The Popular Science Celestron Travel Scope 70 Portable Telescope is a well-equipped refractor telescope built for backpacking and adventuring but without skimping on cool gadgets. Whether you’re gazing at celestial or terrestrial objects, the smartphone adapter will aid you in capturing images with your personal device, with an included Bluetooth remote shutter release.

Designed with portability and weight in mind, the entire package fits into an included pack with a total of 3.3 pounds—that includes the telescope, tripod stand, 20mm and 10mm eyepieces, 3x Barlow lens, and more. Download Celestron’s Starry Night software to help you get the most from your astronomy experience. 

Here are some other options from the Celestron and Popular Science collaboration:

What to consider when buying the best telescopes under $500

Optics

There are three types of optics available on consumer telescopes, and they will help you achieve three different goals. Refractor telescopes use a series of glass lenses to bring celestial bodies like the moon and near planets into focus easily. Reflector telescopes—also known as Newtonian scopes for their inventor, Sir Isaac Newton—swap lenses for mirrors and allow stargazers to see deeper into space. Versatile compound telescopes combine these two methods in a smaller, more portable form factor, with results that land right in the middle of the pack. 

Aperture

Photographers will recognize this: The aperture controls the amount of light entering the telescope, like on a manual camera. Aperture is the diameter of the lens or the primary mirror, so a telescope with a large aperture draws more light than a small aperture, resulting in views into deeper space. F-ratio is the spec to watch here. Low f-ratios, such as f/4 or f/5, are usually best for wide-field observation and photography, while high f-ratios like f/15 can make deep-space nebulae and other bodies easier to see and capture. Midpoint f-ratios can get the job done for both.

Mounts

All the lens and mirror power in the world won’t mean much if you attach your telescope to a subpar mount. In general, the more lightweight and portable the tripod mount, the more movement you’ll likely get while gazing or photographing the stars. Investing in a stable mount will improve the viewing experience. The two common mount types are alt-az (altitude-azimuth) and equatorial. Altazimuth mounts operate in the same way as a camera tripod, allowing you to adjust both axes (left-right, up-down), while equatorial mounts also tilt to make it easier to follow celestial objects.

FAQs

Q: What is the most powerful telescope for home use?

The most powerful telescope for home use from this list is the Sky-Watcher Skymax 102, which tops out at 130x magnification with its included eyepieces.

Q: Is a 90mm telescope good?

Yes, a 90mm telescope is good for viewing planetary features like the rings of Saturn and the Great Red Spot on Jupiter.

Q: How much does a telescope cost?

The cost of a telescope varies depending on the brand, model, and construction but there are plenty of affordable options—like the ones on this list.

Q: How powerful does a telescope have to be to see planets?

A telescope with a minimum 60mm aperture has enough power to see planets.

Q: What size telescope do I need to see the rings of Saturn?

You can see the rings of Saturn with as low as a 60mm aperture. 

Q: What size telescope do I need? 

The telescope size you need depends on what you want out of it. This list of best telescopes under $500 gives a good rundown on telescope types, sizes, and uses.

Final thoughts on the best telescopes under $500

Although this group of sub-$500 scopes is fairly diverse, the Celestron StarSense Explorer DX 130AZ stands out in our best telescopes under $500 as the best place to start your interstellar journey due to its versatility and sky recognition app, which make for a fun evening of guided tours through the star patterns, no experience necessary. 

Why trust us

Popular Science started writing about technology more than 150 years ago. There was no such thing as “gadget writing” when we published our first issue in 1872, but if there was, our mission to demystify the world of innovation for everyday readers means we would have been all over it. Here in the present, PopSci is fully committed to helping readers navigate the increasingly intimidating array of devices on the market right now.

Our writers and editors have combined decades of experience covering and reviewing consumer electronics. We each have our own obsessive specialties—from high-end audio to video games to cameras and beyond—but when we’re reviewing devices outside of our immediate wheelhouses, we do our best to seek out trustworthy voices and opinions to help guide people to the very best recommendations. We know we don’t know everything, but we’re excited to live through the analysis paralysis that internet shopping can spur so readers don’t have to.

The post The best telescopes under $500 in 2023 appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Why a 3,000-mile-long jet stream on Jupiter surprised NASA scientists https://www.popsci.com/science/jwst-jupiter-jet-stream/ Thu, 19 Oct 2023 17:15:00 +0000 https://www.popsci.com/?p=581172
An image of Jupiter taken with the James Webb Space Telescope’s NIR Cam in July 2022. Researchers recently discovered a narrow jet stream traveling 320 miles per hour sitting over Jupiter’s equator above the main cloud decks. The numerous bright white "spots" and "streaks" are likely very high-altitude cloud tops of condensed convective storms. Auroras, appearing in red in this image, extend to higher altitudes above both the northern and southern poles of the planet.
In July 2022, James Webb Space Telescope’s NIR Cam captured this image of Jupiter in infrared light. Researchers recently discovered a narrow jet stream traveling 320 miles per hour sitting over Jupiter’s equator above the main cloud decks. The numerous bright white "spots" and "streaks" are likely very high-altitude cloud tops of condensed convective storms. Auroras, appearing in red in this image, extend to higher altitudes above both the northern and southern poles of the planet. NASA, ESA, CSA, STScI, Ricardo Hueso (UPV), Imke de Pater (UC Berkeley), Thierry Fouchet (Observatory of Paris), Leigh Fletcher (University of Leicester), Michael H. Wong (UC Berkeley), Joseph DePasquale (STScI)

JWST captured a never-before-seen jet stream with winds twice as strong as a Category 5 hurricane.

The post Why a 3,000-mile-long jet stream on Jupiter surprised NASA scientists appeared first on Popular Science.

]]>
An image of Jupiter taken with the James Webb Space Telescope’s NIR Cam in July 2022. Researchers recently discovered a narrow jet stream traveling 320 miles per hour sitting over Jupiter’s equator above the main cloud decks. The numerous bright white "spots" and "streaks" are likely very high-altitude cloud tops of condensed convective storms. Auroras, appearing in red in this image, extend to higher altitudes above both the northern and southern poles of the planet.
In July 2022, James Webb Space Telescope’s NIR Cam captured this image of Jupiter in infrared light. Researchers recently discovered a narrow jet stream traveling 320 miles per hour sitting over Jupiter’s equator above the main cloud decks. The numerous bright white "spots" and "streaks" are likely very high-altitude cloud tops of condensed convective storms. Auroras, appearing in red in this image, extend to higher altitudes above both the northern and southern poles of the planet. NASA, ESA, CSA, STScI, Ricardo Hueso (UPV), Imke de Pater (UC Berkeley), Thierry Fouchet (Observatory of Paris), Leigh Fletcher (University of Leicester), Michael H. Wong (UC Berkeley), Joseph DePasquale (STScI)

Jupiter and its dynamic atmosphere are ready for another closeup in a new image taken with the James Webb Space Telescope (JWST). Using the telescope’s data, scientists have discovered a new and never-before-captured high-speed jet stream. The jet stream sits over Jupiter’s equator above the main cloud decks, barrels at speeds twice as high as a Category 5 hurricane, and spans more than 3,000 miles. The findings were described in a study published October 19 in the journal Nature Astronomy.

[Related: This hot Jupiter exoplanet unexpectedly hangs out with a super-Earth.]

Jupiter is the largest planet in our solar system and its atmosphere has some very visible features, including the infamous Great Red Spot, which is large enough to swallow the Earth. The planet is ever-changing and there are still mysteries in this gas giant that scientists are trying to unravel. According to NASA, the new discovery of the jet stream is helping them decipher how the layers of Jupiter’s famously turbulent atmosphere interact with each other. Now, JWST is helping scientists look further into the planet and see some of the lower and deeper layers of Jupiter’s atmosphere where gigantic storms and ammonia ice clouds reside. 

“This is something that totally surprised us,” study co-author Ricardo Hueso said in a statement.  “What we have always seen as blurred hazes in Jupiter’s atmosphere now appear as crisp features that we can track along with the planet’s fast rotation.” Hueso is an astrophysicist at the University of the Basque Country in Bilbao, Spain.

The research team analyzed data from JWST’s Near-Infrared Camera (NIRCam) that was obtained in July 2022. The Early Release Science program was designed to take images of Jupiter 10 hours apart (one Jupiter day) in four different filters. Each filter detected different types of changes in the small features located at various altitudes of Jupiter’s atmosphere.

Space Telescope photo
At a wavelength of 2.12 microns, which observes between altitudes of about 12-21 miles above Jupiter’s cloud tops, researchers spotted several wind shears, or areas where wind speeds change with height or with distance, which enabled them to track the jet. This image highlights several of the features around Jupiter’s equatorial zone that, between one rotation of the planet (10 hours), are very clearly disturbed by the motion of the jet stream. CREDIT: NASA, ESA, CSA, STScI, Ricardo Hueso (UPV), Imke de Pater (UC Berkeley), Thierry Fouchet (Observatory of Paris), Leigh Fletcher (University of Leicester), Michael H. Wong (UC Berkeley), Joseph DePasquale (STScI)

The resulting image shows Jupiter’s atmosphere in infrared light. The jet stream is located over the equator, or center, of the planet. There are multiple bright white spots and streaks that are likely very high-altitude cloud tops of condensed convective storms. Jupiter’s northern and southern poles are dotted by auroras that appear red and extend to the higher altitudes of the planet. 

“Even though various ground-based telescopes, spacecraft like NASA’s Juno and Cassini, and NASA’s Hubble Space Telescope have observed the Jovian system’s changing weather patterns, Webb has already provided new findings on Jupiter’s rings, satellites, and its atmosphere,” study co-author and University of California, Berkeley astronomer Imke de Pater said in a statement.  

The newly discovered jet stream travels at roughly 320 miles per hour and is located close to 25 miles above the clouds, in Jupiter’s lower stratosphere. The team compared the winds observed by JWST at higher altitudes with the winds observed at deeper layers by the Hubble Space Telescope. This enabled them to measure how fast the winds change with altitude and generate wind shears.

[Related: Jupiter formed dinky little rings, and there’s a convincing explanation why.]

The team hopes to use additional observations of Jupiter to determine if the jet’s speed and altitude change over time. 

“Jupiter has a complicated but repeatable pattern of winds and temperatures in its equatorial stratosphere, high above the winds in the clouds and hazes measured at these wavelengths,” Leigh Fletcher, a study co-author and planetary scientists at the University of Leicester in the United Kingdom, said in a statement. “If the strength of this new jet is connected to this oscillating stratospheric pattern, we might expect the jet to vary considerably over the next 2 to 4 years–it’ll be really exciting to test this theory in the years to come.”

The post Why a 3,000-mile-long jet stream on Jupiter surprised NASA scientists appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
What the ‘Ring of Fire’ eclipse looked like to a satellite nearly 1 million miles from Earth https://www.popsci.com/science/ring-of-fire-eclipse-satellite-view/ Wed, 18 Oct 2023 13:00:00 +0000 https://www.popsci.com/?p=580642
The planet Earth, as seen from the DSCOVR satellite. Earth appears as a bright blue dot against the darkness of space, with the shadow of an annular solar eclipse over much of North America.
An image of the annular solar eclipse on October 14, 2023 taken by NASA's EPIC camera aboard the DSCOVR spacecraft. NASA/DSCOVR EPIC team

The DSCOVR satellite image depicts the moon’s shadow during the October 14 annular eclipse.

The post What the ‘Ring of Fire’ eclipse looked like to a satellite nearly 1 million miles from Earth appeared first on Popular Science.

]]>
The planet Earth, as seen from the DSCOVR satellite. Earth appears as a bright blue dot against the darkness of space, with the shadow of an annular solar eclipse over much of North America.
An image of the annular solar eclipse on October 14, 2023 taken by NASA's EPIC camera aboard the DSCOVR spacecraft. NASA/DSCOVR EPIC team

The recent “ring of fire” solar eclipse looked stunning across portions of North and South America and we now have a new view of the stellar event. The Deep Space Climate Observatory (DSCOVR) satellite created the image of the eclipse on Saturday October 14, depicting the mostly blue Earth against the darkness of space, with one large patch of the planet in the shadow of the moon. 

[Related: Why NASA will launch rockets to study the eclipse.]

Launched in 2015, DSCOVR is a joint NASA, NOAA, and U.S. Air Force satellite. It offers a unique perspective since it is close to 1 million miles away from Earth and sits in a gravitationally stable point between the Earth and the sun called Lagrange Point 1. DSCOVR’s primary job is to monitor the solar wind in an effort to improve space weather forecasts

A special device aboard the satellite called the Earth Polychromatic Imaging Camera (EPIC) imager took this view of the eclipse from space. According to NASA, the sensor gives scientists frequent views of the Earth. The moon’s shadow, or umbra, is falling across the southeastern coast of Texas, near Corpus Christi.

An annular solar eclipse occurs when the moon moves between Earth and the sun. The sun does not vanish completely in this kind of eclipse. Instead, the moon is positioned far enough from Earth to keep the bright edges of the sun visible. This is what causes the “ring of fire,” as if the moon has been outlined with bright paint.

The annular eclipse on October 14, 2023, as seen from Earth. CREDIT: NASA.

While this year’s event could be seen to some degree across the continental United States, the 125-mile-wide path of annularity began in Oregon around 9:13 AM Pacific Daylight Time. The moon’s shadow then moved southeast across Nevada, Utah, Arizona, Colorado, and New Mexico, before passing over Texas and the Gulf of Mexico. It continued south towards Mexico’s Yucatan, Peninsula, Belize, Honduras, Nicaragua, Costa Rica, Panama, Colombia, and Brazil

Unlike the colorful Aurora Borealis, eclipses are much easier to predict. Scientists can say when annular and solar eclipses will happen down to the second centuries in advance. The precise positions of the moon and the sun and how they shift over time is already known, so scientists can see how the moon’s shadow will fall onto Earth’s globe. Advances in computer technology have also enabled scientists to even chart eclipse paths down to a range of a few feet.

[Related: We can predict solar eclipses to the second. Here’s how.]

The next annular solar eclipse will be at least partially visible from South America on October 2,2024. One of these ‘ring of fire’ eclipses will not be visible in the United States until June 21, 2039. However, a total solar eclipse will darken the sky from Maine to Texas on April 8, 2024. There is still plenty of time to get eclipse glasses or make a pinhole camera to safely watch the next big celestial event. 

The post What the ‘Ring of Fire’ eclipse looked like to a satellite nearly 1 million miles from Earth appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Giant quake that shook Mars for hours had a surprising source https://www.popsci.com/science/mysterious-marsquake-source/ Tue, 17 Oct 2023 21:00:00 +0000 https://www.popsci.com/?p=580492
An artist's illustration of a cutaway of Mars along with the paths of seismic waves from two separate quakes in 2021. These seismic waves, detected by NASA’s InSight mission, were the first ever identified to enter another planet’s core.
An artist's illustration of a cutaway of Mars along with the paths of seismic waves from two separate quakes in 2021. These seismic waves, detected by NASA’s InSight mission, were the first ever identified to enter another planet’s core. NASA/JPL-Caltech/University of Maryland

NASA's InSight lander captured the 4.7 magnitude seismic event in 2022.

The post Giant quake that shook Mars for hours had a surprising source appeared first on Popular Science.

]]>
An artist's illustration of a cutaway of Mars along with the paths of seismic waves from two separate quakes in 2021. These seismic waves, detected by NASA’s InSight mission, were the first ever identified to enter another planet’s core.
An artist's illustration of a cutaway of Mars along with the paths of seismic waves from two separate quakes in 2021. These seismic waves, detected by NASA’s InSight mission, were the first ever identified to enter another planet’s core. NASA/JPL-Caltech/University of Maryland

A giant seismic event on Mars—a “marsquake”—that shook the Red Planet last year had an unexpected source, surprising astrophysicists from around the world. They suspected a meteorite strike. Instead, enormous tectonic forces within Mars’s crust, which caused vibrations that lasted for six hours, caused the quake and not a meteorite strike. The findings are described in a study published October 17 in the journal Geophysical Research Letters.

[Related: Two NASA missions combined forces to analyze a new kind of marsquake.]

NASA’s InSight lander recorded the magnitude 4.7 marsquake on May 4, 2022, which scientists named S1222a. Its seismic signal was similar to those of previous quakes that were caused by meteorite impacts, so the team began to search for an impact crater. 

In the new study, a team from the University of Oxford worked with the European Space Agency, Chinese National Space Agency, the Indian Space Research Organisation, and the United Arab Emirates Space Agency to scour more than 55 million square miles on Mars. Each group examined the data coming from its own satellites to look for a crater, dust cloud, or other signature of a meteorite impact. Because the search came up empty, they now believe that S1222a was caused by the release of huge tectonic forces from within the Martian interior. 

That doesn’t mean Mars’s tectonic plates are moving the way they do during an earthquake. The best available evidence suggests the planet is remaining still. “We still think that Mars doesn’t have any active plate tectonics today, so this event was likely caused by the release of stress within Mars’ crust,” study co-author and University of Oxford planetary geophysicist Benjamin Fernando said in a statement. “These stresses are the result of billions of years of evolution; including the cooling and shrinking of different parts of the planet at different rates.”

While Fernando explains that scientists do not fully understand why some parts of Mars seem to have more stress than others, these results can help them investigate further. “One day, this information may help us to understand where it would be safe for humans to live on Mars and where you might want to avoid!” he said.

Mars photo
This spectrogram shows the largest quake ever detected on another planet. Estimated at magnitude 5, this quake was discovered by NASA’s InSight lander on May 4, 2022. CREDIT: NASA/JPL-Caltech/ETH Zurich.

S1222a was one of the last events recorded by NASA’s InSight mission before its end. The InSight lander launched in May 2018 and survived “seven minutes of terror” to touch down on Mars, where it studied the planet’s interior and seismology for years. The last of the spacecraft’s data was returned in December 2022, after increasing dust accumulation on its solar panels caused InSight to lose power. 

[Related: InSight says goodbye with what may be its last wistful image of Mars.]

In its four years and 19 days of service, InSight recorded more than 1,300 marsquakes. At least eight of these events were from a meteorite impact; the largest two formed craters that were almost 500 feet in diameter. If the S1222a event was formed by an impact, the team estimates that the crater to be would have been at least 984 feet in diameter.

The team is applying knowledge from this study to other work, including future missions to our moon and the tectonics that are similar to California’s famed San Andreas fault located on one of Saturn’s moons named Titan. They also hope that it encourages additional major international collaborations to study the Red Planet and beyond. 

“This has been a great opportunity for me to collaborate with the InSight team, as well as with individuals from other major missions dedicated to the study of Mars,” study co-author and New York University Abu Dhabi astrophysicist Dimitra Atri said in a statement. “This really is the golden age of Mars exploration!”

The post Giant quake that shook Mars for hours had a surprising source appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
NASA’s Psyche spacecraft will blaze an unusual blue trail across the solar system https://www.popsci.com/science/nasa-psyche-hall-thrusters/ Tue, 17 Oct 2023 16:00:00 +0000 https://www.popsci.com/?p=580168
Red-capped Hall effect thrusters being attached to a spacecraft body by two engineers.
Engineers prepare to integrate four Hall thrusters onto the Psyche spacecraft at NASA's Jet Propulsion Laboratory. NASA/JPL-Caltech

Its thrusters are going to get 10 million miles to the gallon of xenon.

The post NASA’s Psyche spacecraft will blaze an unusual blue trail across the solar system appeared first on Popular Science.

]]>
Red-capped Hall effect thrusters being attached to a spacecraft body by two engineers.
Engineers prepare to integrate four Hall thrusters onto the Psyche spacecraft at NASA's Jet Propulsion Laboratory. NASA/JPL-Caltech

Last Friday, NASA launched the Psyche spacecraft toward an asteroid of the same name. Psyche is blazing a trail as the first mission to a metal asteroid, and it’s also about to blaze a literal blue trail. The source of its bright wake—the probe’s remarkable propulsive system—will switch on within the first 100 days of the mission.

A mechanism known as a Hall thruster will propel the Psyche through space. This thruster glows blue as it ionizes xenon, a noble gas also used in headlights and plasma televisions, to move the spacecraft forward. This is the first time this tech, which has only been available for NASA spaceflight since 2015, has been used to travel beyond the moon—but what makes it so special, and why is Psyche using it?

When planning a space mission, engineers are focused on efficiency. Carrying chemical fuel along for the massive interplanetary journey would be like trying to drive around the entire world while having to keep all the gasoline you need in the trunk, because there are no rest stops along the way—it’s just not feasible. To get to its destination, Psyche would need thousands and thousands of pounds of chemical propellant.

[Related: How tiny spacecraft could ‘sail’ to Mars surprisingly quickly]

To get around this problem, engineers turned to electric thrusters. These come in many flavors: “There are many different types of electric thrusters, almost as many as there are different makers of cars,” explained NASA’s Psyche chief engineer Dan Goebel in a blog post. But space travel uses two kinds in particular, known as ion thrusters and Hall thrusters. “They can probably be considered the Tesla versions of space propulsion,” Goebel wrote. Rather than burning fuel, electric thrusters rip off the electrons from the propellant’s atoms in a process known as ionization. Then they chuck those ions out at some 80,000 miles per hour. This generates a higher specific impulse—which Goebel says is “equivalent to miles per gallon in your car,” but for spacecraft—than chemical fuels, enabling a thruster-powered spacecraft to go farther on less propellant.

A pair of thrusters, one with an electric blue glow.
An operating Hall-effect thruster (left) and one that’s not on (right). NASA/JPL-Caltech

Ion thrusters use high electric voltages to make a plasma (the fourth state of matter) and spew ions into space. NASA’s Dawn mission used these to get to dwarf planet Ceres, but they’re not the fastest—according to NASA, it would take the spacecraft four days to go from 0 to 60 miles per hour. Definitely not race car material

[Related: Want to learn about something in space? Crash into it.]

Hall thrusters, on the other hand, use a magnetic field to swirl electrons in a circle, producing a beam of ions. They don’t get quite as good “mileage” as ion thrusters, but they pack a bigger punch. The Psyche team picked this system because it allowed them to make a smaller, and therefore more cost-efficient, spacecraft. 

For the thrusters to work, the spacecraft needs power—which it gets from the sun, via solar panels—and something to ionize. For Psyche, that’s xenon gas. “Xenon is the propellant of choice because it’s inert (it doesn’t react with the rest of the spacecraft) and is easy to ionize,” explained Goebel. It also gives the thrusters their remarkable blue shine. Psyche carries about 150 gallons of the stuff, and gets about 10 million miles per gallon

Now that the mission has launched, the team will spend the next 100 days checking out all the spacecraft’s systems to ensure they’re ready for the journey. At some point in this period, those glimmering blue thrusters will turn on.

If Psyche proves to be a success, Hall thrusters will be likely to make an appearance on future space missions. They offer “the right mix of cost savings, efficiency, and power, and could play an important role in supporting future science missions to Mars and beyond,” said Steven Scott, program manager for the Psyche mission at the company Maxar, which built the thrusters, in a press release. Thanks to these propulsive devices, Psyche should reach its destination in the asteroid belt in just 3.5 years—and we can’t wait to see what lies at the end of its electric blue trail.

The post NASA’s Psyche spacecraft will blaze an unusual blue trail across the solar system appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How to watch Saturday’s ‘ring of fire’ eclipse from wherever you are https://www.popsci.com/diy/how-to-watch-annular-solar-eclipse-2023/ Thu, 12 Oct 2023 12:05:56 +0000 https://www.popsci.com/?p=579091
A young Black person with short dyed-blonde hair wearing a yellow jacket and eclipse glasses while looking up at an eclipse in front of some residential buildings.
Always make sure you protect your eyes when you look at an eclipse. LeoPatrizi / Getty Images

Thanks to livestreams, anyone can watch the most dramatic scenes from the upcoming solar eclipse.

The post How to watch Saturday’s ‘ring of fire’ eclipse from wherever you are appeared first on Popular Science.

]]>
A young Black person with short dyed-blonde hair wearing a yellow jacket and eclipse glasses while looking up at an eclipse in front of some residential buildings.
Always make sure you protect your eyes when you look at an eclipse. LeoPatrizi / Getty Images

On Saturday, October 14, you’ll be able to watch an annular “ring of fire” eclipse as the moon passes in front of the sun at a distance where it’s unable to cover all of Earth’s nearest star. But only an exclusive crowd will be able to witness the event in its fully blazing glory—unless you know where to look.

Although it may be too late to travel to one of the best locations to watch this year’s final solar eclipse, nearly everyone in all 50 US states will have a chance to catch at least a glimpse (sorry western Alaska and western Hawaii). The 125-mile-wide path of annularity, however, will stretch from Oregon to Texas and cross just nine states before continuing on to Central and South America. You’ll only be able to see the sun form a fiery halo around the moon along that route. If you’re outside its range, you can simply load up one of several official livestreams to see what you’re missing.

How to watch the October 14, 2023 eclipse in person

The path of annularity will enter the US in Oregon at 12:13 p.m. Eastern Time (9:13 a.m. Pacific Time) and leave Texas at 1:30 p.m. ET (12:03 p.m. Central Time). The “ring of fire,” will pass over 29 national park sites and dozens of other pieces of public land. Worldwide, about 33 million people will be able to see it firsthand, while everyone else will have to settle for a less dramatic experience.

No matter where you are, make sure you’re wearing protective glasses to avoid damaging your eyes if you plan to look directly at the eclipse, or make a pinhole camera to project the event onto a sheet of paper. And of course, weather conditions may make it hard or impossible to see anything, so take note of the forecast.

If you want to know exactly what to expect where you are, astronomy website Time and Date has an interactive map that will help you set your eclipse-viewing plans. Once you’ve opened the map, click the magnifying glass icon on the left to open the search menu. Type the name of any city or town into the search bar and select it from the list that populates underneath. A pin will appear on the map and a box full of eclipse data will show up under the search bar.

That data will show you how much of the moon will cover the sun at that location, when the eclipse will begin and end there, when maximum coverage will occur, and the weather forecast for that spot on the globe. If you click the play icon next to the duration, you’ll go to another page where you can watch a simulation of what the eclipse will look like at that exact spot.

How to watch the annular “ring of fire” eclipse online

Just because you aren’t part of the 0.41 percent of people in the world who will be able to physically bear witness to the celestial spectacle doesn’t mean you’re stuck with whatever’s happening in the sky above you. All you have to do is turn your eyes away from the wonders of the natural world and look at a screen—there are four livestreams we think will offer an exquisite show.

The Exploratorium’s livestreams

The San Francisco-based Exploratorium will be broadcasting two livestreams starting at 8 a.m. PT (11 a.m. ET), one from their telescopes in Valley of the Gods, Utah, and another from their telescopes in Ely, Nevada. They will also broadcast Spanish-language coverage of the event starting at 9 a.m. PT (12 p.m. ET) on YouTube.

According to Time and Date, annularity—the “ring of fire”— will last 4 minutes and 46 seconds at the Valley of the Gods. There are morning clouds in the forecast, though, so the view might be obscured, but this has the potential to be the most scenic livestream on our list. 

  • Eclipse start: 9:10 a.m. Mountain Time (11:10 a.m. ET)
  • “Ring of fire” start: 10:29 a.m. MT (12:29 p.m. ET)

In Ely, meanwhile, annularity will last for 3 minutes and 38 seconds. The weather is expected to be partly cloudy, so the eclipse could be hard to see.

  • Eclipse start: 8:07 a.m. PT (11:07 a.m. ET)
  • “Ring of fire” start: 9:24 a.m. PT (12:24 p.m. ET)

Time and Date’s livestream

Time and Date’s eclipse chasers will be broadcasting a livestream from Roswell, New Mexico. There, according to the website’s own interactive map, the annularity will last for 4 minutes and 41 seconds. It’s expected to be sunny there, so the view should be clear.

  • Eclipse start: 9:15 a.m. MT (11:15 a.m. ET)
  • “Ring of fire” start: 10:38 a.m. MT (12:38 p.m. ET)

NASA’s livestreams

NASA, of course, will also be livestreaming the eclipse, with feeds from Kerrville, Texas, and Albuquerque, New Mexico, starting at 11:30 a.m. ET. Annularity will last 4 minutes and 14 seconds at Kerrville, according to Time and Date.

  • Eclipse start: 10:22 a.m. CT (11:22 a.m. ET)
  • “Ring of fire” start: 11:50 a.m. CT (12:50 p.m. ET)

At Albuquerque, which is supposed to have sunny skies during the eclipse, annularity will last 4 minutes and 48 seconds.

  • Eclipse start: 9:13 a.m. MT (11:13 a.m. ET)
  • “Ring of fire” start: 10:34 a.m. MT (12:34 p.m. ET)

The space agency will also be broadcasting a live feed of three rocket launches that are part of its Atmospheric Perturbations around the Eclipse Path (APEP) mission to study how Earth’s ionosphere responds to a sudden drop in sunlight. You might want to cue that one up in a different browser window alongside the eclipse, or set up picture-in-picture on your device.

Whatever you do, just know that your scheduling calculations and technological machinations are probably way less complicated than all the math scientists do to predict the paths of future eclipses.

The post How to watch Saturday’s ‘ring of fire’ eclipse from wherever you are appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
NASA’s first asteroid-return sample is a goldmine of life-sustaining materials https://www.popsci.com/science/osiris-rex-asteroid-sample-reveal/ Wed, 11 Oct 2023 20:00:00 +0000 https://www.popsci.com/?p=578733
The metal capsule containing asteroid samples of Bennu.
A view of the outside of the OSIRIS-REx sample collector, with material from the asteroid Bennu in the middle right. NASA/Erika Blumenfeld & Joseph Aebersold

Early analysis of space rock Bennu reveals the stuff is an 'astrobiologist's dream.'

The post NASA’s first asteroid-return sample is a goldmine of life-sustaining materials appeared first on Popular Science.

]]>
The metal capsule containing asteroid samples of Bennu.
A view of the outside of the OSIRIS-REx sample collector, with material from the asteroid Bennu in the middle right. NASA/Erika Blumenfeld & Joseph Aebersold

The powdery material that NASA officials unveiled on Wednesday looked like asphalt or charcoal, but was easily worth more than its weight in diamonds. The fragments were from a world all their own—pieces of the asteroid Bennu, collected and returned to Earth for analysis by the OSIRIS-REx mission. The samples hold chemical clues to the formation of our solar system and the origin of life-supporting water on our planet.

The clay and minerals from the 4.5 billion-year-old rock had been preserved in space’s deep freeze since the dawn of the solar system. Last month, after a seven-year-long space mission, they parachuted to a desert in Utah, where they were whisked away by helicopter

And now those pristine materials sit in an airtight vessel in a clean room at NASA’s Johnson Space Center, where researchers like University of Arizona planetary scientist Dante Lauretta are getting their first chance to study the sample up close. 

“The electron microscopes were fired up and ready” by September 27, Lauretta said in a news conference. “And boy did we really nail it.” (Lauretta, the principal investigator, gave the mission its name, which stands for Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer.) The preliminary investigation of a tiny fraction of the sample revealed it is rich in water, carbon, and organic compounds.

Grayscale images of the asteroid sample Bennu, highlighting the different shapes of certain compounds.
A scanning electron microscope view of the minerals in the Bennu sample; fig. A shows the snake-shaped clay that contains water. Screenshot of NASA livestream

Carbon is essential for all living things on Earth, forming chemical bonds with hydrogen, oxygen, and other elements necessary to build proteins and enzymes. “We’re looking at the kinds of minerals that may have played essential roles in the origin of life on Earth,” Lauretta said. 

The Bennu sample contained about 4.7 percent carbon, as measured by the Carnegie Institution for Science, according to Daniel Glavin, the OSIRIS-REx sample analysis lead at NASA’s Goddard Space Flight Center. This is “the highest abundance of carbon” the Carnegie team has measured in an extraterrestrial sample, Glavin said. “There were scientists on the team going ‘Wow, oh my God!’ And when a scientist says that ‘Wow;’ that’s a big deal.”

[Related: This speedy space rock is the fastest asteroid in our solar system]

The Bennu sample is also flush with organic compounds, too, which glowed like tiny stars within the dark sample when exposed to a black light. “We picked the right asteroid—and not only that, we brought back the right sample,” Glavin said. “This stuff is an astrobiologist’s dream.”

Asteroids like Bennu were most likely responsible for all of Earth’s wet features—the water in oceans, lakes, rivers, and rain probably arrived when space rocks landed on our young planet some 4 billion years ago. Bennu has water-bearing clay with a fibrous structure, which according to Lauretta, was the key material that ferried H2O to Earth.

Under magnification, the clay has a sinuous shape. “We call this serpentine because they look like serpents or snakes inside the sample, and they have water locked inside their crystal structure,” he said. “That is how we think water got to the Earth.”

This is only the start. The OSIRIS-REx science team, as they catalog the sample, have months of more detailed work ahead. After six months, they will publish the catalog; scientists from around the world will be able to propose studies using the materials—though more than half the sample will be kept in reserve for research to take place years or even decades in the future. 

[Related: NASA’s mission to a weird metal asteroid will blast off … soon]

They have more than a half-pound of material to work with. OSIRIS-REx recovered an estimated 250 grams of Bennu material, more than four times the 60 grams the mission had targeted. And as the science team began dissembling the sample return capsule at Johnson Space Center, they discovered what NASA is calling bonus material: bits of Bennu adhering to the collector head and lid of the sealed canister that brought the bulk of the sample home. 

”The first thing we noticed was that there was black dust and particles all around the outer edge,” Lauretta said. “Already this is scientific treasure.”

The post NASA’s first asteroid-return sample is a goldmine of life-sustaining materials appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The fastest ever human-made object keeps breaking its own speed record https://www.popsci.com/technology/parker-solar-probe-speed-record/ Wed, 11 Oct 2023 17:00:00 +0000 https://www.popsci.com/?p=578824
Parker Solar Probe in front of sun concept art
The 2018 'Best of What's New' winner continues to be the best. NASA/Johns Hopkins APL/Steve Gribben

At top speed, NASA's Parker Solar Probe could zoom from NYC to LA in just 20 seconds.

The post The fastest ever human-made object keeps breaking its own speed record appeared first on Popular Science.

]]>
Parker Solar Probe in front of sun concept art
The 2018 'Best of What's New' winner continues to be the best. NASA/Johns Hopkins APL/Steve Gribben

The 2018 winner of PopSci’s annual Best of What’s New continues to impress. NASA’s Parker Solar Probe is still edging closer to the sun than any other spacecraft has ever achieved, and it’s setting new speed records in the process. According to a recent status update from the space agency, the Parker Solar Probe has broken its own record (again) for the fastest thing ever made by human hands—at an astounding clip of 394,736 mph.

The newest milestone comes thanks to a previous gravity-assist flyby from Venus, and occurred on September 27 at the midway point of the probe’s 17th “solar encounter” that lasted until October 3. As ScienceAlert also noted on October 9, the Parker Solar Probe’s speed would hypothetically allow an airplane to circumnavigate Earth about 15 times per hour, or skip between New York City and Los Angeles in barely 20 seconds. Not that any passengers could survive such a journey, but it remains impressive.

[Related: The fastest human-made object vaporizes space dust on contact.]

The latest pass-by also set its newest record for proximity, at just 4.51 million miles from the sun’s plasma “surface.” In order not to vaporize from temperatures as high as nearly 2,500 degrees Fahrenheit, the Parker Solar Probe is outfitted with a 4.5-inch-thick carbon-composite shield to protect its sensitive instruments. These tools are measuring and imaging the sun’s surface to further researchers’ understanding of solar winds’ origins and evolution, as well as helping to forecast environmental changes in space that could affect life back on Earth. Last month, for example, the probe raced through one of the most intense coronal mass ejections (CMEs) ever observed. In doing so, the craft helped prove a two-decade-old theory that CMEs interact with interplanetary dust, which will improve experts’ abilities in space weather forecasting.

Despite its punishing journey, NASA reports the Parker Solar Probe remains in good health with “all systems operating normally.” Despite its numerous records, the probe is far from finished with its mission; there are still seven more solar pass-bys scheduled through 2024. At that point (well within Mercury’s orbit), the Parker Solar Probe will finally succumb to the sun’s extreme effects and vaporize into the solar winds— “sort of a poetic ending,” as one mission researcher told PopSci in 2021.

The post The fastest ever human-made object keeps breaking its own speed record appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A mission to map the universe unveils star clusters, asteroids, and tricks of gravity https://www.popsci.com/science/gaia-esa-data-release-3/ Tue, 10 Oct 2023 20:00:00 +0000 https://www.popsci.com/?p=578342
This image shows many looping and overlapping orbits encircling the Sun, all of different colors (to differentiate between asteroids). The center of the image – representing an area within the orbit of Jupiter – is very densely packed with orbits, while the outer edges remain clearer, showing the background plane of the Milky Way.
One of the new papers from the ESA’s Gaia mission reveals more about 156,823 asteroids. This image shows many looping and overlapping orbits encircling the Sun, all of different colors (to differentiate between asteroids). The center of the image – representing an area within the orbit of Jupiter – is very densely packed with orbits, while the outer edges remain clearer, showing the background plane of the Milky Way. ESA/Gaia/DPAC

The ESA's Gaia star surveyor marks its 10th birthday this December.

The post A mission to map the universe unveils star clusters, asteroids, and tricks of gravity appeared first on Popular Science.

]]>
This image shows many looping and overlapping orbits encircling the Sun, all of different colors (to differentiate between asteroids). The center of the image – representing an area within the orbit of Jupiter – is very densely packed with orbits, while the outer edges remain clearer, showing the background plane of the Milky Way.
One of the new papers from the ESA’s Gaia mission reveals more about 156,823 asteroids. This image shows many looping and overlapping orbits encircling the Sun, all of different colors (to differentiate between asteroids). The center of the image – representing an area within the orbit of Jupiter – is very densely packed with orbits, while the outer edges remain clearer, showing the background plane of the Milky Way. ESA/Gaia/DPAC

On October 10, the European Space Agency (ESA) published some interim data from its nearly a decade-long Gaia mission. The data includes half a million new and faint stars in a massive cluster, over 380 possible cosmic lenses, and the position of over 150,000 asteroids within the solar system. 

[Related: See the stars from the Milky Way mapped as a dazzling rainbow.]

Launched in December 2013, Gaia is an astronomical observatory spacecraft with a mission to generate an accurate stellar census, thus mapping our galaxy and beyond. A more detailed picture of Earth’s place in the universe could help us better understand the diverse objects that make up the known universe. 

500,000 new stars and cluster cores

In 2022, Gaia’s third data release (DR3) contained data on over 1.8 billion stars, which built a rather complete view of the Milky Way and beyond. Even with all that data, there were still gaps in the ESA’s mapping. Gaia still hadn’t fully explored areas of the sky that were particularly densely packed with stars, overlooking the stars that shine a little less brightly than their neighbors. 

A key example of this is in globular clusters. These are some of the oldest objects in the known universe and are especially valuable for looking back into our cosmic past. However, their bright cores can sometimes overwhelm telescopes trying to get a clear view. 

Gaia selected Omega Centauri to help fill in the gaps in the stellar map. Omega Centauri is the largest globular cluster that can be seen from Earth and is a good example of one of the galaxy’s more ‘typical’ clusters. Gaia enabled a special mode to truly map a wider patch of sky that is surrounding the cluster’s core whenever the cluster came into view.

“In Omega Centauri, we discovered over half a million new stars Gaia hadn’t seen before – from just one cluster!” study co-author and astrophysicist from the Leibniz-Institute for Astrophysics Potsdam (AIP) Katja Weingrill said in a statement. “We didn’t expect to ever use it for science, which makes this result even more exciting.”

The data also allowed the team to detect new stars that are too close together to be properly measured.

“With the new data we can study the cluster’s structure, how the constituent stars are distributed, how they’re moving, and more, creating a complete large-scale map of Omega Centauri. It’s using Gaia to its full potential—we’ve deployed this amazing cosmic tool at maximum power,” study co-author and AIP astrophysicist Alexey Mints said in a statement

The half million new stars showed that Omega Centauri is one of the most crowded regions that Gaia has explored so far. 

Currently, Gaia is exploring eight more regions using these same techniques. The scoop from those exploration will be included in Gaia Data Release 4. It should help astronomers truly understand what is happening within these cosmic building blocks and more accurately confirm the age of our galaxy.

Spotting gravitational lenses 

Gravitational lensing happens when the image of a faraway object in space becomes warped by a disturbing mass, such as a galaxy or star, sitting between the observer and the object. The mass in the middle acts like a giant lens that can magnify the brightness of light and cast multiple images of the faraway source onto the sky. 

[Related: Gravitational Lens Splits Supernova’s Light 4 Different Ways.]

“Gaia is a real lens-seeker,” study co-author and Laboratoire d’Astrophysique de Bordeaux astrophysicist Christine Ducourant  said in a statement. “Thanks to Gaia, we’ve found that some of the objects we see aren’t simply stars, even though they look like them.”

Some of the objects here are not ordinary stars, but distant quasars. These quasars are extremely bright, high-energy galaxies powered by black holes. To date, Gaia has found 381 candidates for lensed quasars. This is a “goldmine” for cosmologists, says Ducourant , and the largest set of candidates ever detected at once. 

Detecting lensed quasars is challenging, since a lensed system’s constituent images can clump together on the sky in misleading ways.

“The great thing about Gaia is that it looks everywhere, so we can find lenses without needing to know where to look,” study co-author and Université Côte d’Azur astrophysicist Laurent Galluccio said in a statement. “With this data release, Gaia is the first mission to achieve an all-sky survey of gravitational lenses at high resolution.”

Asteroids and The Milky Way

One of the studies in this data release reveals more about 156,823 asteroids, pinpointing their positions over nearly double the previous timespan. In the fourth Gaia data release, the team plans to complete the set and include comets, planetary satellites, and double the number of asteroids.

[Related: Smashed asteroid surrounded by a ‘cloud’ of boulders.]

Another study maps the disc of the Milky Way by tracing the weak signals seen in starlight, faint imprints of the gas and dust that floats between the stars. The Gaia team stacked six million spectra to study these signals and the data will hopefully allow scientists to finally narrow down the source of these signals.

“This data release further demonstrates Gaia’s broad and fundamental value—even on topics it wasn’t initially designed to address,” study co-author and ESA Project Scientist Timo Prusti said in a statement. “Although its key focus is as a star surveyor, Gaia is exploring everything from the rocky bodies of the solar system to multiply imaged quasars lying billions of light-years away, far beyond the edges of the Milky Way. The mission is providing a truly unique insight into the Universe and the objects within it, and we’re really making the most of its broad, all-sky perspective on the skies around us.”

The post A mission to map the universe unveils star clusters, asteroids, and tricks of gravity appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
We can predict solar eclipses to the second. Here’s how. https://www.popsci.com/science/solar-eclipse-predictions-math/ Tue, 10 Oct 2023 16:00:00 +0000 https://www.popsci.com/?p=577216
An orange ring around the dark moon eclipsing the sun.
Astronomers have calculated to the second how long the annularity will last as the moon's shadow travels across the US southwest. Depositphotos

Astronomers have made maps for eclipses hundreds of years into the future.

The post We can predict solar eclipses to the second. Here’s how. appeared first on Popular Science.

]]>
An orange ring around the dark moon eclipsing the sun.
Astronomers have calculated to the second how long the annularity will last as the moon's shadow travels across the US southwest. Depositphotos

On October 14, the Western Hemisphere will witness an annular solar eclipse. The moon will be too small and far away in our view to totally block out the sun’s disc. Instead, it will blot out its center, leaving a ring at the edges. The best locations to view that ring of fire in the sky will be along a path that cuts through Oregon, Texas, Central America, Colombia, and finally northern Brazil. You might decide to visit Albuquerque, New Mexico, where you’ll experience exactly 4 minutes and 48 seconds of an annular eclipse.

And if you’re seeking a true total eclipse, you only have to wait another six months. On April 8, 2024, at 2:10 p.m. Eastern (12:10 p.m. local time), Mazatlan, Mexico will become the first city in North America to see most of the sun vanish in shadow. The path of totality then arcs through Dallas and Indianapolis into Montréal, New Brunswick, and Newfoundland in Canada. We know all of these precise details—and more—thanks to our knowledge of where the moon and sun are situated in the sky at any given moment.

In fact, we can predict and map eclipses farther into the future, even centuries from now. Because they know the precise positions of the moon and the sun and how they shift over time, scientists can project the moon’s shadow onto Earth’s globe. And with cutting-edge computers, it’s possible to chart eclipse paths down to a range of a few feet.

A solar eclipse needs three things. It results when the moon blocks the sun’s light from our vantage point on Earth. So to predict an eclipse, you must know where and how the sun, moon, and Earth move in relation to each other. This isn’t quite as elementary as it may seem, because the solar system isn’t flat. The moon’s orbit slants about 5 degrees in relation to the sun’s path, which astronomers call the ecliptic. While our satellite passes between Earth and the sun around once a month—which we call a new moon—the two rarely seem to cross paths.

A map of the October annular eclipse.
A map of the October annular eclipse. NASA

Solar eclipses can only occur when the moon is at one of the two points where the moon’s orbit crosses the ecliptic, known as a node. If the moon is new at this crossing, the result is a solar eclipse.

In centuries past, trying to predict eclipses meant predicting minute details of finicky orbits. But as astronomers learned more about how celestial objects moved, they began tabulating what they call ephemerides: predictions of where the moon, sun, and planets will be in the sky. Ephemerides are still the key to eclipse prediction.

[Related: Make a classic pinhole camera to watch the upcoming solar eclipse]

“All you need is the ephemeris data…you don’t have to actually track the orbit,” says C. Alex Young, a solar physicist at NASA’s Goddard Space Flight Center.

With ephemeris data, astronomers can pinpoint dates and times when the moon and sun cross paths. Once you know that date, mapping an eclipse is relatively straightforward. Ephemerides let scientists project the moon’s shadow onto Earth’s sphere; with 19th-century mathematics, they can calculate the shape and latitude of two features of that shadow, the umbra and penumbra. Then, by knowing what time it is and where Earth is angled in its rotation, it’s possible to determine the longitudes. Putting these together produces an eclipse map.

In the past, astronomers printed the ephemerides in almanacs, long tomes filled with page after page of coordinate tables. Just as all of astronomy has advanced into an era of computers, so have ephemerides. Scientists today mathematically model the paths of the moon, sun, planets, other moons, asteroids, and much more.

NASA’s Jet Propulsion Laboratory (JPL) regularly publishes a new compendium of celestial locations every few years. The most recent edition, 2021’s DE440, accounts for details like the moon’s core and mantle sloshing around and slowing its rotation. “Generally speaking, we know where the moon is from the Earth to about a meter, maybe a couple of meters,” says Ryan Park, an engineer at JPL. “We typically know where the sun is to maybe a couple hundred meters, maybe 300 meters.”

[Related: How to look at the eclipse without damaging your eyes]

Ephemerides serve other purposes, especially when planning spaceflight missions. But it’s largely due to more sophisticated ephemeris data that we can now reliably predict the motions of the moon for the centuries ahead. In fact, you can find detailed maps of solar eclipses nearly a millennium in the future. (If you’re lucky enough to be in Seattle on April 23, 2563 or in Amsterdam on September 7, 2974, prepare for total eclipse day.)

But these maps, like most eclipse maps, show the path of totality or annularity as a smooth line crossing Earth’s surface. That isn’t an accurate representation. “This was designed for pencil and paper calculation, so it makes a lot of simplifying assumptions that are just a tiny bit wrong,” says Ernie Wright, who makes eclipse maps for NASA Goddard, “for instance that the moon is a perfectly smooth sphere.”

Both the moon and Earth are jagged at the edge. Earth’s terrain can block some views of the sun, and the moon has its own patchwork of mountains and valleys. In fact, sunbeams passing through lunar vales create the Baily’s beads and “diamond ring” often seen at an eclipse’s edge. “We now have detailed terrain information of these mountains from the Lunar Reconnaissance Orbiter,” Young says.

Wright has helped devise a new way of mapmaking that swaps the Victorian-age mathematics out for modern computer graphics. His method turns Earth’s surface into a map of pixels, each one with different latitude, longitude, and elevation, with the sun and moon in the sky above. Then, the method calculates which pixels see which parts of the moon block which parts of the sun. 

“You then make a whole sequence of maps at, say, one-second intervals for the duration of the eclipse,” Wright says. “You end up with a frame sequence that you can put together to make a movie of the shadow.” This new technique—only possible with modern computers and ultraprecise ephemerides—may allow us to make eclipse maps that clearly show whether you can see an eclipse from, say, your house. 

“I think that’s going to provide a whole new set of maps in the future that are going to be much more accurate,” says Young. “It’s going to be pretty exciting.”

The post We can predict solar eclipses to the second. Here’s how. appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Moon-bound Artemis III spacesuits have some functional luxury sewn in https://www.popsci.com/science/artemis-prada-spacesuit/ Fri, 06 Oct 2023 16:30:00 +0000 https://www.popsci.com/?p=577624
Close up of Axiom Space Prada lunar spacesuit glove
Astronauts will wear the spacesuits during humanity's first moonwalk in over 50 years. Axiom Space

NASA meets Prada.

The post Moon-bound Artemis III spacesuits have some functional luxury sewn in appeared first on Popular Science.

]]>
Close up of Axiom Space Prada lunar spacesuit glove
Astronauts will wear the spacesuits during humanity's first moonwalk in over 50 years. Axiom Space

NASA’s Artemis III astronauts are apparently going to look incredibly fashionable walking the lunar surface. On October 4, the commercial aerospace company Axiom Space announced a new collaboration with luxury fashion house Prada to design spacesuits for the upcoming moon mission currently scheduled for 2025.

According to Wednesday’s reveal, Prada’s engineers will assist Axiom’s systems team in finalizing its Axiom Extravehicular Mobility Unit (AxEMU) spacesuit while “developing solutions for materials and design features to protect against the unique challenge of space and the lunar environment.” Axiom CEO Michael Suffredini cited Prada’s expertise in manufacturing techniques, innovative design, and raw materials will ensure “not only the comfort of astronauts on the lunar surface, but also the much-needed human factors considerations absent from legacy spacesuits.”

[Related: Meet the first 4 astronauts of the ‘Artemis Generation’.]

NASA first unveiled an early prototype of the AxEMU spacesuit back in March, and drew particular attention to the fit accommodating “at least 90 percent of the US male and female population.” Given the Artemis mission has long promised to land the first woman on the lunar surface, such considerations are vital for astronauts’ safety and comfort.

In Wednesday’s announcement, Lorenzo Bertelli, Prada’s Group Marketing Director, cited the company’s decades of technological design and engineering experience. Although most well known for luxury fashion, Prada is also behind the cutting-edge Luna Rossa racing yacht fleet.

Closeup of Axiom Prada spacesuit exterior
Credit: Axiom Space

“We are honored to be a part of this historic mission with Axiom Space,” they said. “It is a true celebration of the power of human creativity and innovation to advance civilization.”

Despite Prada’s association with high fashion, the final AxEMU design will undoubtedly emphasize safety and function over runway appeal. After all, astronauts will need protection against both solar radiation and the near-vacuum of the lunar surface, as well as ample oxygen resources and space for HD cameras meant to transmit live feeds back to Earth. According to the BBC earlier this year, each suit will also incorporate both 3D-printing and laser cutters to ensure precise measurements tailored to each astronaut.

Although NASA’s first images of the AxEMU in March showcased a largely black-and-gray color palette with blue and orange accents, Axiom Space’s newest teases hint at an off-white cover layer more reminiscent of the classic Apollo moon mission suits. It might not be much now, but you can expect more detailed looks at the spacesuits in the coming months as the Artemis Program continues its journey back to the moon.

The post Moon-bound Artemis III spacesuits have some functional luxury sewn in appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Make a classic pinhole camera to watch the upcoming solar eclipse https://www.popsci.com/diy/how-to-make-a-pinhole-camera/ Fri, 06 Oct 2023 16:19:21 +0000 https://www.popsci.com/?p=577644
A cardboard pinhole camera to watch an eclipse
Listen, we know this is not the most sophisticated-looking artifact, but it does a great job at protecting your eyes when you want to look at the sun. Sandra Gutierrez

This DIY projector might be the easiest you ever build.

The post Make a classic pinhole camera to watch the upcoming solar eclipse appeared first on Popular Science.

]]>
A cardboard pinhole camera to watch an eclipse
Listen, we know this is not the most sophisticated-looking artifact, but it does a great job at protecting your eyes when you want to look at the sun. Sandra Gutierrez

It’s a well-known fact that staring at the sun is… not the best idea. In the same way that the sun can burn your skin, our home star can overwhelm your peepers with UV rays and literally scorch your retina.

That is a huge bummer, especially because watching a solar eclipse (when the moon covers the sun) is an incredibly cool experience. Thankfully, there are several ways to watch an eclipse without risking your vision, and one of them is building a pinhole camera out of a box, a piece of aluminum foil, and lots of tape. This is an easy and incredibly versatile project, and you can turn it into a permanent camera obscura when you’re done watching the eclipse. 

Stats

  • Time: 10 minutes
  • Cost: $1
  • Difficulty: easy 

Materials

  • 1 cardboard box
  • Duct tape (or electrical tape)
  • Aluminum foil
  • White paper

Tools

  • Scissors (or box cutter)
  • Ruler
  • Pencil
  • Thumbtack 
  • (Optional) glue

How to make a pinhole camera

1. Light-proof your box. Leaving one side open, use duct tape or electrical tape to seal the box and prevent any light rays from sneaking in. Pay special attention to the corners and wherever two pieces of cardboard meet. The pinhole will only allow a few rays of light into your box, so the projection of the sun will be dim. That means the darker your camera, the easier it will be to see the image.

As we said, this project is versatile. You can use a wide range of box sizes to make your pinhole camera, but cereal and shoe boxes work exceptionally well. We used the 15-by7 ½-by-5 ½-inch box that carried our neighbor’s latest online shopping spurt. 

Light-proofed box for pinhole camera.
Covering the openings and corners with duct tape is the easiest way to light-proof your box. But electrical tape will also do. Sandra Gutierrez

Likewise, duct tape and electrical tape are the best choices to light-proof your box, but you can use any tape that will block light—dark washi tape or masking tape will also do the trick. Just keep in mind that you may have to apply multiple layers to achieve total darkness inside your box. 

[Related: A ‘ring of fire’ eclipse and Hunter’s Moon will bring lunar drama to October’s skies]

  • Pro tip: Check your work by holding your box up to a light and looking inside. If you still see some shine coming through, apply another layer of tape. 
Arrows pointing to the openings of a box where the light filters in.
Hold your box against a window or a lamp to see where the light comes through. The corners are often problematic spots you’ll need to cover. Sandra Gutierrez

2. Determine your pinhole’s location and cover the inside of the opposite face with white paper. Measure one of the smallest sides of the box, cut a piece of white paper to the same size, and tape or glue it to the inside of the corresponding face. It doesn’t have to be perfect—as long as most of the side is covered, you’ll be good to go. Just make sure that the paper doesn’t have any wrinkles or folds, as they may distort the image of the sun. 

White sheet of paper glued to the inside of a box.
If you don’t want to mess around with glue, you can always just tape the white paper that will be your screen. Do it carefully to avoid wrinkles and creases. Sandra Gutierrez

3. Measure the openings for the pinhole and the viewer. On the side opposite the one you covered with white paper, use your ruler and a pencil to measure two openings. The pinhole opening will be located in the upper left corner (about half an inch from the edges) and will be 2-by-2 inches (we’ll make it smaller later). 

Ruler measuring a square on a cardboard box.
Measurements don’t have to be exact. As long as the aluminum foil covers the entire opening, you’ll be fine. Sandra Gutierrez

The viewing opening will be located in the upper right corner of the box, half an inch from the top edge and an inch from the right edge of the box. This opening will be smaller—only 1 inch square.

4. Cut the openings. Using a box cutter or scissors, cut out the openings you drew. 

  • Pro tip: If the openings end up being too big, don’t sweat it—you can always adjust their size with tape. 

5. Close and seal the box. Use your newly cut openings to make sure there are no other places where light might be sneaking in. Pay special attention to the corners of the box above and below your openings. Cover all the places where pieces of cardboard meet with tape. 

6. Cover the larger opening with aluminum foil. Cut a smooth 2 ½-by-2 ½-inch piece of aluminum foil. With the dull side facing you, carefully cover the big opening with the metallic sheet and tape it in place. Make sure you secure it tightly so no light can get into the box.  

Aluminum foil covering the corner of a cardboard box.
Having a smooth piece of aluminum foil will prevent sunlight from being redirected. Sandra Gutierrez
  • Pro tip: To smooth out any creases, softly rub the top of any fingernail over the foil in a small, circular motion. 

7.  Use the thumbtack to poke a hole in the foil. Find the rough center of the 2-by-2-inch square under the aluminum sheet and gently push the tack through before pulling it back out—you want a clean, round hole. If you don’t have a thumbtack, you can use the tip of a toothpick or an embroidery needle. Just make sure that whatever you’re using has a point (it’ll make a neater hole) and that it’s approximately 0.2 millimeters wide. 

Fingers holding a needle in front of a pinhole camera.
We used an embroidery needle to poke our pinhole. If you find that what you used is too wide, you can just replace the piece of aluminum foil and start again. Sandra Gutierrez
  • Note: The width of your pinhole will determine how much light gets into the box. Too much light and the image will be blurry. If that’s the case, don’t worry—just replace the foil and try making a smaller pinhole. 

8. Put your pinhole camera to the test. Stand with your back facing the sun and look into the box through the viewport. Use your hands to block out as much light as possible and move around until you find the angle where sunlight enters through the pinhole. When this happens, you should see a small projection of the shape of the sun on the white paper you pasted inside the box. 

[Related: Total eclipses aren’t that rare—and you’ve probably missed a bunch of them]

Keep in mind that the weather is crucial in determining the quality of the image you’ll see inside your pinhole camera, and whether you can see the eclipse at all. The October 14 eclipse, in particular, will be annular, so the moon will be smaller than the sun and clouds, rain, or other inclement weather will make it hard to see the event, explains Franck Marchis, a SETI Institute astronomer and the chief scientific officer of Unistellar, a company that manufactures smart telescopes.

How a pinhole camera works

Images are light. Everything we see we perceive because there’s light bouncing off of it, beaming directly through our pupils and into our eyes. All cameras, including the humble pinhole camera you just made, operate under this basic principle. The better they filter the light, the sharper the resulting image will be. 

The sun, of course, is the ultimate light source. On a sunny day, rays from the star travel to Earth and bounce off of every surface they reach. This is a lot of light coming from all directions, so if we want to see only a small portion of the sun’s rays, we have to focus those rays and filter out the rest. That’s why the pinhole in your camera is so tiny or, in more technical terms, why its aperture is so narrow—it only lets a small amount of light into the box, just enough so you can see only a dim projection of the sun when you point the pinhole directly at it. 

The image of an LED lamp with a filter besides the image inside a pinhole camera.
I built my pinhole camera on a cloudy day, so I tested it with my LED lamp and added a very non-professionally made filter I made with aluminum foil to test the sharpness of the image. Sandra Gutierrez

The dimness of the image is not ideal, but it’s the tradeoff we make for sharpness—too much light results in a blurry, out-of-focus picture. This is important during a solar eclipse, as filtering the light will allow you to see the round shape of the sun become a crescent or a ring as the moon moves in and gradually blocks the sunlight. 

When the eclipse is over, use a skewer to widen your camera’s pinhole. When you look inside, you won’t only be able to see the sun, but a slightly brighter and inverted image of your surroundings. A bigger pinhole turns your box into a camera obscura, allowing more light in and projecting an image of the objects around you.  

The post Make a classic pinhole camera to watch the upcoming solar eclipse appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How to look at the eclipse without damaging your eyes https://www.popsci.com/how-to-not-damage-eyes-during-eclipse/ Tue, 22 Aug 2017 01:02:11 +0000 https://www.popsci.com/uncategorized/how-to-not-damage-eyes-during-eclipse/
Sun photo

It’s always a bad idea to look directly at the sun.

The post How to look at the eclipse without damaging your eyes appeared first on Popular Science.

]]>
Sun photo

This month, millions of Americans will have a chance to watch an annular eclipse, also known as a “ring of fire” for the scorching halo the sun forms around the moon. If you’re one of them, be careful: looking directly at a solar eclipse without eye protection can permanently damage your vision.

It doesn’t matter if our rocky satellite is blocking all or some of our nearest star—the sun is still an incredibly bright source of light. Don’t risk your eyesight for a quick glimpse or even a once-in-a-lifetime event. Thankfully, it’s pretty easy to protect your eyes while watching an eclipse..

What happens if you look at a solar eclipse

We are able to see thanks to photoreceptors. These cells, also known as rods and cones, are located at the backs of our eyes, and convert the light reflected by the world around us into electrical impulses that our brain interprets as the image we see. But when strong light, like that from the sun, hits our eyes, a series of chemical reactions occur that damage and often destroy these rods and cones. This is known as solar retinopathy, and can make our eyesight blurry. Sometimes, if the damage is too great in one area, you can lose sight completely.

[Related: Every sunset ends with a green flash. Why is it so hard to see?]

On a typical sunny day, you almost never have to worry about solar retinopathy. That’s because our eyes have natural mechanisms that ensure too much light doesn’t get in. When it’s really bright outside, our pupils get super tiny, reducing the amount of sunlight that can hit your photoreceptors. But when you stare directly at the sun, your pupils’ shrinking power isn’t enough to protect your peepers.

This is where your eyes’ second defense mechanism comes into play. When we look at something bright, we tend to blink. This is known as the corneal or blink reflex, and it  prevents us from staring at anything too damagingly bright. 

Just before a solar eclipse has reached its totality, the moon is partially blocking the sun, making it a lot easier for us to look up at the star without blinking. But that doesn’t mean you should—even that tiny sliver of sunlight is too intense for our sensitive photoreceptors.

[Related: Total eclipses aren’t that rare—and you’ve probably missed a bunch of them]

Unfortunately, if you practice unprotected sun-gazing, you probably won’t know the effects of your actions until the next morning, when the damage to your photoreceptors has kicked in.

And while solar retinopathy is extremely rare, it is by no means unheard of. If you search the term in medical journals, you’ll find case reports after almost every popular solar eclipse. Let’s try really hard to do better this time, eyeball-havers.

How to safely watch a solar eclipse

Watching the eclipse with your own two eyes is easy: just wear legitimate eclipse sunglasses. These are crucial, as they will block the sun’s rays enough for you to safely see the eclipse without burning your eyes out.

And if you don’t have eclipse glasses, you can still enjoy the view, albeit not directly. Try whipping up your own eclipse projector or a DIY pinhole camera so you can enjoy the view without having to book an emergency visit to the eye doctor.

This story has been updated. It was originally published in 2017.

The post How to look at the eclipse without damaging your eyes appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
NASA’s mission to a weird metal asteroid has blasted off https://www.popsci.com/science/nasa-psyche-mission-launch-asteroid/ Mon, 02 Oct 2023 10:00:00 +0000 https://www.popsci.com/?p=576128
A spacecraft in a white room as technicians wearing cleanroom suits look on.
The Psyche spacecraft in 2022. NASA/JPL-Caltech

Get psyched.

The post NASA’s mission to a weird metal asteroid has blasted off appeared first on Popular Science.

]]>
A spacecraft in a white room as technicians wearing cleanroom suits look on.
The Psyche spacecraft in 2022. NASA/JPL-Caltech

NASA’s Psyche mission to a unique, metallic asteroid of the same name launched from Kennedy Space Center’s Launch Complex 39A at 10:20 a.m. Eastern on October 13 via a SpaceX Falcon Heavy rocket.

It was, finally, a smooth exit from Earth for the probe. Psyche had been scheduled to blast off on October 5, the first day of a window that stretches through October 25. But NASA officials announced a delay on September 28, citing issues with the spacecraft’s maneuvering thrusters, which are used to point the vehicle where it needs to go. “The change allows the NASA team to complete verifications of the parameters used to control the Psyche spacecraft’s nitrogen cold gas thrusters,” NASA officials wrote in the announcement. 

That weeklong delay was small, though, compared to the mission’s earlier hold-ups. Psyche was first set to launch in October of 2022, but issues with the navigation software developed by NASA’s Jet Propulsion Laboratory forced the agency to delay the mission by a year. 

This mission should be well worth the wait. It could help uncover details about unusual asteroids and our planet. And the pioneering technology and operations it will demonstrate during its nearly six-year mission will influence the design of future spacecraft. 

Psyche to Psyche

The destination of Psyche (a spacecraft) is 16 Psyche (an asteroid)—an object about 140 miles in diameter in the asteroid belt between Mars and Jupiter. It looks a bit like a cratered potato. 

Remote observations by astronomers have already determined 16 Psyche to be a highly metallic asteroid, rich in iron, and it is believed to be the exposed core of a small planet that never fully formed. Getting up close and personal with 16 Psyche could help scientists better understand Earth’s iron-rich core: It’s easier to send a spacecraft 280 million miles away to study an asteroid than to access Earth’s rocky center, 1,800 miles beneath our feet. Exploring the metallic object in space has implications for our planet’s geomagnetic field, which protects life from space radiation—that field is generated when our planet’s solid inner core spins within liquid metal surroundings. 

Thrusters and lasers

Psyche is one of NASA’s first spacecraft to use solar electric propulsion as its primary means of reaching an asteroid. Rather than relying on traditional chemical rockets, Psyche will use Hall effect thrusters, which use electrostatic fields to accelerate ions—charged particles—and expel them, generating thrust. (These are different machines from the nitrogen thrusters that caused the launch delay.) Such thrusters produce very low thrust—far less than a pound—but do so very efficiently, allowing Psyche to preserve its xenon gas propellant and build up speed over the vast distances it will cover. 

The electric thrusters will use solar power—though the sunlight it absorbs will shrink as Psyche approaches its destination. Still, it’s well prepared. While the spacecraft itself is the size of a large car, its twin solar panels are about the size of tennis courts. They’ll produce 21 kilowatts of energy near Earth and about two kilowatts when at asteroid Psyche. 

[Related on PopSci+: In its visit to Psyche, NASA hopes to glimpse the center of the Earth]

In addition to solar electric propulsion, Psyche will also test a new form of Earth-to-spacecraft transmission system called Deep Space Optical Communication. Deep Space Optical Communication encodes data in infrared lasers, rather than radio waves, and can potentially carry much more information to and from the Psyche spacecraft than can traditional methods. The laser communications are just a demonstration—Psyche will still stay in touch with Earth, and vice versa, using NASA’s radio-based Deep Space Network. 

Research on a metal world

When Psyche arrives at the asteroid 16 Psyche in 2029, it will set to work studying the iron asteroid’s magnetic properties. With the aid of an imager and two kinds of spectrometer, the probe will also use patterns of light absorption to determine what elements and compounds exist on this metal potato. 

But Psyche won’t simply scratch the surface. It will also study the asteroid’s internal structure by measuring the space rock’s gravity field. There’s no specific instrument to pull this off. Instead, scientists on the ground will use radio signals from Psyche to precisely measure the spacecraft’s orbit around the asteroid, measuring any slight perturbations that signal variations in the gravitational field, which in turn can tell scientists about the internal density of 16 Psyche. 

[Related: Smashed asteroid surrounded by a ‘cloud’ of boulders]

And while the Psyche mission has the unique potential to shed light on how planetary bodies are formed and function, it’s also a part of an expanding portfolio of NASA asteroid missions. NASA’s Lucy mission, which launched in 201, is currently on its way to fly by multiple asteroids near Jupiter between 2025 and 2033. NASA’s OSIRIS-REx asteroid sample return mission, meanwhile, just dropped pieces of the asteroid Bennu back on Earth on September 24. It’snow headed to visit the asteroid Apophis; the mission has been renamed to OSIRIS-APEX, or Origins, Spectral Interpretation, Resource Identification, and Security-APophis EXplorer.

Such missions have multiple goals: they help scientists better understand the formation of the early solar system and how planets like Earth, and they can also tell us about the makeup of asteroids that could one day pose a threat—and how to deflect them if necessary. 

Apophis, for instance, was at one time considered a very hazardous asteroid; though it won’t hit Earth, it will pass within 20,000 miles of our planet on April 13, 2029. 

The people of Earth don’t have to worry about any danger from 16 Psyche, though, as it will continue along in its orbit between Mars and Jupiter indefinitely, hundreds of millions of miles from our planet. 

That is, unless humans make changes to the metallic space rock. Mining asteroids is an old idea. But, as spacecraft improve, the estimated $10 quintillion worth of metal ore on Psyche and asteroids like it might begin to look pretty appetizing to companies that want to capitalize on resources in the heavens.

This post has been updated. It was originally published on October 2.

The post NASA’s mission to a weird metal asteroid has blasted off appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A ‘ring of fire’ eclipse and Hunter’s Moon will bring lunar drama to October’s skies https://www.popsci.com/science/stargazing-guide-october-2023/ Sun, 01 Oct 2023 10:00:00 +0000 https://www.popsci.com/?p=575752
Purple, blue, and white meteors fall at night during October stargazing
October is the time of year for the Orionids meteor shower. More than two-dozen meteors were caught in successively added exposures in October 2017 in Inner Mongolia, China. Yin Hao/NASA

The full moon will vanish over some continents.

The post A ‘ring of fire’ eclipse and Hunter’s Moon will bring lunar drama to October’s skies appeared first on Popular Science.

]]>
Purple, blue, and white meteors fall at night during October stargazing
October is the time of year for the Orionids meteor shower. More than two-dozen meteors were caught in successively added exposures in October 2017 in Inner Mongolia, China. Yin Hao/NASA
October 14Annular Solar Eclipse
October 21-22Orionids Meteor Shower Predicted Peak
October 23Venus at Greatest Western Elongation
October 28Full Hunter’s Moon and Partial Lunar Eclipse

The Northern Hemisphere has officially passed the autumnal equinox. The days are getting shorter and colder, but the night sky remains as hot as ever. This month is going to be a big one for cosmic events, with an exciting annular solar eclipse, meteor showers, and clearer stargazing as the temperatures and humidity drop. Aurora activity can also really pick up this time of year, for those lucky enough to be at the right latitudes to catch a glimpse of the northern lights. Here are some events to look out for this month. If you happen to get any stellar sky photos, please tag us and include #PopSkyGazers.  

October 14 – Annular Solar Eclipse

Chances are you have heard about this one already. The moon will pass between Earth and the sun and cast a huge shadow on our planet in the process. With the right protective eyewear, it will be a sight to behold—the phenomenon produces a “ring of fire” as if the moon is outlined with flames.  

Astronomers have calculated precisely when the best views will be where you are, so consult this list when scheduling an outing to safely check out the sky. The duration will range from little more than one minute to almost five, depending where you are located in its path. This eclipse has a 125-mile-wide path of annularity that will begin in Oregon at 12:13 p.m. Eastern Daylight Time. It will leave the US at about 1:03 p.m. EDT and head southeastward toward Central and South America. 

October 21 and 22 – Orionids Meteor Shower Predicted Peak

The annual Orionid meteor shower is expected to peak on October 22 in a moonless sky, but the wee hours of the morning of October 21 could also yield some meteors. According to EarthSky, under a dark sky with no moon, the Orionids can produce a maximum of about 10 to 20 meteors per hour. On October 22, the moon will be setting around midnight, which means its light shouldn’t interfere with the shower. The best time to try and spot the shower is just after midnight into the early morning hours 

October 23 – Venus at Greatest Elongation

In August, the planet Venus moved between the Earth and the sun and rose in the east. Venus will be farthest from the sunrise on October 23 and should remain visible in the morning sky until May 2024, where it will be a very bright “morning star.” 

During this month’s greatest elongation, Venus will appear higher in the sky from the Northern Hemisphere than from the Southern Hemisphere. This is because of the steep angle of the path of the sun, moon, and planets in the mornings during the autumn months. 

October 28- Full Hunter’s Moon and Partial Lunar Eclipse

The full Hunter’s Moon will reach peak illumination at 4:24 p.m. EDT on Saturday, October 28, but you can start to look for it on October 27. The Hunter’s Moon is always the first full moon after the Harvest Moon. According to the Farmer’s Almanac, the name originates as a signal for hunters to prepare for the upcoming winter to ensure that they have enough food. It is also when animals like the stars of Fat Bear Week are beginning to bulk up for a long winter’s hibernation, and animals may be easier to spot since fields are being cleared. Other names for October’s full moon include the Falling Leaves Moon or Binaakwe-giizis in Anishinaabemowin (Ojibwe) and the Someone Stores Food Moon or Yutekhway^he in Oneida.

Additionally, a partial lunar eclipse is predicted for this same day. Between 3:36 and 4:53 EDT, the moon will pass through the Earth’s shadow. The eclipse should be visible in any location where the moon is above the horizon at the time, including parts of Asia, Russia, Africa, Oceania, and Europe.

The same skygazing rules that apply to pretty much all space-watching activities are key this month: Go to a dark spot away from the lights of a city or town and let the eyes adjust to the darkness for about a half an hour.

The post A ‘ring of fire’ eclipse and Hunter’s Moon will bring lunar drama to October’s skies appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Inside the small world of simulating other worlds https://www.popsci.com/science/small-worlds/ Fri, 29 Sep 2023 22:00:00 +0000 https://www.popsci.com/?p=575596
Amid an otherworldly landscape outside of Hanksville, Utah, sits the Mars Desert Research Station. Facilities like these are intended to mimic how people might fare on Mars or the Moon, or on long-term orbital stations.
Amid an otherworldly landscape outside of Hanksville, Utah, sits the Mars Desert Research Station. Facilities like these are intended to mimic how people might fare on Mars or the Moon, or on long-term orbital stations. Visual: The Mars Society

A niche research community plays out what existence might be like on, or en route to, another planet.

The post Inside the small world of simulating other worlds appeared first on Popular Science.

]]>
Amid an otherworldly landscape outside of Hanksville, Utah, sits the Mars Desert Research Station. Facilities like these are intended to mimic how people might fare on Mars or the Moon, or on long-term orbital stations.
Amid an otherworldly landscape outside of Hanksville, Utah, sits the Mars Desert Research Station. Facilities like these are intended to mimic how people might fare on Mars or the Moon, or on long-term orbital stations. Visual: The Mars Society

This article was originally published on Undark.

IN JANUARY 2023, Tara Sweeney’s plane landed on Thwaites Glacier, a 74,000-square-mile mass of frozen water in West Antarctica. She arrived with an international research team to study the glacier’s geology and ice fabric, and how its ice melt might contribute to sea level rise. But while near Earth’s southernmost point, Sweeney kept thinking about the moon.

“It felt every bit of what I think it will feel like being a space explorer,” said Sweeney, a former Air Force officer who’s now working on a doctorate in lunar geology at the University of Texas at El Paso. “You have all of these resources, and you get to be the one to go out and do the exploring and do the science. And that was really spectacular.”

That similarity is why space scientists study the physiology and psychology of people living in Antarctic and other remote outposts: For around 25 years, people have played out what existence might be like on, or en route to, another world. Polar explorers are, in a way, analogous to astronauts who land on alien planets. And while Sweeney wasn’t technically on an “analog astronaut” mission — her primary objective being the geological exploration of Earth — her days played out much the same as a space explorer’s might.

For 16 days, Sweeney and her colleagues lived in tents on the ice, spending half their time trapped inside as storms blew snow against their tents. When the weather permitted, Sweeney snowmobiled to and from seismometer sites, once getting caught in a whiteout that, she said, felt like zooming inside a ping-pong ball.

On the glacier, Sweeney was always cold, sometimes bored, often frustrated. But she was also alive, elated. And she felt a form of focus that eluded her on her home continent. “I had three objectives: to be a good crewmate, to do good science, and to stay alive,” she said. “That’s all I had to do.”

None of that was easy, of course. But it may have been easier than landing back on the earth of El Paso. “My mission ended, and it’s over,” she said. “And how do I process through all these things that I’m feeling?”

Then, in May, she attended the 2023 Analog Astronaut Conference, a gathering of people who simulate long-term space travel from the relative safety and comfort of Earth. Sweeney had learned about the event when she visited an analog facility in the country of Jordan. There, she’d met one of the conference’s founders, Jas Purewal, who invited her to the gathering.

The meeting was held, appropriately, at Biosphere 2, a glass-paneled, self-contained habitat in the Arizona desert that resembles a 1980s sci-fi vision of a space settlement — one of the first facilities built, in part, to understand whether humans could create a habitable environment on a hostile planet.

Mars photo
The 40-acre Biosphere 2 campus in Oracle, Arizona. It was one of the first facilities built for analog astronaut missions. Visual: University of Arizona

A speaker at the conference had spent eight months locked inside a simulated space habitat in Moscow, Russia, and she talked about how the post-mission period had been hard for her. The psychological toll of reintegration became a chattering theme throughout the whole meeting. Sweeney, it turned out, wasn’t alone.

Across the world, around 20 analog space facilities host people who volunteer to be study subjects, isolating themselves for weeks or months in polar stations, desert outposts, or even sealed habitats inside NASA centers. These places are intended to mimic how people might fare on Mars or the moon, or on long-term orbital stations. Such research, scientists say, can help test out medical and software tools, enhance indoor agriculture, and address the difficulties analog astronauts face, including, like Sweeney’s, those that come when their “missions” are over.

Lately, a community of researchers has started to make the field more formalized: laying out standards so that results are comparable; gathering research papers into a single database so investigators can build on previous work; and bringing scientists, participants, and facility directors together to share results and insights.

With that cohesion, a formerly quiet area of research is enhancing its reputation and looking to gain more credibility with space agencies. “I think the analogs are underestimated,” said Jenni Hesterman, a retired Air Force officer who is helping spearhead this formalization. “A lot of people think it’s just space camp.”


ANALOG ASTRONAUT FACILITIES emerged as a way to test drive space missions without the price tag of actually going to space. Scientists, for example, want to make sure tools work properly and so analog astronauts will test out equipment ranging from spacesuits to extreme-environment medical equipment.

Researchers are also interested in how astronauts fare in isolation, and so they will sometimes track characteristics like microbiome changes, stress levels, and immune responses by taking samples of spit, skin, blood, urine, and fecal matter. Analog missions “can give us insights about how a person would react or what kind of team — what kind of mix of people — can react to some challenges,” said Francesco Pagnini, a psychology professor at the Catholic University of Sacred Heart in Italy, who has researched human behavior and performance in collaboration with the European and Italian space agencies.

Some facilities are run by space agencies, like NASA’s Human Exploration Research Analog, or HERA, which is located inside NASA’s Johnson Space Center in Houston. The center also houses a 3D-printed habitat called Crew Health and Performance Exploration Analog, or CHAPEA, where crews will simulate a year-long mission to Mars. The structure looks like an artificial intelligence created a cosmic living space using IKEA as its source material.

“My mission ended, and it’s over,” Sweeney said. “And how do I process through all these things that I’m feeling?”

Most analog spots, though, are run by private organizations and take research proposals from space agencies, university researchers, and sometimes laypeople with projects that the facilities select through an application process.

Such work has been going on for decades: NASA’s first official analog mission took place in 1997, in Death Valley, when four people spent a week pretending to be Martian geologists. In 2000, the nonprofit Mars Society, a space-exploration advocacy and research organization, built the Flashline Mars Arctic Research Station in Nunavut, Canada, and soon after constructed the Mars Desert Research Station in Utah. (Both facilities have been used by NASA researchers, too.) But the practice was in place long before those projects, even if the terminology and permanent facilities were not: In the Apollo era, astronauts used to try out their rovers and space walks, along with scientific techniques, in Arizona and Hawaii.

Many facilities, according to Ronita Cromwell, formerly the lead scientist of NASA’s Flight Analogs Project, are located in two types of places: extreme environments or controlled ones. The former include Antarctic or Arctic research stations, which tend to be used to study topics like sleep patterns and team dynamics. The latter — sealed, simulated habitats — are primarily useful for human behavior research, like learning how cognitive ability changes over the course of a mission, or testing out equipment, like software that helps astronauts make decisions without communicating to mission control. That independence becomes necessary as crews travel farther from Earth, because the communication delays increase with distance.

Mars photo
Crew members depart the Flashline Mars Arctic Research Station in Nunavut, Canada, which was built by the Mars Society, a nonprofit space-exploration advocacy and research organization. Visual: The Mars Society
Mars photo
The Mars Society’s Mars Desert Research Station in Utah includes a small living space, a research lab, a greenhouse, and an astronomical observatory. Visual: The Mars Society
Mars photo
The living quarters of NASA’s Crew Health and Performance Exploration Analog, or CHAPEA, facility. Visual: Bill Stafford/NASA
Mars photo
An analog crew returns after their 45-day simulated mission at NASA’s Human Exploration Research Analog, or HERA. Visual: NASA

During her work on NASA’s mission simulations, Cromwell saw their value. “What excited me is that we were able to create sort of spaceflight situations on the ground, to study spaceflight changes in the human body,” Cromwell said, “whether they be, you know, psychological, cognitive changes, or physiological changes.”

Psychiatry researchers from the University of Pennsylvania, for instance, recently found that members of a crew at HERA performed better on cognition tasks — like clicking on squares that randomly appear on a screen and memorizing three-dimensional objects — as their mission went on. Another recent HERA study, led by scientists at Northwestern and DePaul universities, found that over time, teams got better at executing physical tasks together, but worsened when they tried to work together creatively and intellectually, like brainstorming as many uses as possible for a given object. Those brain and behavioral changes could teach scientists about tight teams deployed in other remote, tedious, stressful situations. “I think space psychology can also speak a lot about everyday life,” said Pagnini.

On the physical side, an international team that included a NASA scientist recently used the Mars Desert Research Station to test whether analog astronauts could be quickly taught how to fix broken bones using a device that could work on Mars — or an earthly site far from medical facilities. Investigations into self-contained, sustainable living reveal how low-resource existence could work on Earth, too. For example, another crew, led by Griffith University medical researchers, performed an experiment extracting water from minerals in case of emergency.

“I think the analogs are underestimated,” said Hesterman. “A lot of people think it’s just space camp.”

While scientific research that actually takes place in space usually gets the spotlight, the ground-testing of all systems, including human ones, is necessary, if not always glamorous or publicly lauded. “I felt like I was in charge of a deep, dark secret,” said Cromwell, jokingly, of her work on the NASA analog program.

In fact, even people who work in adjacent fields sometimes haven’t heard of the field. Purewal, an astrophysicist, only learned about analog space research in 2020. With Covid-19 restrictions in place, though, most facilities had halted new missions. “If I can’t go to an analog, maybe I can bring the analog to me,” Purewal thought.

Amid the drapey willow branches and manicured hedges of her parents’ backyard in Warwick, England, she constructed a geodesic dome out of broomstick handles and tent-like materials. Purewal sequestered inside for a week, leaving only to use the bathroom — and then only while wearing a simulated spacesuit. She communicated with those outside her dome on a synthesized 20-minute delay and ate freeze-dried foods, which she came to hate, and insect protein from mealworms and locusts, which she came to like more than she anticipated.

While Purewal admits her personal analog was “low-fidelity,” it offered a test drive for more rigorous research. By 2021, Purewal had, with SpaceX civilian astronaut Sian Proctor, co-founded the Analog Astronaut Conference that Sweeney attended, along with an associated online community of more than 1,000 people. She also participated in an analog mission in someone else’s backyard — one surrounded by Utah State Trust Lands — in November 2022. Their endeavor was sponsored by the Mars Society and involved research on mental health, geologic research tools, and sustainable food supplies, all of which would be necessary if they were going to Mars.

Mars photo
Astrophysicist Jas Purewal’s backyard dome, which she constructed and sequestered inside for a week in 2020, leaving only to use the bathroom — and then only while wearing a simulated spacesuit. Visual: Courtesy of Jas Purewal

BUT THEY WEREN’T HEADED to Mars, they were headed to Utah. About five minutes from the small town of Hanksville — home to “Hollow Mountain,” a gas station convenience store dug out of a rock formation — sits the turnoff to the Mars Desert Research Station. Operated by the Mars Society, the facility is 3.4 miles down a dirt track called N Cow Dung Road. The landscape looks otherworldly: mushroom-shaped rock formations; sandy, granular ground; and eroded hills of red rock.

The station sits in a flat spot surrounded by those hills, with a cylindrical living space two stories tall but just 26 feet in diameter. The habitat links out via above-ground “tunnels” to a greenhouse and a geodesic dome that resembles Purewal’s initial backyard creation, and houses a control center and lab.

In November 2022, Purewal brought a team there for two weeks, with Hesterman as commander. In the habitat, an astrobiology student tried to grow edible mushrooms in the crew’s food waste. Another team member wanted to see if they could make yogurt from powdered milk and bacteria. Purewal, meanwhile, was experimenting with an AI companion robot called PARO. Shaped like a baby harp seal, PARO is typically used to relieve stress in medical situations. The crew members interacted with PARO and wore bio-monitoring straps that measured things like heart rate as they did so.

Every day on “Mars” had a set of missions: spacewalks, splinting a broken ankle on a virtual reality headset, a tabletop emergency exercise about evacuating for noxious fumes, a fake pass-out to test emergency response protocol. Their personal protocols were working well, but Purewal and Hesterman, locked in together, had begun to fret about the quality and consistency of the analog enterprise more broadly. They started to think about creating standards: for the research, for the facilities themselves. At their Utah-Mars station, for instance, a pipe broke under their sink. There were electrical issues. A propane monitor was malfunctioning.

Mars photo
Jas Purewal (left) and retired Air Force officer Jenni Hesterman (right) led a team at the Mars Desert Research Station for two weeks in November 2022. Visual: Courtesy of Jas Purewal
Mars photo
Every day on “Mars,” Purewal and Hesterman’s team completed a set of missions, including simulated spacewalks. Visual: Courtesy of Jas Purewal
Mars photo
The landscape around the Mars Desert Research Station looks otherworldly: mushroom-shaped rock formations; sandy, granular ground; and eroded hills of red rock. Visual: Courtesy of Jas Purewal

After their mission ended, they spoke with others, and heard about issues such as expired fire extinguishers, or the lack of safety training for participants who would be using specialized technologies and life support systems. They consulted Emily Apollonio, a former aircraft accident investigator. In 2022, she traveled to Hawaii to live at HI-SEAS, a 1,200-square-foot analog station located 8,200 feet above sea level on the Mauna Loa volcano. Apollonio thought HI-SEAS had avoidable problems. For one, the bathroom had only a composting toilet, which the mission crew weren’t allowed to pee in, and a urinal, which the women had to use, too.

With a draft version released this June, they hope to improve conditions for participants — ensuring, for instance, that facilities adhere to building codes and provide adequate medical support. They also want to encourage analog participants to follow research best practices to ensure rigorous outputs. The standards suggest, for instance, that each mission have its research plan pre-validated by the principal investigator and habitat director, a timeline for research completion, and an Institutional Review Board approval in place for human experiments. While projects with federal or institutional grant funding go through these steps anyway, the formality isn’t uniform across the board.

While some analogs already have rigorous protocols in place to protect participants, the safety issues and inclusivity gaps she heard about from colleagues helped inspire Apollonio to start a training and consulting company called Interstellar Performance Labs to help prepare would-be analog astronauts before their missions. She also started to work with Purewal, Hesterman, and others on a document called “International Guidelines and Standards for Space Analogs.”

The standards also detail the creation of a research database, putting all the writeups (peer-reviewed and otherwise) of analog projects in one place. That way, people aren’t duplicating efforts — as the mushroom-grower, it turns out, was — unless they mean to test the replicability of results. They can also better link their studies to space agencies’ established needs to be more directly helpful and relevant to the real world.

“I didn’t know where to look, I didn’t know where to go,” Apollonio said. “I couldn’t hear my thoughts.”

As part of this centralization effort, Purewal, Apollonio, Hesterman, and colleagues are also putting together what they call the World’s Biggest Analog: a simultaneous, month-long mission involving at least 10 isolated bases across the world, which together will simulate a large, cooperative future presence in space.

So far, though, attempts to give the community cohesion and coherency have yet to fully address the aspect of analog life that gives many participants trouble: the end of their mission. “Being in an analog mission was less difficult than coming out an analog mission,” said Apollonio, of her own experience.

Shortly after emerging from HI-SEAS, she walked around the streets of Waikiki with her husband. The lights, the noise — everything was too much. “I didn’t know where to look, I didn’t know where to go,” she said. “I couldn’t hear my thoughts.” After they chose a restaurant for dinner, and the server handed her a menu, she froze. “I have to choose my own food,” she realized. It was overwhelming, and that feeling didn’t abate.

Meanwhile, few other people understood the experience, said Hesterman. “You come home and you’re all excited, like, you want to tell everybody about it,” she continued. “You tell everybody about it once, and then they’re just done. On back to paying the bills and cutting the grass and stuff. You still want to talk about it.”

Purewal missed the team and the sense of shared purpose, and started to seek it outside the simulation. “I need to find this same feeling in my day-to-day life,” she said. “We all kind of need our crew.”


RESEARCH ON THE post-mission experience is scant, said Pagnini. In March 2023, he co-authored a review paper, commissioned by the European Space Agency, which aimed to lay out the state of research on human behavior and performance in space, including gaps in the science. Studying how astronauts react and cope “post-mission,” his research found, has been particularly neglected. The same is true of returning from analog space.

Pagnini says the research isn’t just relevant to analog or actual astronauts. Life in space has similarities to life on Earth — including in its difficulties. Italy’s heavily restrictive and prolonged Covid-19 lockdown, for instance, resembled going away on a mission. “When we got out of the lockdown phase, getting in touch with other people was kind of strange,” he said. Much of living a regular life on Earth was strange.

The strangeness also extends to other experiences, like military deployments and the subsequent return to domestic life. “The expectation is kind of that families will live happily ever after” once they’re reunited, said Leanne Knobloch, a professor of communication at the University of Illinois, who performed a large reintegration study on military couples. “So that’s why reintegration has sometimes been overlooked, but more and more researchers are starting to recognize that it is a challenging period, and it’s not the storybook ending that people make it out to be.”

She noted that her research, like that on the psychology of space travel and the post-mission experience, can apply to other arenas. “Any kind of situation where partners are separated and they come together, this research can help understand that puzzle piece more broadly,” she said.

Knobloch’s work includes suggestions for easing the transition, such as preparing people for the issues they’re likely to experience. “If you’re ready and expect that you might experience some of these problems, it won’t be so stressful,” she said. “Because you’ll recognize that they’re normal.”

Apollonio’s Interstellar Performance Labs, for one, is already planning to include education on “aftercare,” educating people about what she calls the “deorbiting effect” of returning to regular life.


WHEN THE DAY finally came for Sweeney to depart Thwaites Glacier, the aircraft seemed to materialize right out of the sky, as though the remote outpost had transformed into a busy airport. As she was leaving, she looked down at the camp where half her team remained. “You could just see how small our little footprint was,” she said. A speck in the middle of endless white space.

Since she landed in North America, Sweeney has savored time with her family. But the adjustment hasn’t been easy. “Each day that ticks by of being back, I started feeling pulled in different directions,” she said. With numerous projects ongoing — mentoring, speaking, doing her doctoral research — she felt her sense of self splintering. In Antarctica, she had been a smooth, singular whole.

But at the Analog Astronaut Conference in May, hearing about others’ similar readjustment difficulties, Sweeney felt some sense of normalcy. Having a community of support could help with post-mission struggles. Further research — aided by the new database and standardization measures — could help uncover best coping strategies, along with the keys to successful crew dynamics, stress creators and mitigators, and tools and designs that make the practicalities of a mission easier. Maybe someone will look at the database, see this scientific gap, and try to fill it.

Such research might resonate with Sweeney and others having trouble readjusting to their daily lives. “We have to get back to work, we have to go see our families, we want to pick up the projects we were doing before,” she said. “But also, we need to make space for the magnitude of the experience that we just had. And to be able to decompress from that.”


UPDATE: A previous version of this piece incorrectly stated that Tara Sweeney’s plane landed on Thwaites Glacier in November 2022. She arrived to McMurdo Station in Antarctica in November 2022, but did not land on Thwaites Glacier until January 2023. The piece also described a scene in which Sweeney left her camp on Thwaites Glacier, and incorrectly stated that she was departing Antarctica at that time. She remained in Antarctica for several weeks after she left the glacier. Lastly, a previous version stated that storms dumped feet of snow on the landscape. To clarify that the snow was not fresh snowfall, the piece has been updated to reflect that snow blew against the tents.

This article was originally published on Undark. Read the original article.

The post Inside the small world of simulating other worlds appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How tiny spacecraft could ‘sail’ to Mars surprisingly quickly https://www.popsci.com/science/solar-sail-mars-study/ Thu, 28 Sep 2023 17:00:00 +0000 https://www.popsci.com/?p=575568
Solar sail concept art from NASA
Solar sails are no longer relegated to science fiction. NASA

A new study demonstrates just how promising solar sails could be for exploring our neighboring planets.

The post How tiny spacecraft could ‘sail’ to Mars surprisingly quickly appeared first on Popular Science.

]]>
Solar sail concept art from NASA
Solar sails are no longer relegated to science fiction. NASA

Solar sails that leverage the sun’s photonic rays for “wind” are no longer the stuff of science fiction—in fact, the Planetary Society’s LightSail 2 practical demonstration was deemed a Grand Award Winner for PopSci’s Best of What’s New in 2019. And while countless projects continue to explore what solar sails could hold for the future of space travel, a new study demonstrates just how promising the technology could be for excursions to Earth’s nearest planetary neighbor, and beyond.

According to a paper recently submitted to the journal Acta Astronautica, detailed computer simulations show tiny, incredibly lightweight solar sails made with aerographite could travel to Mars in just 26 days—compare that to conventional rocketry time estimates of between 7-to-9 months. Meanwhile, a journey to the heliopause (the demarcation line for interstellar space where the sun’s magnetic forces cease to influence objects) could take between 4.2 and 5.3 years. For comparison, the Voyager 1 and Voyager 2 space probes took a respective 35 and 41 years to reach the same boundary.

[Related: This novel solar sail could make it easier for NASA to stare into the sun.]

The key to such speedy trips is the 1 kg solar sails’ 720g of aerographite—an ultra-lightweight material with four times less density than most solar sail designs’ Mylar components. The major caveat to these simulations is that they involved an extremely miniscule payload weight, something that will most often not be the case for major interplanetary and interstellar journeys.

“Solar sail propulsion has the potential for rapid delivery of small payloads (sub-kilogram) throughout the solar system,” René Heller, an astrophysicist at the Max Planck Institute for Solar System Research and study co-author, explained to Universe Today earlier this month. “Compared to conventional chemical propulsion, which can bring hundreds of tons of payload to low-Earth orbit and deliver a large fraction of that to the Moon, Mars, and beyond, this sounds ridiculously small. But the key value of solar sail technology is speed.”

Another issue still that still needs addressing is deceleration methods needed upon actually reaching a destination. Although aerocapture—using a planet’s atmosphere to reduce velocity—is a possible option, researchers concede more investigation will be needed to determine the best, most efficient way to actually stop at a solar sail-equipped spacecraft’s intended endpoint. Regardless, the study only adds even more wind in the sails (so to speak) for the impressive interstellar travel method.

The post How tiny spacecraft could ‘sail’ to Mars surprisingly quickly appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Why astronomers want to put a telescope on the dark side of the moon https://www.popsci.com/technology/lusee-lunar-telescope/ Wed, 27 Sep 2023 22:00:00 +0000 https://www.popsci.com/?p=575343
Rendering of Firefly Space's Blue Ghost lunar lander on moon surface
LuSEE-Night will arrive aboard Firefly Aerospace's Blue Ghost lunar lander. Firefly Aerospace

LuSEE-Night is designed to provide never-before-seen glimpses of one of the universe's least understood eras.

The post Why astronomers want to put a telescope on the dark side of the moon appeared first on Popular Science.

]]>
Rendering of Firefly Space's Blue Ghost lunar lander on moon surface
LuSEE-Night will arrive aboard Firefly Aerospace's Blue Ghost lunar lander. Firefly Aerospace

The dark side of the moon, despite its name, is a perfect vantage point for observing the universe. On Earth, radio signals from the furthest depths of space are obscured by the atmosphere, alongside humanity’s own electronic chatter, but the lunar far side has none of these issues. Because of this, establishing an observation point there could allow for unimpeded views of some of cosmic history’s earliest moments—particularly a 400 million year stretch known as the universe’s Dark Ages when early plasma cooled enough to begin forming the  protons and electrons that eventually made hydrogen.

After years of development and testing, just such an observation station could come online as soon as 2026, in part thanks to researchers at the Lawrence Berkeley National Laboratory in California.

[Related: Watch a rocket engine ignite in ultra-slow motion.]

The team is currently working alongside NASA, the US Department of Energy, and the University of Minnesota on a pathfinder project called the Lunar Surface Electromagnetics Experiment-Night (LuSEE-Night). The radio telescope is on track to launch atop Blue Ghost, private space company Firefly Aerospace’s lunar lander, as part of the company’s second moon excursion. Once in position, Blue Ghost will detach from Firefly’s Elytra space vehicle, then travel down to the furthest site ever reached on the moon’s dark side. 

“If you’re on the far side of the moon, you have a pristine, radio-quiet environment from which you can try to detect this signal from the Dark Ages,” Kaja Rotermund, a postdoctoral researcher at Berkeley Lab, said in a September 26 project update. “LuSEE-Night is a mission showing whether we can make these kinds of observations from a location that we’ve never been in, and also for a frequency range that we’ve never been able to observe.”

More specifically, LuSEE-Night will be equipped with specialized antennae designed by the Berkeley Lab team to listen between 0.5 and 50 megahertz. To accomplish this, both the antennae and its Blue Ghost transport will need to be able to withstand the extreme temperatures experienced on the moon’s far side, which can span between -280 and 250 degrees Fahrenheit. Because of its shielded lunar location, however, LuSEE-Night will also need to beam its findings up to an orbiting satellite that will then transfer the information back to Earth.

“The engineering to land a scientific instrument on the far side of the moon alone is a huge accomplishment,” explained Berkeley Lab’s antenna project lead, Aritoki Suzuki, in the recent update. “If we can demonstrate that this is possible—that we can get there, deploy, and survive the night—that can open up the field for the community and future experiments.”

If successful, LuSEE-Night could provide data from the little known Dark Ages, which breaks up other observable eras such as some of the universe’s earliest moments, as well as more recent moments after stars began to form.

According to Berkeley Lab, the team recently completed a successful technical review, and is currently working on constructing the flight model meant for the moon. Once landed, LuSEE-Night will peer out into the Dark Age vastness for about 18 months beginning in 2026. 

The post Why astronomers want to put a telescope on the dark side of the moon appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Citizen scientists can join a ‘Ring of Fire’ eclipse radio experiment https://www.popsci.com/science/radio-jove-solar-eclipse/ Sun, 24 Sep 2023 17:00:00 +0000 https://www.popsci.com/?p=572871
A yellow sun partially blocked by a moon in a reddish sky with the US capitol in the foreground.
A partial solar eclipse is seen as the sun rises behind the United States Capitol Building. NASA/Bill Ingalls

As energy spews from the sun and travels to Earth, it will interact with a special layer in our atmosphere.

The post Citizen scientists can join a ‘Ring of Fire’ eclipse radio experiment appeared first on Popular Science.

]]>
A yellow sun partially blocked by a moon in a reddish sky with the US capitol in the foreground.
A partial solar eclipse is seen as the sun rises behind the United States Capitol Building. NASA/Bill Ingalls

Every year or two, the solar system lines up just right, with the moon casting a shadow over part of Earth’s surface and blocking out the sun—a solar eclipse. In 2017, people across the United States flocked to see the “Great American Total Eclipse”, which was the first one visible in the continental states since 1979. Now, eclipse chasers and citizen scientists across North America are getting ready for the next big events: an annular eclipse on October 14, 2023 and a total eclipse on April 8, 2024. This will be the last eclipse visible in the continental US until August 2045, more than two decades away. 

People love eclipses for the novelty—how cool it is to see the sun disappear in the day. But these phenomena are both showstoppers and opportunities: a group of radio astronomers and citizen scientists called Radio JOVE is aiming to capitalize on the upcoming eclipses for science, part of NASA’s “Helio Big Year.”

Radio JOVE “initially started as an education and outreach project to help students, teachers, and the general public get involved in science,” explains project co-founder Chuck Higgins, an astronomer at Middle Tennessee State University. The project has been running since the late 1990s, when it began at NASA’s Goddard Space Flight Center. “We now focus on science and try to inspire people to become citizen scientists.” 

As its name suggests, Radio JOVE originally focused on the Jovian planet, Jupiter. Serendipitously, it turns out that the same radio wavelengths we use for observing Jupiter are also useful for observing the sun,” says Thomas Ashcraft, a citizen scientist from New Mexico who has been observing with Radio JOVE since 2001. After the 2017 Great American Eclipse, its members became more involved with heliophysics, the study of the sun.

[Related: Total eclipses aren’t that rare—and you’ve probably missed a bunch of them]

As energy spews from the sun and travels to Earth, it interacts with our planet’s atmosphere; in particular, the sun’s rays create a layer of ionized particles, known as the ionosphere. Any radio waves coming from the sun have to pass through these particles above us. Communication technology takes advantage of this layer, bouncing radio waves off it to travel long distances.

The ionosphere’s plasma changes a lot between day and night. When the sun shines on this layer, particles break into ions. When the sun is absent, those ions calm down. During eclipses, when most of the sun’s light is blocked, similar changes happen in the short term change. By measuring those fluctuations precisely with a fleet of amateur observers, Radio JOVE hopes to improve our understanding of the ionosphere.

This region, the ionosphere, is an electrified layer of the upper atmosphere.
This region, the ionosphere, is an electrified layer of the atmosphere that begins at roughly 50 miles up. NASA’s Goddard Space Flight Center/Mary Pat Hrybyk-Keith

To do so, Radio JOVE is equipping citizen scientists across the country with small radio receivers and training them to observe radio waves from Earth’s ionosphere. The project offers some-assembly-required starter kits for around $200, and a whole team of experts and experienced observers are around to support new volunteers. 

[Related: The best US parks for eclipse chasers to see October’s annularity]

Right now, they’re prepping participants for a full day of observing during the October annular eclipse. Project members are already gathering data to have a baseline of the sun’s influence on a normal day, which they’ll compare to the upcoming eclipse data. And this is only a small taste before the big event: next year’s total eclipse. “The 2023 annular eclipse will be used as a training, learning, and testing experience in an effort to achieve the highest quality data for the 2024 total eclipse,” Higgins wrote in a summary for an American Geophysical Union conference.

Citizen science projects such as Radio JOVE not only collect valuable data, but they also involve a new crowd in NASA’s scientific community. Anyone interested in science can join in, and if Radio JOVE doesn’t suit your interests, NASA has a long list of other opportunities. For example, if you’re a ham radio operator, you can get involved with HamSCI, which also plans to observe the upcoming eclipse.

“NASA’s Radio JOVE Citizen Science Project allows me to further explore my lifelong interest in astronomy,” said John Cox, a Radio JOVE citizen scientist from South Carolina, in a NASA press release. “A whole new portion of the electromagnetic spectrum is now open to me.”

The post Citizen scientists can join a ‘Ring of Fire’ eclipse radio experiment appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
NASA’s OSIRIS mission delivered asteroid samples to Earth https://www.popsci.com/science/osiris-rex-bennu-asteroid-sample-return-utah/ Wed, 20 Sep 2023 22:00:00 +0000 https://www.popsci.com/?p=573031
A NASA illustration of its boxy OSIRIS spacecraft touching an asteroid.
The OSIRIS-REx spacecraft contacts the asteroid Bennu with the Touch-And-Go Sample Arm Mechanism, or TAGSAM, in this illustration. NASA

Studying pieces of asteroid Bennu in a lab could help unravel the chemical origins of life on Earth.

The post NASA’s OSIRIS mission delivered asteroid samples to Earth appeared first on Popular Science.

]]>
A NASA illustration of its boxy OSIRIS spacecraft touching an asteroid.
The OSIRIS-REx spacecraft contacts the asteroid Bennu with the Touch-And-Go Sample Arm Mechanism, or TAGSAM, in this illustration. NASA

On the morning of September 24, a space capsule containing a pristine sample of the near-Earth asteroid Bennu entered Earth’s atmosphere wreathed in fire. During a 10 minute descent, the craft used its heat shield to dissipate speed through friction. It safely touched down on a military range in Utah, marking the end of NASA’s seven-year-long Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer—the OSIRIS-REx mission. The roughly 9 ounces of asteroid bits, doused in nitrogen to keep out any contaminants, are now in a clean room.

For more than half a decade, the members of this mission faced multiple technical challenges: building, testing, and launching the OSIRIS-REx spacecraft in 2016; rendezvousing with asteroid Bennu in 2018 about 207 million miles from Earth; using a robotic arm to grab half a cup’s worth of Bennu in 2020; and setting a course back to Earth in 2021. 

The scope of the OSIRIS-ReX mission stretches from the distant past into the relatively closer future. Nearly two decades ago, astronomers set out to not only get up close and personal with an ancient asteroid, but actually bring some home. And its scientific observations dip billions of years into the past. Samples from this more than 4.5 billion-year-old asteroid are likely to provide clues to the origin of life itself. It will also help prepare us for a moment, centuries from now, when Bennu could threaten to strike Earth. 

The power of a pristine asteroid 

The OSIRIS-REx sample is a chance to thoroughly examine what compounds may have been present in the early solar system. By bringing pieces of the space rock to Earth, researchers can use the most powerful laboratory techniques available—not just what tools can fit on a spacecraft. 

”It’s tremendously powerful to be able to get something back in the laboratory,” says Jason Dworkin is a biochemist and astrobiologist at NASA’s Goddard Space Flight Center. He’s been the project scientist for OSIRIS-REx since NASA accepted the mission proposal in 2011, and has been involved in the mission’s planning since its conception in 2004. “You can change your mind about what you’re looking for. As new discoveries come in, you can adjust your instrumentation. You can have devices that are not only too large to get on the spacecraft, but for us, even larger than the launch pad.” 

[Related: The asteroid that created Earth’s largest crater may have been way bigger than we thought]

Dworkin has long been interested in the ways interstellar chemistry can shed light on how the early Earth’s organic compounds combined to form life as we know it. It’s possible that material from asteroids, made of similar stuff as Bennu, helped deliver some necessary ingredients when they struck our planet.

We know the strikes happened, Dworkin says, but we don’t know how relevant the “asteroidal input” from objects like Bennu was.

Rapidly recovering the sample

Before scientists like Dworkin can probe the bits of rock for data, they have to get the samples safely into the lab. Sample collection teams—NASA experts and academic mission scientists, US military representatives, and scientists and engineers from Lockheed Martin, which built the OSIRIS-REx spacecraft—have spent the summer practicing to recover the Bennu sample as quickly as possible. 

As the capsule neared Earth’s atmosphere, the recovery teams boarded helicopters, using infrared imaging to track the capsule as it descended. They swiftly arrived to where the capsule came to rest, within a 36-mile by 8.5-mile area of the Department of Defense’s Utah Test and Training Range near Salt Lake City. The reason for the haste is to limit the chances that anything Earthly would contaminate the 8.8 ounces of pristine Bennu material. 

A parachute above a plain desert.
A training model of the OSIRIS-REx sample return capsule falls during a drop test in August. NASA/Keegan Barber

To further guard against this, the team recovering the capsule also took samples of soil and material from around the landing site. That way, if scientists detect something “extraordinary,” Dworkin says, “we can make sure that it cannot be explained by contamination or by something else from the environment.”

The capsule, which slowed from 27,650 mph when it entered Earth’s atmosphere to 11 mph when it landed, was taken to a temporary clean room at the military range. There, it will be disassembled and on Monday packaged for a flight to NASA’s Johnson Space Center in Houston, where the space agency has built a specialized clean room environment. This will be Bennu’s home on Earth.

“The sample comes back and is studied by the science team for two years,” Dworkin says. “Within six months, we produce a catalog of what we’ve observed based on how to describe the sample without damaging the sample using non-invasive techniques.”

What an asteroid on Earth can tell us

The science team has 12 major hypotheses and 54 sub-hypotheses to test, according to Dworkin, which fall into four broad categories. 

The first category is testing the observations that OSIRIS-REx made of Bennu while in space. NASA wants to know: If the results of remote instrument measurements of, say, the asteroid’s mineralogy hold up when tested on the ground? If so, this will be a baseline for additional remote studies of other asteroids NASA won’t send a spacecraft to sample. 

The second category, Dworkin’s favorite, is examining what organic compounds might exist in the sample. It may contain amino acids, sugars, and aldehydes. These are potentially some of the same ingredients that were present on Earth when life began. Studying how they exist on Bennu can reveal the chemical changes they’ve undergone over the eons in space. 

The sample return capsule from NASA’s OSIRIS-REx mission is seen shortly after touching down in the desert.
The sample return capsule from NASA’s OSIRIS-REx mission is seen shortly after touching down in the desert. NASA/Keegan Barber

The history of the solar system is the third category. This is the tale, told by the sample, of our solar neighborhood: all the way “from the protosolar nebula to the formation of the crater out of which we collected the sample,” Dworkin says. In this view, as Bennu traveled in the frigid space, it was as if material from the solar system’s early days was held in cold storage.

[Related: Local asteroid Bennu used to be filled with tiny rivers]

And the fourth category of study will be analyzing if and how bringing a piece of Bennu home changes the sample. ”We saw images of it before we stowed it; is that the same, or did it change on the reentry into Earth’s atmosphere?” Dworkin says. “Do we have evidence of contamination from the spacecraft, from the sample processing and handling? 

Some of the answers to questions across all four categories could come within months to a few years. But NASA is preparing for the long haul. Today’s scientists will only have immediate access to about a quarter of the sample. The rest will be held in cold storage for decades, on the assumption that later generations will have better tools and more knowledge to bring to bear. 

NASA wants to avoid repeating mistakes the agency made with some of the Apollo-era moon samples, when tests weren’t as conservative with lunar material. “ “That’s arming the future, and making sure that future generations thank us instead of curse us,” Dworkin says.

There’s one final forward-looking aspect to the OSIRIS-REx mission. In the late 22nd century, sometime between 2170 and 2200, Bennu has a slim chance of hitting Earth. It’s “a small percentage, but not nothing,” Dworkin notes. Information gathered by OSIRIS-REx and subsequent sample studies could help scientists and political leaders decide, with decades of preparation, whether they need to take action to deflect Bennu to prevent a disastrous impact. 

”That’s a wonderful feeling to be able to work on a mission for so long, and have it pay off scientifically for the future, and perhaps planetary defense for the future,” Dworkin says. ”That happens when you start thinking about what happened four and a half billion years ago. You start thinking about the future too.”

Back in space, 20 minutes after this mission came to an end, the spacecraft’s new task began: OSIRIS is now headed for the 1,000-foot-wide asteroid Apophis.

This post was updated after the capsule’s successful landing.

The post NASA’s OSIRIS mission delivered asteroid samples to Earth appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The best US parks for eclipse chasers to see October’s ‘Ring of Fire’ https://www.popsci.com/science/annular-solar-eclipse-2023-where-to-watch/ Sun, 17 Sep 2023 17:00:00 +0000 https://www.popsci.com/?p=570999
An annular eclipse, with an orange solar ring around a black moon.
In an annular eclipse, the edges of the sun remain visible around the moon. NASA/Bill Dunford

Where will you watch this year's solar eclipse?

The post The best US parks for eclipse chasers to see October’s ‘Ring of Fire’ appeared first on Popular Science.

]]>
An annular eclipse, with an orange solar ring around a black moon.
In an annular eclipse, the edges of the sun remain visible around the moon. NASA/Bill Dunford

On October 14, the moon will cruise between Earth and the sun during an annular solar eclipse, casting an immense shadow on our planet. It will be a sight to behold, though you’ll want to wear protective glasses or glimpse it indirectly to avoid frying your eyeballs. Unlike 2017’s total eclipse, the sun won’t vanish completely; instead, the moon will be positioned far enough from our planet to leave the star’s brilliant edges visible. The result is a “ring of fire,” as though the moon has been outlined with a blowtorch. Every continental state will have at least a partial view of this event, but spotting this celestial circle could be well worth the travel. 

The eclipse’s 125-mile-wide path of annularity begins in the US in Oregon at 12:13 p.m. Eastern (9:13 a.m. Pacific). It will loom over the country until it leaves Texas at 1:03 p.m. (12:03 Central), continuing its southeastward journey to Central and South America. The best viewing conditions will be in places with low fog and high aridity, like Nevada and Utah, the two driest states in the country. “The place with the lowest chance of cloud cover is Albuquerque, New Mexico—but most of the path of annularity looks pretty good,” says University of Texas at San Antonio astrophysics professor Angela Speck, who co-chairs the American Astronomical Society’s Solar Eclipse Task Force.  

If you can, schedule an eclipse viewing break in your day: Astronomers have calculated precisely when the best views occur in your neighborhood. Depending on where you are in the path, the annularity’s duration ranges from a little more than a minute to nearly five.

The phenomenon will also sweep through several public land areas, including 29 national park sites and dozens of state-owned ones. When visiting these spots—which offer skies unobstructed by city and suburb infrastructure—please don’t stop your car mid-traffic to gawk at the moon passing overhead, says Justina Parsons-Bernstein, who works at the Utah Department of Natural Resources as its heritage, interpretation, and ADA resources manager. Camping may be an option; Parsons-Bernstein recommends checking the website ReserveAmerica for availability. Some campsites are already filling up—diehard eclipse chasers have planned this out months in advance—but others, such as Utah’s Fremont Indian State Park, have opened extra lots specifically for the October happening. There are a bounty of destinations to consider.

Oregon

The first US national park that the eclipse will pass over is Crater Lake, where water has filled a collapsed volcano, Mount Mazama. All of the park is in the annularity’s path, so prepare for crowds as well as limited parking and lodging.

Other Oregon parks in the path:
Shore Acres State Park

[Related: We’ve been predicting eclipses for over 2,000 years. Here’s how.]

California

Bat-filled caves, battlefields, and basaltic flows make up Lava Beds National Monument, a desert landscape that is the product of thousands of years of volcanic activity. Only the northeast sliver of this California park is directly in the annularity’s path, but the section just outside it may be a good vantage for another fascinating feature of the eclipse: Baily’s beads, short-lived bright dots caused when sunbeams stream through the crags and valleys of the lunar surface.

Mount Shasta from Lava Beds National Monument in California
Mount Shasta as seen from Lava Beds National Monument. National Park Service

Nevada

The southern edge of the US path of annularity cuts through Great Basin National Park, where park staff will be available to guide viewers, according to the National Park Service. The agency also notes that, while the park tends to be less busy in October, eclipse watchers should be prepared for the event to bring out crowds.

Utah

Parsons-Bernstein ordered 20,000 eclipse glasses that will be distributed across Utah’s state parks on a first come, first serve basis. “In the entire state, there’s no less than 83 percent view of the annularity,” she says. But several areas are “dead-on 100 percent,” including 13 parks that are directly in the eclipse’s path. One of those is Goblin Valley State Park, which boasts rocky scenery so otherworldly that the movie Galaxy Quest used it as an alien planet.

Arizona 

The moon’s shadow will zip into Arizona at speeds of around 3,150 mph, slowing to 2,626 mph as it leaves. It will pass through Navajo National Monument, where, for hundreds of years, Hopi, Navajo, and other Native Americans lived in the canyons. However, visitors to the Hopi Reservation and Navajo Nation should be aware that, in some traditions, eclipses are sacred times to pray or meditate indoors. 

Other Arizona parks in the path:
Canyon De Chelly National Monument

[Related: 7 US parks where you can get stunning nightsky views]

Colorado

Celebrating its remarkable Ancestral Pueblo cliff settlements, Mesa Verde National Park became a UNESCO World Heritage Site in 1978. Go for the eclipse, but stick around after nightfall on campgrounds and scenic overlooks: The park has one of the darkest skies in the continental US, and boasts stellar views of the Milky Way.

Other Colorado parks in the path:
Yucca House National Monument

The Milky Way above Mesa Verde's Point Lookout.
The Milky Way above Mesa Verde’s Point Lookout. NPS/Jacob W. Frank

New Mexico

The Manhattan Project National Historical Park at Los Alamos was once the secret city where physicists developed the atomic bomb. Now, certain areas are open to the public (many of the buildings are within an area secured by the Energy Department that’s only occasionally available by guided tour). But hikers can take the trail loop on Kwage Mesa, which will offer views of the annularity.

Other New Mexico parks in the path:
Aztec Ruins National Monument
Bandelier National Monument
Chaco Culture National Historical Park
Pecos National Historical Park
Petroglyph National Monument
Rio Grande Nature Center State Park
Salinas Pueblo Mission National Monument
Valles Caldera National Preserve

Texas

As the eclipse falls over the Lone Star State, it will darken 17 state parks as well as San Antonio Missions National Historical Park. Just after noon, it will depart the US for the Gulf of Mexico, but not before touching one last bit of public American land: the Padre Island National Seashore, which is just a quick drive from Corpus Christi and famous for its unique, biodiverse mudflats.

Other Texas parks in the path:
Big Spring State Park
Choke Canyon State Park
Goose Island State Park
Kickapoo Cavern State Park
Lake Corpus Christi State Park
Mustang Island State Park

The post The best US parks for eclipse chasers to see October’s ‘Ring of Fire’ appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
31 award-winning astronomy photos: From fiery horizons to whimsical auroras https://www.popsci.com/science/astronomy-photographer-of-the-year-2023/ Sat, 16 Sep 2023 13:00:00 +0000 https://www.popsci.com/?p=570984
Iridescent Running Chicken Nebula with glowing gases and stars
The winner for the Young Astronomy Photographer of the Year was 'The Running Chicken Nebula'. Runwei Xu and Binyu Wang

The Royal Observatory Greenwich's Astronomy Photographer of the Year awards seriously dazzled in 2023.

The post 31 award-winning astronomy photos: From fiery horizons to whimsical auroras appeared first on Popular Science.

]]>
Iridescent Running Chicken Nebula with glowing gases and stars
The winner for the Young Astronomy Photographer of the Year was 'The Running Chicken Nebula'. Runwei Xu and Binyu Wang

An unexpected and astonishing find located more than 2.5 million light-years from Earth took top honors at the Royal Observatory Greenwich’s Astronomy Photographer of the Year awards this week. Amateur astronomers Marcel Drechsler, Xavier Strottner, and Yann Sainty captured an image of a massive plasma arc near the Andromeda Galaxy, a discovery that has resulted in scientists looking closer into the giant gas cloud.

“This astrophoto is as spectacular as [it is] valuable,” judge and astrophotographer László Francsics said in a press release. “It not only presents Andromeda in a new way, but also raises the quality of astrophotography to a higher level.”

[Related: How to get a great nightsky shot]

While “Andromeda, Unexpected” captured the prestigious overall winner title, other category winners also dazzled with photos of dancing auroras, neon sprites raining down from the night’s sky, and stunning far-off nebulas that might make you feel like a tiny earthling floating through space.

Sit back and scroll in awe at all the category winners, runners-up, and highly commended images from the 2023 Royal Observatory Greenwich’s Astronomy Photographer of the Year honorees.

Galaxy

Overall winner: Andromeda, Unexpected

Andromeda Galaxy shown next to plasma arc
A team of amateur astronomers led by Marcel Drechsler, Xavier Strottner, and Yann Sainty made a surprising discovery−a huge plasma arc next to the Andromeda Galaxy. Scientists are now investigating the newly discovered giant in a transnational collaboration. It could be the largest such structure in the nearby environment in the Universe. The Andromeda Galaxy is the closest spiral galaxy to the Milky Way. It is undoubtedly one of the most photographed deep-sky objects ever. The new discovery of such a large structure in the immediate vicinity of the galaxy was all the more surprising. Photo: Marcel Drechsler, Xavier Strottner, and Yann Sainty

Runner-Up: The Eyes Galaxies

Eyes Galaxies and dust swirls in space
The Eyes Galaxies (NGC 4438) are the famous interacting galaxies in the Virgo Cluster. They’re small and require a large telescope to reveal their many components, such as the dust in the middle and the tiny flares on the left and right. Those tiny details have rarely been revealed on other amateur images. Photo: Weitang Liang

Highly Commended: Neighbors

Three galleries shimmer among stars
A deep-space photograph showing galaxies NGC 5078 and IC879, to the left, and NGC 5101 on the right. The detailed image captures the hazy dust of the galaxies clearly. Photo: Paul Montague

Aurora

Winner: Brushstroke

A green aurora like a ribbon in the sky
An abstract aurora in the shape of a brushstroke. Unusually, the photographer decided to photograph the aurora in isolation. Photo: Monika Deviat

Runner-up: Circle of Light

Green aurora encircling a mountain and lake

A stunning photograph of a vivid aurora over Skagsanden beach, Lofoten Islands, Norway. The mountain in the background is Hustinden, which the aurora appears to encircle. Photo: Andreas Ettl

Highly Commended: Fire on the Horizon

Yellow pink and red aurora over a small building

New Zealand regularly has auroras, but due to its distance from the magnetic pole they are often not particularly vibrant for observers. With to the increased solar activity the region saw this year, the photographer was able to capture a highly colorful aurora over Birdlings Flat, New Zealand. Photo: Chester Hall-Fernandez 

Our Moon

Winner: Mars-Set

Closeup of the moon with mars peeking out behind smaller
An occultation of Mars that took place on December 8, 2022. During the occultation, the moon passes in front of the planet Mars, allowing the astrophotographer to capture both objects together. The image shows Mars behind the moon’s southern side in impressive detail. Photo: Ethan Chappel

Runner-Up: Sundown on the Terminator

Mars photo

The Plato Crater is an almost perfectly circular crater that measures 109 kilometes in diameter. This photograph was taken during a local lunar sunset in the last quarter, when approximately half of the moon’s face is visible from Earth. The image captures dramatic shadows moving across the moon. Photo: Tom Williams

Highly Commended: Last Full Moon of the Year Featuring a Colourful Corona During a Close Encounter with Mars

Full moon with an iridescent ring

A photograph of the last full moon of 2022 immersed in clouds. The colourful ring surrounding the moon is a lunar corona, which occurs when moonlight is diffracted though water droplets in the Earth’s atmosphere. Mars can just be seen to the right of the moon, appearing as a small orange dot. Photo: Miguel Claro

Our Sun

Winner: A Sun Question

Plasma on sun's surface
A photograph of the sun with a huge filament in the shape of a question mark. Solar filaments are arcs of plasma in the sun’s atmosphere given shape by magnetic fields. The photo is a mosaic of two panels. Photo: Eduardo Schaberger Poupeau

Runner-Up: Dark Star

A large dark spot on the sun
A photograph of the sun turned ‘inside-out’. The photographer inverted the rectangular image onto polar coordinates to highlight the smaller prominences that occur on the edge of the sun. Photo: Peter Ward

Highly Commended: The Great Solar Flare 

Solar flare closeup
The sun photographed moving towards its maximum cycle. A large solar flare around 700,000 kilometers long erupts to the left of the image. Photo: Mehmet Ergün

People & Space

Winner: Zeila

A shipwreck disappears in the fog under stars
The most northerly part of Namibia’s Atlantic facing coast is one of the most treacherous coastlines in the world and has gained the name the Skeleton Coast. The ship in this photo, Zeila, was stranded on August 25, 2008 and is still in a well-preserved state. The image shows the delicate colors of different star types. Photo: Vikas Chander

Runner-Up: A Visit to Tycho

The international space station against a crater on the moon
In this photo, the International Space Station has been captured in alignment with the Tycho Crater. While actually 1,000 times closer to Earth than the moon, this perspective makes it seem like the station is in fact orbiting our natural satellite. McCarthy travelled to the Sonoran Desert in Arizona to find the perfect position. Photo: Andrew McCarthy

Highly Commended: Close Encounters of The Haslingden Kind

A spaceship-like sculpture under a time-lapse of stars
Haslingden’s Halo is an 18-meter diameter sculpture located in the hills of Lancashire. McGuinness took inspiration from the Close Encounters of The Third Kind film poster to create her image. More than 150 images, taken over an hour and with exposures of 25 seconds each, were combined to show the apparent rotation of stars around Polaris. Photo: Katie McGuinness

Planets, Comets & Asteroids

Winner: Suspended in a Sunbeam

A blurry, colorful Venus
A unique view of Venus using infrared or ultraviolet false colour. By going beyond the visible part of the spectrum, a myriad of fine detail within the upper atmosphere of the planet is revealed. Photo: Tom Williams

Runner-Up: Jupiter Close to Opposition

Closeup of Jupiter's red spot
An image of Jupiter 30 minutes after it crossed the meridian. The Great Red Spot and many details of the turbulent atmosphere, primarily composed of hydrogen and helium gas, are clearly visible, including several smaller storms. Photo: Marco Lorenzi

Highly Commended: Uranus with Umbriel, Ariel, Miranda, Oberon and Titania

Distant photo of Uranus and its five moons
Uranus is so distant that light from the sun takes nearly three hours to reach it and makes it very hard to photograph. This photo was taken in optimum conditions, on a still night with no cloud cover, so the photographer was able to capture Uranus and its five brightest moons, from top to bottom, Titania, Miranda, Ariel, Umbriel, and Oberon. Photo: Martin Lewis

Skyscapes

Winner: Grand Cosmic Fireworks

Pink sprites fall from the sky
Sprites are an extremely rare phenomenon of atmospheric luminescence that appear like fireworks. An took this photograph from the highest ridge of the Himalaya mountains. Photo: Angel An

Runner-Up: Celestial Equator Above First World War Trench Memorial

Rainbow-colored star trails over a stone wall
Star trails above the preserved First World War trenches in Canadian National Vimy Memorial Park in northern France. Taken over five hours, the camera captured the rotation of the sky, revealing the colorful stars. Photo: Louis Leroux-Gere

Highly Commended: Noctilucent Night

Storm cloud reflecting over a pond and grassland
Noctilucent clouds are rarely seen around the summer solstice in Hungary, when this photograph was taken. The reflection on the pond below creates a perfect symmetry. Photo: Peter Hoszang

Stars & Nebulae

Winner: New Class of Galactic Nebulae Around the Star YY Hya

Red galactic nebula shines against a background of stars
A team of amateur astronomers, led by Marcel Drechsler from Germany and Xavier Strottner from France, were able to make an important contribution to the study of the evolution of binary star systems: on old images of sky surveys, they discovered a previously unknown galactic nebula. At its center, a pair of stars surrounded by a common envelope was found. On more than 100 nights, more than 360 hours of exposure time were collected. The result shows an ultra-deep stellar remnant that the team has baptized “the heart of the Hydra.” Photo: Marcel Drechsler

Runner-Up: LDN 1448 et al.

molecular cloud that looks like dust floating in space
A photograph of LDN 1448, which is close to the more spectacular and more often photographed NGC 1333. Quintile chose to photograph the lesser-known molecular cloud to explore the fascinating dust in this part of the sky. Photo: Anthony Quintile

Highly Commended: The Dark Wolf – Fenrir

Thick black molecular cloud on a red hydrogen gas
This image shows a dark, thick molecular cloud in the form of a wolf, known as the Wolf Nebula or Fenrir Nebula. Baguley chose a starless image to emphasise the beautiful red background, which is a dense backdrop of hydrogen gas. Photo: James Baguley

The Sir Patrick Moore Prize for Best Newcomer

Winner: Sh2-132: Blinded by the Light

Colorful gas cloud on the edge of two constellations
The Sh2-132 complex lies near the border of the Cepheus and Lacerta constellations and contains multiple deep sky structures. The photograph includes 70 hours of data, the rich interplay of all the gasses reveals something different each time you look at it. Photo: Aaron Wilhelm

Young Astronomy Photographer of the Year

Winner: The Running Chicken Nebula

Purple, red, and yellow nebula
The Running Chicken Nebula, IC2944, is located in the constellation of Centaurus, 6,000 light years away from the Earth. Embedded in the nebula’s glowing gas the star cluster Collinder 249 is visible. Photo: Runwei Xu and Binyu Wang

Runner-Up: Blue Spirit Drifting in the Clouds

Seven Sisters star cluster shining brightly
Pleiades is an open star cluster lit by the brightest stars, which illuminate the surrounding nebula giving it an attractive blue hue. The cluster is also known as the Seven Sisters, because many people can see seven stars. But as astrophotography reveals, there are actually over 1,000. Photo: Haocheng Li and Runwei Xu

Highly Commended: Lunar Occultation of Mars

the moon large in the foreground with mars smaller in the background
The lunar occultation of Mars was one of the most interesting celestial events of 2022. Here, an iPhone was used with a Celestron Astromaster 102az Refractor Telescope to capture the moment just before the moon blocked our view of Mars. Photo: Joshua Harwood-White

Highly Commended: Roses Blooming in the Dark: NGC 2337

Red, purple, and blue Rosette Nebula dotted in stars
The Rosette Nebula, NGC 2337, is a large nebula and has a diameter of about 130 light-years. This image has been achieved using narrowband-filter processing. For the star point LRGB filters have been used. Photo: Yanhao Mo

Highly Commended: Moon at Nightfall

Timelapse of the moon rising over a bridge
A photograph of a moonrise over the Xinghai Bay Bridge in Dalian. Atmospheric extinction alters the hue and brightness of the moon when it is low on the horizon. In this photo, you can see the moon appears brighter and less red as it rises in the sky. Photo: Haohan Sun

Annie Maunder Prize for Image Innovation

Winner: Black Echo

Chandra X-ray telescope sonification data of Perseus Galaxy
Taking audio source material from NASA’s Chandra Sonification Project, White visually captured the sound of the black hole at the centre of the Perseus Galaxy. Photo: John White

The post 31 award-winning astronomy photos: From fiery horizons to whimsical auroras appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Why a mysterious ninth planet might be lurking beyond Pluto https://www.popsci.com/science/planet-solar-system-kuiper-belt/ Tue, 12 Sep 2023 10:00:00 +0000 https://www.popsci.com/?p=569388
A dark world at the edge of our solar system.
A possible ninth planet in our solar system, hovering at its edge, in an artist's illustration. ESO/Tom Ruen/nagualdesign

A new computer model suggests a world a little larger than our own Earth hides within the distant Kuiper belt.

The post Why a mysterious ninth planet might be lurking beyond Pluto appeared first on Popular Science.

]]>
A dark world at the edge of our solar system.
A possible ninth planet in our solar system, hovering at its edge, in an artist's illustration. ESO/Tom Ruen/nagualdesign

Our understanding of the solar system is a work in progress. Pluto’s demotion to a dwarf planet was just one of many revisions—in recent decades astronomers have cataloged new dwarfs, like far-off Eris, and spotted more moons around our gas giant neighbors. And now some researchers think there’s evidence for a new planet hiding beyond Neptune.

Two astronomers in Japan, Patryk Sofia Lykawka and Takashi Ito, claim there is a planet a little larger than Earth lurking in the Kuiper belt, the ring of icy debris where Pluto also resides, as they published last week in The Astronomical Journal. The pair hasn’t seen this world directly, but their computer models show that such a planet could explain the wonky observed orbits of other Kuiper belt objects.

The disturbance in this belt “predicts the existence” of an undiscovered planet with 1.5 to 3 times the mass of Earth, says lead author Lykawka, an astronomer at Japan’s Kindai University. “The solar system would officially have nine planets again.”

[Related: There might be an ice giant planet hiding in our solar system]

The Kuiper belt is somewhat similar to the asteroid belt: It contains small bits of rock and ice, all leftovers from the violent process of making planets. A few objects there have strange orbits, where their paths around the sun are extremely tilted or elongated (more egg-shaped than circular like Earth’s orbit). These weird orbits suggest that something massive must be pushing them around, tugged by  its gravity—something as big as an  undiscovered planet.

“It may be that this planet will be uncovered even in the next few years, if it exists on a relatively nearby orbit,” says Yale astronomer Malena Rice, who wasn’t involved in the new work.

Lykawka and Ito’s simulations show that a planet could explain the oddities in the Kuiper belt. The world, which they referred to as the Kuiper Belt Planet (KBP), would be located about 6 to 12 times further from the sun than even distant Neptune. The KBP’s orbit would also have to be tilted from the plane of the solar system by about 30 degrees, which is pretty weird. Dwarf planet Pluto sticks out because it’s off-kilter compared to the eight major planets—and its orbit is only tilted by about 17 degrees.

A diagram showing the skew of Pluto relative to the rest of the solar system.
Pluto follows a path with an angle 17 degrees above the plane of the solar system’s planets. NASA

This bizarre and distant Earth-like planet, though, isn’t the first hidden world to be proposed. In 2016, astronomers from Caltech claimed to have evidence for a super-Earth, referred to as Planet 9 or Planet X, even farther out in the solar system. Those researchers also proposed Planet 9 as a way to explain the quirks of the Kuiper Belt; it caused quite a stir among scientists, who debated for years whether those idiosyncrasies were real or just the result of flawed observations.

Lykawka claims that the KBP hypothesis is superior to Planet 9 because it relies on other observations that haven’t caused as much dispute. “We demonstrated that a hypothetical Earth-like planet located in the far outer solar system could explain several properties of the distant Kuiper Belt and be compatible with observations simultaneously,” he says. “The Planet 9 model has yet to demonstrate that.” 

Yet other researchers don’t think the KBP is necessary. Konstantin Batygin, an astronomer at Caltech who was part of the initial Planet 9 research, agrees that there are oddities in the Kuiper belt that have to be explained by some sort of additional object beyond Neptune. “However, all of this has been understood for quite some time within the framework of the Planet 9 model,” he says, questioning the need for this new work, whose predictions for a hidden planet overlap substantially with the existing Planet 9 hypothesis. 

[Related: What will we name the solar system’s next planet?]

Batygin’s model suggests Planet 9 is somewhat bigger and farther: about five to six times the mass of Earth at 500 astronomical units (AU) away from the sun. Meanwhile, the KBP would be between 200 and 500 AU from the sun. (These are extreme distances—1 AU is equal to the gap between Earth and the sun.) Planet 9 would have an odd tilt to its orbit, to, of 20 degrees.

But we won’t know for sure if there’s a hidden planet, whether it looks like Planet 9 or the KBP, until astronomers actually pinpoint it in the night sky. Astronomers have been looking for Planet 9 for years, and that hunt includes some regions where the newly-proposed planet could be. “Those searches are still ongoing,” Rice says. “It’s incredible just how much parameter space remains to be searched in the outer solar system where hidden planets could be lurking.”

The post Why a mysterious ninth planet might be lurking beyond Pluto appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The newest moon-bound robot will roll around like a tennis ball https://www.popsci.com/technology/japan-lunar-ball-robot/ Mon, 11 Sep 2023 17:00:00 +0000 https://www.popsci.com/?p=569255
JAXA LEV-2 lunar probe on sand
This lunar probe was inspired by children's toys. JAXA/TOMY/Sony/Doshisha University

Japan's LEV-2 lunar probe is inspired by children's toys, and could make history by the end of the year.

The post The newest moon-bound robot will roll around like a tennis ball appeared first on Popular Science.

]]>
JAXA LEV-2 lunar probe on sand
This lunar probe was inspired by children's toys. JAXA/TOMY/Sony/Doshisha University

If all goes according to plan, a tennis ball-sized robot modeled after a children’s toy will soon briefly explore the moon’s surface as part of Japan’s first soft lunar landing. As recently highlighted by Space.com, the Japanese space agency, JAXA, is currently overseeing its Smart Lander for Investigating Moon (SLIM) probe mission, which launched on September 6 alongside the country’s XRISM X-ray satellite payload. Unlike more powerful launches, it will take less than 9-foot-wide SLIM between three and four months to reach lunar orbit, after which it will survey the roughly 1000-foot-wide Shioli Crater landing site from afar for about another month.

Afterwards, however, the lander will descend towards the moon, and deploy the Lunar Excursion Vehicle 2 (LEV-2) once it reaches around six-feet above the surface. The probe’s sphere-shaped casing will then divide into two halves on either side of a small camera system. From there, LEV-2 will begin hobbling atop the SLIM landing site and surrounding area for around two hours, until its battery reserve is depleted.

[Related: India’s successful moon landing makes lunar history.]

Per JAXA’s description, LEV-2 was developed by its Space Exploration Innovation Hub Center associate senior researcher Hirano Daichi. Daichi collaborated with a team from Doshisha University as well as the toy manufacturer TOMY to create the tiny space explorer. Meanwhile, Sony provided the two cameras that will survey the moon. According to Daichi, the team turned to children’s toys for their “robust and safe design… which reduced the number of components used in the vehicle as much as possible and increased its reliability.”

“This robot was developed successfully within the limited size and mass using the downsizing and weight reduction technologies and the shape changing mechanism developed for toys by TOMY,” continued Daichi.

If successful, JAXA engineers hope the soft lunar landing method can be adapted to larger craft in the future, including those piloted by human astronauts. “By creating the SLIM lander humans will make a qualitative shift towards being able to land where we want and not just where it is easy to land, as had been the case before,” reads JAXA’s project description. “By achieving this, it will become possible to land on planets even more resource scarce than the moon.”

Beyond just this project, it’s been an active time for lunar exploration. In August, India completed the first successful lunar landing at the moon’s south pole via its Chandrayaan-3 probe. Last year, NASA’s Artemis-1 rocket also kickstarted the space agency’s long standing goal towards establishing a permanent moon base.

The post The newest moon-bound robot will roll around like a tennis ball appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
You didn’t see a UFO. It was probably one of these things. https://www.popsci.com/science/ufo-sightings-explained-rocket-satellite-venus/ Sun, 10 Sep 2023 17:00:00 +0000 https://www.popsci.com/?p=568953
A rocket launch creates strange contrails in front of the Milky Way.
A Space X Falcon 9 launch from Vandenberg Air Force Base. Eric A. Norris/Getty Images

How to turn your strange sighting into a perfectly identifiable flying object.

The post You didn’t see a UFO. It was probably one of these things. appeared first on Popular Science.

]]>
A rocket launch creates strange contrails in front of the Milky Way.
A Space X Falcon 9 launch from Vandenberg Air Force Base. Eric A. Norris/Getty Images

UFOs were, for decades, the stuff of science fiction and conspiracy theory circles. But the highest levels of the US government have started seriously considering these phenomena—redubbing them Unidentified Anomalous Phenomena, or UAPs. There have been hearings on Capitol Hill, Pentagon reports, and a NASA working group, all looking into more than 100 currently unexplained UAP sightings, often made by military pilots who caught something unfathomable on their sensors. And plenty of civilians see things they don’t know how to explain, either. 

Even if UAPs have gone mainstream, the vast majority of human sightings turn out to be perfectly explicable, though occasionally rare, phenomena. And Jonathan McDowell, an astrophysicist at the Center for Astrophysics | Harvard & Smithsonian, hears about them all. 

“I get a lot of social media questions and emails, and occasionally cold calls from random people who have seen something weird in the sky,” McDowell says. Around 90 percent of the conversations, he says, go something like this: ‘Is this space debris, Jonathan?’ No, it’s just a meteor, because it blew up in only two seconds. Or: ‘Is this a UFO?’ No, it’s a Falcon 9 [rocket] launch. ‘Is this aliens?’ Well, that depends on where you think Elon comes from.”

But it’s rarely ignorance or credulity that leads people to mistake a rocket launch or an aircraft for a UAP. Instead, it’s just how human perception works.

“Our ability to estimate how far away something is sucks when it’s not in a context where we have the usual clues,” McDowell says. A close-by insect moving in a peculiar way might be confused for something much farther. Or a shining light might appear close—when it’s actually Venus, 35 million miles or so away. 

[Related: UFO research is stigmatized. NASA wants to change that.]

Even professionals can be fooled. Every once in a while, a satellite or spacecraft gets temporarily mistaken as a new asteroid. “If you have a spacecraft in a very high orbit around the Earth, the rate at which it’s moving across the sky is actually similar to an asteroid moving in orbit around the sun,” McDowell says. “There have been multiple cases where an object has been picked up by the asteroid surveys, given a temporary asteroid designation, and then it’s maneuvered. And we go, ‘Oh, that’s probably not an asteroid.’”

When it comes to the general public spotting what they think are UAPS, McDowell finds they usually turn out to be phenomena in three main categories: Rocket launches, spacecraft, and celestial objects. 

Rocket launches

If you’ve ever watched a rocket launch, in person or through a video, you can see a contrail as the craft shoots from the launchpad to the heavens. But once a rocket reaches space, its exhaust can lose that familiar linear shape, creating seemingly otherworldly sights under the right conditions.

The first weird thing rockets can create occurs about two minutes after launch, when they finally get above most of Earth’s atmosphere. No longer contained by thick air, the exhaust plume might spread out over hundreds of miles, according to McDowell, producing some bizarre forms that almost look oceanic. “Those are often described as jellyfish,” he says. “People are much less able to sort of recognize those as being rocket plumes and those often get reported as UFOs.”

Another type of rocket launch weirdness happens when rockets shut down and restart in space. This might be to change an orbit, or when a rocket vents its leftover propellant after delivering its payload. 

“You’ve got this big cloud of gas that then gets ejected from the rocket and forms ice crystals that reflect the sunlight,” McDowell says, ”so you get these big kind of comet-like clouds” moving through the sky. Even professional astronomers have been tricked by rocket fuel dumps, who reported them to the International Astronomical Union as new comet sightings. 

A rainbow of colors appears as clouds in the American West.
Originally thought to be noctilucent clouds, a Trident II missile launch produced this colorful effect. Kevin Key/Getty Images

But the most striking rocket trail phenomenon are the striking, spiraling geometric patterns in the sky, such as those that appeared over Norway in 2009. At first glance, it is utterly unnatural. You might think it’s “a Stargate wormhole opening up in space and the aliens are invading,” McDowell says. But as weird as they look, the spirals are no portals. Instead, it’s the result of a spinning or tumbling rocket, which releases contrails “like a garden sprinkler.” In the case of the Norwegian spiral, it was actually a Russian military rocket maneuvering above Earth’s atmosphere. 

If you want to hunt down a bizarre rocket-exhaust plume for yourself, it’s important to realize the strange sights hinge on the relative position of the exhaust, the sun, and the observer: You’re most likely to catch one around dawn or dusk, when it’s dark for you on the ground, but the high-altitude rocket exhaust can catch the sun rays.

Spacecraft and satellites

There’s another category of artificial space objects that we commonly mistake for UAPs: Starlink satellite trains, which, in McDowell’s experience, “really freak people out.” 

SpaceX began launching its Starlink satellites in 2019, lofting between 22 and 60 of them at a time to provide broadband internet. As of September 2023, there are more than 4,700 Starlink satellites in orbit, according to McDowell’s personal satellite tracking website. It takes a couple of weeks after launch for Starlink satellites to fully separate from each other and move into their operational orbits at around 340 miles altitude. In their early days of flight, they can catch the sun and produce a bizarre geometric pattern in the sky—a long, bright straight line. 

These pinpricks of light are Starlink satellites.
A ‘train’ of Starlink satellites above Sanliurfa, Turkey, in May. Arda Kucukkaya/Anadolu Agency/Getty Images

“They march across the sky in this line, like little kids in the crocodile coming home from school,” McDowell says (using the British expression for pairs of kids in a line). “They’re close enough together that you can’t see them as separate dots. Even if you see them separately, to have them marching in lockstep across the sky as 20 different objects, that definitely looks like an alien invasion to your gut.”

To catch Starlink or other satellites as they fly overhead, McDowell recommends using the website heavens-above.com. “It tells you what time the satellite is going to go over, and if you click on the time, it gives you a nice star chart showing the path of that satellite across the sky, as seen from your location,” he says. The website doesn’t show Starlink satellites by default, because they’re so  numerous but you can click a link to see the Starlink constellation.

[Related: How scientists decide if they’ve actually found signals of alien life]

The reentry of satellites, spacecraft, or space debris can also look pretty weird, too. It might not be easy to tell what’s happening, though. “That’s where it gets tricky because if you see bright stuff overhead in the sky breaking up, that can be one of two things,” McDowell says. “It can be a natural meteor, or it can be a reentering piece of space debris.”

They key distinction, he says, is that meteors shoot across the sky fairly quickly, then vanish. A deorbiting satellite or other debris will have multiple pieces that cross the sky as it breaks up over time. 

There is a particular type of reentry that is sometimes mistaken for UAPs or natural meteors—the return of a spacecraft like the SpaceX Crew Dragon. “That looks more like a fireball, like a natural meteor, except that it lasts much longer,” McDowell says. “And if it’s breaking up, that’s really bad news.”

Celestial objects 

The last type of thing McDowell commonly hears about being mistaken for UAPs are natural objects that are very, very far away—Venus, for instance. He estimates, before dash cams and cell phones started picking up meteors, space debris and the like, the planet caused about half of all UFO reports. “Venus is the classic UFO.”

When very faint, high clouds move at night, this foreground motion can trick human perception. The result is the sense that a bright light—in this case, the planet—is traveling across the sky, when in fact it’s only the clouds. 

Comets also sometimes trigger UAP questions, McDowell says. The Comet Nishimura, which makes its closest approach to Earth on September 12, could turn some heads, if it becomes bright enough to be visible to the naked eye. 

“People aren’t used to seeing comets, so if they haven’t heard in the news there’s a bright comet around, they might think that’s a UFO,” he says. 

As quick as people are to label many different sights in the sky as UAPs, McDowell notes there’s one common object in the night sky he rarely hears about: The International Space Station.

“I think it’s just that the number of times the ISS is passing over you is comparatively rare, maybe,” he says. “People don’t seem to worry about that as much for some reason.”

A streak of light in the sky, the ISS, moves behind a dark tree in the foreground.
The International Space Station makes a trail of light in the sky as the station appears to pass among the stars of the Milky Way. NASA/Bill Dunford

If you would like to catch the ISS or China’s Tiangong space station as they zoom overhead, heavens-above.com can also help you plot their course over your location so you can look up at the right time, according to McDowell. For the planets or other celestial objects, he recommends the interactive sky charts at skyandtelescope.org

“You can put in your position and the time of the night that it is and you get a map of the sky tuned for your experience,” he says. “You can see where the bright planets are relative to constellations.” 

The post You didn’t see a UFO. It was probably one of these things. appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
India just landed on the moon. Now it’s headed for the sun. https://www.popsci.com/science/aditya-l1-solar-probe-isro/ Fri, 01 Sep 2023 18:00:00 +0000 https://www.popsci.com/?p=567591
The rocket that will carry ISRO's spacecraft Aditya-L1 beyond Earth.
The rocket that will carry ISRO's spacecraft Aditya-L1 beyond Earth. ISRO

India's Aditya-L1 spacecraft should wind up some 932,000 miles away to monitor our star.

The post India just landed on the moon. Now it’s headed for the sun. appeared first on Popular Science.

]]>
The rocket that will carry ISRO's spacecraft Aditya-L1 beyond Earth.
The rocket that will carry ISRO's spacecraft Aditya-L1 beyond Earth. ISRO

Update (September 5, 2023): India successfully launched its Aditya-L1 solar observatory on September 2 at 2:20 am EST. It is expected to arrive at its first destination between the Earth and the sun in January 2024.

On August 23, the Indian Space Research Organization (ISRO) pulled off the Chandrayaan-3 mission, depositing the Vikram lander and Pragyan rover near the lunar South Pole. India is now the fourth nation to land on the moon—following Russia, the US and China— and the first to land near the lunar South Pole, where the rover has already detected sulfur and oxygen in the moon’s soil. Fresh off of this success, ISRO already has another mission underway, and its next target is something much bigger—the sun.

The ISRO’s Aditya-L1 spacecraft, armed with an array of sensors for studying solar physics, is scheduled to launch around 2 a.m. Eastern on September 2, atop a PSLV-C57 rocket from the Satish Dhawan Space Center in Sriharikota, in southeast India.

Aditya-L1 will begin a four-month journey to a special point in space. About 932,000 miles away is the sun-Earth L1 Lagrangian, an area where the gravity of Earth and the sun cancel out. By entering into an orbit around L1, the spacecraft can maintain a constant position relative to Earth as it orbits around the sun. It shares this maneuver with the NASA-ESA Solar and Heliospheric Observatory, or SOHO, which has been in the sun-observation business since 1996. If it reaches the L1 orbit, Aditya-L1 will join SOHO, NASA’s Parker Solar Probe, ESA’s Solar orbiter, and a handful of other spacecraft dedicated to studying the closest star to Earth. 

“This mission has instrumentation that captures a little bit of everything that all of these missions have already done, but that doesn’t mean we’re going to replicate science,” says Maria Weber, a solar astrophysicist at Delta State University in Mississippi, who also runs the state’s only planetarium at that campus. ”We’re getting more information and more data now at another time, a new time in the solar cycle, that previous missions haven’t been able to capture for us.” The sun undergoes 11-year patterns of waxing and waning magnetic activity, and the current solar cycle is expected to peak in 2025, corresponding with more sunspots and solar eruptions.

A spacecraft wrapped in gold foil in a clean room.
Aditya-L1 being prepped for its mission in a cleanroom. ISRO

Aditya-L1 will carry seven scientific payloads, including four remote sensing instruments: a coronagraph, which creates an artificial eclipse for better study of the sun’s corona, an ultraviolet telescope, and high and low X-ray spectrographs, which can help study the temperature variations in parts of the sun. 

[Related: Would a massive shade between Earth and the sun help slow climate change?]

“One thing I’m excited about is the high-energy component,” says Rutgers University radio solar physicist Dale Gary. Aditya-L1 will be able to study high-energy x-rays associated with solar flare and other activity in ways that SOHO cannot. And L1 is a good position for that sort of study, he says, since there is a more stable background of radiation against which to measure solar X-rays. Past measurements made in Earth orbit had to contend with Van Allen radiation belts

Aditya-L1’s ultraviolet telescope will also be unique, Gary says. It measures ultraviolet light, which has shorter wavelengths than visible light; the shortest or extreme UV light, near the X-ray spectrum, has already been measured by SOHO, but Aditya will capture the longer UV wavelengths.

That could allow Aditya-L1 to study parts of the sun’s atmosphere that have been somewhat neglected, Gary says, such as the transition region between the chromosphere, an area about 250 miles about the sun’s surface, and the corona, the outermost layer of the sun that begins around 1,300 miles above the solar surface and extends, tenuously, out through the solar system. 

Although ground-based telescopes can take some measurements similar to Aditya’s, the spacecraft is also kitted out with “in situ” instruments, which measure features of the sun that can only be observed while in space. “It’s taking measurements of magnetic fields right where it’s sitting, and it’s taking measurements of the solar wind particles,” Weber says. 

Like all solar physics missions, Aditya-L1 will inevitably serve two overall purposes. The first is to better understand how the sun—and other stars— work. The second is to help predict that behavior, particularly solar flares and coronal mass ejections. Those eruptions of charged particles and magnetic fields can impact Earth’s atmosphere and pose risks to satellites and astronauts. In March 2022, a geomagnetic storm caused by solar radiation caused Earth’s atmosphere to swell, knocking 40 newly launched SpaceX Starling satellites to fall out of orbit. 

“We live with this star and so, ultimately, we want to be able to predict its behavior,” Weber says. “We’re getting better and better at that all the time, but the only way we can predict its behavior, is to learn as much as we can even more about it.”

[Related: Why is space cold if the sun is hot?]

Aside from Aditya-L1’s scientific mission, its success will mark another feather in the cap of ISRO, another step in that space agency’s hard work to make India a space power, according to Wendy Whitman Cobb a space policy expert and instructor at the US Air Force School of Advanced Air and Space Studies (who was commenting on her own behalf, not for the US government). 

“India has had some pretty expansive plans for the past two decades,” she says. “A lot of countries say they’re going to do something, but I think India is that rare example of a country who’s actually doing it.”

Of course, space is hard. ISRO’s first lunar landing attempt with Chandrayaan-2, in 2019, was a failure, and there’s no guarantee Aditya-L1 will make it to L1. “It’s a technical achievement to go into the correct orbit when you get there,” Gary says. “There’s a learning curve. It would be very exciting if they accomplish their goals and get everything turned on correctly.”

The post India just landed on the moon. Now it’s headed for the sun. appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
To create a small Mars colony, leave the jerks on Earth https://www.popsci.com/science/mars-colony-population-psychology/ Fri, 25 Aug 2023 18:00:00 +0000 https://www.popsci.com/?p=565563
A NASA illustration of two astronauts in white spacesuits drilling into red Martian dirt.
Cooperative personalities will go a long way to a sustainable community on the Red Planet. NASA

Agreeable personality traits helped keep things running smoothly in new simulations of Martian communities.

The post To create a small Mars colony, leave the jerks on Earth appeared first on Popular Science.

]]>
A NASA illustration of two astronauts in white spacesuits drilling into red Martian dirt.
Cooperative personalities will go a long way to a sustainable community on the Red Planet. NASA

When it comes to building a sustainable settlement on Mars, the technological and engineering challenges are steep. But they take a back seat to the Human Resources department. Forget sophisticated vehicles or sensitive instrumentation—the most temperamental, fragile things we send to the Red Planet will be humans.

After all, NASA’s Opportunity rover roamed Mars for 14 years, separated from Earth by a half-hour communications delay, scoured by dust storms and irradiated by cosmic rays, and never complained or got into a fight with a colleague. 

Humans, though, will be sequestered “in a confined space about the size of a small RV for three years,” James Driskell, a research psychologist at the Florida Maxima Corporation, says of most plausible NASA Mars mission scenarios. Driskell and his company have consulted with the space agency and the US military on the psychological issues of crews in isolated and stressful situations. In tight quarters, “people get angry at each other.”

Current Mars plans, such as NASA’s proposed Artemis mission, would send astronauts there and back on a three-year round trip. But you can imagine how stressful dynamics—danger, isolation, other people—might increase on a permanent base or research station, if crews stayed for a decade (or forever). Or, rather than using your imagination, you can rely on the computer simulation of a Mars settlement produced by George Mason University Computational Social Scientist Anamaria Berea and her colleagues. 

In a forthcoming study that hasn’t yet undergone full peer review, Berea and her colleagues detail how they used an “agent-based modeling” approach—a computer system not all that different from a large video game—to calculate the survivability of different population sizes of Mars settlers. They’ve incorporated personality types, too, for the long haul. They came to two main conclusions: that only a few tens of initial settlers are needed to create a sustainable colony, and that people with more agreeable social traits did better for themselves and the larger settlement. 

[Related: Rodent astronauts suggest trips to Mars will make us anxious, forgetful, and afraid]

The new study originated as a response to other papers suggesting that between 100 and 300 people would be the minimum necessary to begin a sustainable settlement on Mars. The nonprofit Blue Marble Science Institute, which studies questions of planetary science and habitability, contacted Berea to see whether her team could verify the other studies’ minimally viable population numbers. 

Berea says she had a better idea: Creating a simulation for a space habitat that included “human, social, and behavioral factors.” Berea and her team at the computational social sciences department had created simulated humans, who were assigned a set of skills necessary for running a Mars settlement, such as producing food or maintaining life support systems. 

Each faux settler had one of four aggregate personality types: There were the “agreeables,” highly social and low in scores of aggressions or competitiveness; “socials,” extroverts with a bit more of a competitive edge; “reactives,” who were more still competitive and fixated on fixed routines; and “neurotics,” highly competitive people with difficulty coping with changes in routine or boredom. Settlement members could die in accidents, or due to “health” conditions determined by the available food and life support resources, but could also be replenished by resupply shuttles every 18 months—the researchers chose not to model sex and reproduction. 

After running multiple computer models for more than 20 simulated years, the study authors found that settlements could begin with far fewer than 100 settlers and remain sustainable, despite accidents or dips in food supplies. The lowest number to kickstart a sustainable settlement was 22 people, but that is not a hard limit, according to Berea. “It’s somewhere between 10 and 50,” she says. “It’s in the tens; It’s not in the hundreds like the other papers were saying.”

[Related: NASA rover finds evidence of carbon-based chemistry in Martian crater]

They also found that agreeable personality types were the most likely to survive to the end of each simulation run. But Bera is careful to note that the agents—the algorithmic representations of humans—do not remain static through the simulation, just as people, whatever their personalities, change over time. “The neurotic that puts his or her foot down on the planet on day zero might not be the neurotic on day 100. They interact, and they adjust,” she says.

This can be seen in real-world Mars mission simulations, such as the Hawaii Space Exploration Analog and Simulation (HI-SEAS) missions, which places crews of six people in a simulated Mars habituated on the rocky lava slopes of Mauna Loa. There, it’s vital to anticipate the ways people change over time. 

“For the first few weeks, usually of people living under stressful conditions, they can still kind of have a ‘honeymoon period’ where everyone’s still very polite and patient and can kind of get along despite some challenges,” says astrobiologist Michaela Musilova, the former director of HI-SEAS from 2018 until 2022. “Usually after the first few weeks is when people really start to struggle and if they’re not prepared for it properly.” 

That struggle could take the form of depression or rudeness with other crew members or mission control. Over the 30 simulated Moon and Mars missions for which Musilova served as commander, she found the answer was to consciously forge bonds between crew members using shared meals and evening recreation, such as karaoke

“The more the crew bonded, the longer the ‘honeymoon period’ lasted and even when it wore off, the crew still behaved politely towards one another,” she says. 

Musilova also found that selecting as diverse a group of people as possible, in terms of skills, life experience and ethnicity, helped ensure a better functioning team. 

That’s one thing that Berea and her colleagues didn’t model—all of their simulations contained equal numbers of the four personality types they had defined, rather than trying to build teams composed of different proportions of different types of people. Purposefully screening for personality is something Driskell notes is important for building teams going into difficult and isolated conditions. 

“What type of trait profiles do we want in that team? That sociability and extraversion is really good, but you don’t want a team full of it, because then they’re going to really want to just interact and get along and talk,” Driskell says. At the same time, he adds, you have people who are very competent and follow the rules and keep things running, but who are just a complete pain to live with. “Everybody’s got an example of somebody who was extremely technically adept, but you just could not get along with them,” he says. “I guess Elon Musk is a good example.”

Neither human nor computer simulations of Mars missions can ever fully predict the experience of putting human boots on the Red Planet, but each approach also takes a different slice of the problem. Computer simulations such as Berea’s and her colleagues can give researchers some idea of the large-scale population dynamics and psychology of a Mars settlement over many years. A 12-month HI-SEAS Mars mission, meanwhile, helps tease out real-life psychological nuance you can’t get from a computer model. 

Berea hopes to do more to integrate both approaches in the future, noting that NASA has just launched a new Mars analog mission, the Crew Health and Performance Exploration Analog (CHAPEA) in the Mars Dune Alpha habitat. “Once they are done with that project, it would be great to get the data and compare that with our model for validation,” she says.

The post To create a small Mars colony, leave the jerks on Earth appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The upcoming ‘blue supermoon’ will be the biggest of the year https://www.popsci.com/blue-moon-super-moon-guide/ Mon, 26 Apr 2021 20:51:25 +0000 https://www.popsci.com/uncategorized/blue-moon-super-moon-guide/
Supermoon and full moon closeup
Two full moons in a month? Call it a blue moon. NASA

It's about as blue as a 'pink moon' is pink and a 'black moon' is black.

The post The upcoming ‘blue supermoon’ will be the biggest of the year appeared first on Popular Science.

]]>
Supermoon and full moon closeup
Two full moons in a month? Call it a blue moon. NASA

Blue moons, black moons, pink moons, strawberry moons, micromoons, supermoons. For some reason, your news aggregation algorithm of choice thinks you really really really want to know all about these moons. “Catch This Weekend’s AMAZING SUPERMOON,” one headline (or, perhaps, 500 of them) will announce. “The Supermoon Isn’t Actually A Big Deal And You’re All Ruining Astronomy,” another will grouse.

The latest example is the full moon that will peak on August 30 around 9:36 p.m. Eastern Daylight Time: the so-called ”blue supermoon”. It’s the second-to-last supermoon of 2023, and should appear the brightest and biggest of all the full moons this year. It will also coincide with—and reduce the visibility of—the end of the Perseid meteor shower.

Here’s everything you need to know about this headline-grabbing moon, the next one, and all the rest.

What is a full moon?

Look, it’s okay if you don’t know. There are probably loads of folks who walk around pretending they totally know why that thing in the sky seems to get bigger and smaller at regular intervals who totally do not.

[Related: How to take a picture of the moon that doesn’t look like a tiny, white blob]

The moon orbits Earth, and it’s tidally locked—that means it always shows us the same face, instead of twirling around like our planet does. That’s why you can always see the man on the moon (or the moon rabbit, depending on your cultural preferences) even as the satellite spins around us. But while the moon is big and bright in the sky when it’s full, that’s only because it’s reflecting light from the sun. The moon is also always moving, so it’s getting hit with sunlight at different angles. It’s invisible to us during the “new moon,” because the celestial body is parked right between us and the sun; the so-called dark side of the moon is lit up like Las Vegas, but the side we can see is in shadow. A full moon happens when Earth is right between the sun and the moon, so sunlight hits the part we can see. All the other phases are just the transition from one of those extremes to the other.

What is a supermoon?

A moon’s supermoon status is often the subject of fierce debate. This is because, as EarthSky explains, a supermoon may sound more scientific than a blood Moon or Worm Moon, but it’s still not a term with a scientific definition. In fact, it was coined not by an astronomer, but by an astrologer named Richard Nolle in 1979. Basically, whether or not a particular moon is a supermoon boils down to how different stargazers (amateur and otherwise) calculate just how relatively close a full moon has to be to be considered super.

The moon isn’t always exactly the same distance from Earth, because its orbit isn’t perfectly circular. We call the closest point perigee (when it averages a distance of about 225,803 miles), and the most distant point apogee (when it averages a distance of about 251,968 miles). These shifts are not insignificant, but they’re also far from earth-shattering.

The reason you care about this middling change in distance is that it turns a moon super. When a full moon happens close to perigee, it’s going to look a smidge bigger than if it happened at apogee. Maybe. If you’re lucky. Honestly, the difference is not that profound, but if you’re in a position to photograph the supermoon next to something that showcases the slight increase in scale, it can look pretty cool. Our 2023 supermoons—the ones where perigee for the months lines up with the full moon—fall in July, August, August again, and September. So we’re currently halfway through supermoon season.

And just to really remind you that words are meaningless and the moon is always just the moon no matter what we decide to call it: It sometimes makes its closest monthly (or even annual) approach to Earth on a night we can’t see it, aka on the new moon.

What is a blue moon?

A blue moon is a nickname for when two full moons fall in the same calendar month. Astronomer David Chapman explained for EarthSky that this is merely a quirk of our calendar; once we stopped doing things based on the moon and started trying to follow the sun and the seasons, we stopped having one reliable full moon per month. The moon cycle is 29.53 days long on average, so on most months we still end up with a single new moon and a single full one. But every once in awhile, things sync up so that one month steals a full moon from another.

In March of 2018, we had our second blue moon of that year, to much acclaim. And while that’s not necessarily special in an oh-gosh-get-out-and-look-at-it kinda way, it’s certainly special: We hadn’t previously had two in one year since 1999. In 2018 (and in 1999) both January and March stacked full moons on the first and last nights of the month, leaving February in the dark. The next time this will happen is 2037.

Even getting two blue moons in a 12-month cycle is rare, but we have individual blue moons every few years. (The next one after August 2023 won’t be until May 2026.) Also, fun fact: It’s not actually blue. A moon can indeed take on a moody blue hue, but this only happens when particles of just the right size disperse through the sky—and it has nothing to do with the moon’s status as “blue.” Big clouds of ash from volcanic eruptions or fires can do the trick, but it doesn’t happen often, and the stars would certainly have to align for two such rare instances to occur at once.

Full moon over Hawaii Volcanoes National Park
There will be 13 full moons in 2023, with two of them falling in August. National Park Service/Janice Wei

Is there another kind of blue moon?

Surprise! There’s another kind of moon that some farmer’s almanacs refer to as blue. Just as there’s typically one full moon a month, there are generally three full moons a season. And just as there are sometimes two full moons in a month due to our calendar almost-but-not-quite following the lunar cycle, there are sometimes four full moons in a season. April 2019’s full moon landed right as spring began, leaving enough time for another three. Some breathlessly referred to this as a rare occurrence, but it happens every couple of years.

Weirdly, the blue moon moniker is applied not to the fourth full moon in a season (which actually only happens once-in-a-you-know-what) but to the third. Why? Who knows. What’s the fourth full moon in a season called? A full moon. ¯\_(ツ)_/¯

Similarly, the term “black moon” most commonly refers to the second new moon in a calendar month, but can also refer to the third new moon in a season with four of them. The phrase has also historically been applied to months without full moons, as well as months without new moons. Each of these circumstances occur about once every 19 years, and only in February.

What’s a sturgeon moon?

There won’t be anything fishy about a sturgeon moon’s appearance. Instead, as NASA notes, this refers to what some Algonquin tribes called the moon during August; at this time of year, Native Americans fished for sturgeon in the Great Lakes. There are other names for it, too, like the ”green corn moon.”

Sometimes you’ll see a headline that promises a moon with so many qualifiers it makes your head spin. A superblueblood wolf moon, perhaps? Lots of websites will tell you that “wolf moon” is the traditional name of the first full moon of the year in “Native American” cultures, which is kind of a weird thing to claim given that there are 573 registered Tribal Nations in the US alone today, not to mention historically. The idea that hungry, howling wolves were such a universal constant in January that all of North America, with its disparate cultures, geographies, and languages, spontaneously came up with the same nickname is—well, it’s silly. It’s a silly idea.

[Related: Landing on the moon only made us love it more]

The Farmer’s Almanac now lists a handful of alternatives for historical August moon names: the black cherries moon (Assiniboine), ricing moon (Anishinaabe), and harvest moon (Dakota), to name just a few.

Many cultures have traditional names for the full moon in a given month or season, so there’s quite a list to draw from if you’re trying to really plump up a story on a perfectly pedestrian full moon. But these are all based on human calendars and activities and folklore; you will not go outside and see a fish-scale moon in August or a fuchsia moon in April (or a moon full of beavers in November, for that matter), though I wish it were so.

What is a new moon?

Every 29.531 days, the relative positions of the sun, moon, and Earth conspire to leave our satellite—which doesn’t produce its own light, but shines thanks to the reflected light of our host star—in the dark. The sun’s rays are still striking the moon’s surface, but they’re hitting the (obviously inappropriately named) dark side that faces away from us. The moon appears to grow and shrink in the sky throughout the month thanks to shifts in its position relative to Earth and the sun. Fun fact: while basically everyone knows what a crescent moon is and why it’s so-called, you might not know that the bulbous shape of a moon somewhere between a straight split down its face and a full circle is called “gibbous,” from the Latin word for hunched or humped.

What is a micro moon?

It’s the opposite of the super one. Size isn’t everything. In a previous version of this article, I wrote that while we had such a moon coming up in September 2019, we probably wouldn’t see tons of news outlets crowing over the Micro full corn moon. I was only half right: There were plenty of headlines crowing, though they decided to dub it the harvest micromoon instead.

As is the case with supermoons, you shouldn’t expect to see a noticeable difference in a micromoon’s size.

What is a black moon?

You may be familiar with the concept of a blue moon (see above), which rather dramatically refers to the second full moon in a month. A black moon is the same thing, but for the second new moon in a month. This happens about once every three years. What’s it look like? Well, it looks like a new moon. That means you can’t really see it. But by all means, get out there and do some stargazing.

In case you haven’t yet really grasped the fact that all of these moons are just the result of our arbitrary and often nonsensical calendar system, consider this: In some time zones, a new month at the end of the month will actually rise on the first day of the next month.

What’s a pink moon?

While spring moons may be referred to as pink moons, they won’t actually look pink. Atmospheric conditions can conspire to change the hue of the moon as seen from the ground—NASA has a neat picture of a positively purple one, which is just gorgeous—but there’s no reason to think full moons in April look anything but the usual grayish color. The full pink moon is so-named, according to the Farmer’s Almanac, because its April rise often coincides with the blossoming of a pink North American wildflower called Phlox subulata.

What is a blood moon?

Objectively the most metal moon (sorry, black moon), these only occur during total lunar eclipses (which can happen a few times a year in any given location). When the moon slips through our shadow, our planet gives it a reddish cast. The moon can also look orange whenever it’s rising or setting, or if it hangs low in the horizon all night—the light bouncing off of it has to travel through thicker atmosphere there, which scatters more blue light away. But you’ll probably only see that deep, sinister red during an eclipse.

[Related: Volunteer astronomers bring wonders of the universe into prisons]

A lot of headlines about moons are just silly (you do not need to be particularly excited about a blue moon, it just looks like a regular ol’ moon), but you should definitely roll out of bed to look at a blood moon if one is going to be visible in your region. But anyone who crams both “blood” and “eclipse” into their moniker for a moon is just trying to win the search engine optimization game; a blood moon is just a lunar eclipse that’s going through a goth phase. Ryan F. Mandelbaum at Gizmodo makes the case that we should really just stop throwing the phrase “blood moon” around and call them lunar eclipses, which is tough but fair, because they’re lunar eclipses and not evidence of bloody battles between the sky gods.

A flower blood supermoon, meanwhile? We can get behind that.

This post has been updated. It was originally published on March 2018.

The post The upcoming ‘blue supermoon’ will be the biggest of the year appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
What the heck is up with Neptune’s dark spots? https://www.popsci.com/science/neptune-dark-spots/ Thu, 24 Aug 2023 19:00:00 +0000 https://www.popsci.com/?p=565276
A sequence of Hubble Space Telescope images from 1994 to 2020 that chronicles the waxing and waning of the amount of cloud cover on Neptune. This long set of observations shows that the number of clouds grows increasingly following a peak in the solar cycle.
This sequence of Hubble Space Telescope images chronicles the waxing and waning of the amount of cloud cover on Neptune. This long set of observations shows that the number of clouds grows increasingly following a peak in the solar cycle. NASA, ESA, Erandi Chavez (UC Berkeley), Imke de Pater (UC Berkeley)

The ice giant’s atmosphere has been acting a little strange lately and astronomers are figuring out why.

The post What the heck is up with Neptune’s dark spots? appeared first on Popular Science.

]]>
A sequence of Hubble Space Telescope images from 1994 to 2020 that chronicles the waxing and waning of the amount of cloud cover on Neptune. This long set of observations shows that the number of clouds grows increasingly following a peak in the solar cycle.
This sequence of Hubble Space Telescope images chronicles the waxing and waning of the amount of cloud cover on Neptune. This long set of observations shows that the number of clouds grows increasingly following a peak in the solar cycle. NASA, ESA, Erandi Chavez (UC Berkeley), Imke de Pater (UC Berkeley)

With its vanishing clouds and now a large dark spot, the planet Neptune appears to be going through some things. Here’s a bit about why the eighth planet in our solar system is causing all this drama. 

[Related: Neptune’s faint rings glimmer in new James Webb Space Telescope image.]

Is Neptune the new Jupiter? 

Astronomers using the European Southern Observatory’s Very Large Telescope (VLT) have observed a large dark spot and a smaller bright spot next to it in Neptune’s atmosphere. This is the first time that the planet’s dark spots have ever been observed using an Earth-based telescope The findings were published on August 24 in the journal Nature Astronomy. These new spots are only occasional features in the blue background of Neptune’s atmosphere and the new results are providing clues to their mysterious nature and origin. Spots are common in the atmospheres of giant planets, with Jupiter’s Great Red Spot being the most famous. In 1989, a dark spot was first discovered on Neptune by NASA’s Voyager 2 before the spots disappeared just a few years later. 

The international team of researchers used the VLT to rule out the possibility that the dark spots are caused by a ‘clearing’ in the planet’s clouds. The team’s new observations indicate that the dark spots are likely due to air particles darkening in the layer below the main visible haze layer, as these hazes and ices mix in Neptune’s atmosphere.

The team used the VLT’s Multi Unit Spectroscopic Explorer (MUSE) to split the reflected sunlight from Neptune and its spot into component colors, or wavelengths, so that they could  study the spot in more detail than was possible before. 

The observations also offered up a surprise result. 

“In the process we discovered a rare deep bright cloud type that had never been identified before, even from space,” study co-author and University of California, Berkeley planetary scientist Michael Wong, said in a statement

These unusual luminous clouds appeared as a bright spot along the larger main dark spot, showing that the new “deep bright cloud” was actually at the same level in the atmosphere as the main dark spot. The team says this is a completely new type of feature compared to the smaller ‘companion’ clouds of high-altitude methane ice that astronomers have previously observed. 

The case of the disappearing clouds

About four years ago, Neptune’s ghostly, cirrus-like clouds largely disappeared, and only a patch of clouds hovering over the ice giant’s south pole exists today. Using almost 30 years worth of observations captured by three different space telescopes, scientists have finally determined that the diminished cloud cover could be in sync with the solar cycle. The findings were recently published in the journal Icarus.

[Related: Neptune’s bumpy childhood could reveal our solar system’s missing planets.]

“These remarkable data give us the strongest evidence yet that Neptune’s cloud cover correlates with the Sun’s cycle,” study co-author and University of California, Berkeley astronomer Imke de Pater said in a statement. “Our findings support the theory that the sun’s (ultraviolet) rays, when strong enough, may be triggering a photochemical reaction that produces Neptune’s clouds.”

The level of activity in the sun’s dynamic magnetic field will increase and decrease during the solar cycle. According to NASA, every 11 years, the magnetic field flips, as it becomes more tangled like a bundle of string. During periods of more heightened activity on the sun, more intense ultraviolet radiation bombards our solar system.

The team used data from the Lick Observatory in California, the W.M. Keck Observatory in Hawaii, and NASA’s 30-year-old Hubble Space Telescope and observed 2.5 cycles of cloud activity over the 29-year period of Neptune observations. The planet’s reflectivity increased in 2002 and dimmed in 2007. Then, the ice giant brightened again in 2015 before it darkened to its lowest level ever seen in 2020. That’s when most of the cloud cover faded away.

“It’s fascinating to be able to use telescopes on Earth to study the climate of a world more than 2.5 billion miles away from us,” study co-author and Keck Observatory staff astronomer Carlos Alvarez said in a statement. “Advances in technology and observations have enabled us to constrain Neptune’s atmospheric models, which are key to understanding the correlation between the ice giant’s climate and the solar cycle.”

The post What the heck is up with Neptune’s dark spots? appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Mini jets of energy could power the sun’s violent winds https://www.popsci.com/science/tiny-jets-solar-wind/ Thu, 24 Aug 2023 18:00:00 +0000 https://www.popsci.com/?p=565319
An illustration of the ESA Solar Orbiter craft monitoring our giant orange sun.
ESA's Solar Orbiter investigates the sun from within Mercury's orbit in this illustration. ESA/ATG medialab

These flares can drag charged particles through holes in the solar atmosphere and out into space.

The post Mini jets of energy could power the sun’s violent winds appeared first on Popular Science.

]]>
An illustration of the ESA Solar Orbiter craft monitoring our giant orange sun.
ESA's Solar Orbiter investigates the sun from within Mercury's orbit in this illustration. ESA/ATG medialab

On the one hand, the sun provides life-giving heat and light. On the other, it spews an incessant stream of potentially harmful charged particles. These particles form the solar wind, and it is no less formidable than our star’s other products. Without Earth’s magnetic field to shield our planet’s surface, we would constantly face a bombardment of ionizing radiation.

But astronomers have never been completely certain where those particles come from or how they travel into interplanetary space. Now, they’ve found a promising clue. Using ESA’s Solar Orbiter spacecraft, researchers have found miniature jets that seem to channel particles up through holes in the sun’s corona and away from the star. These jets might combine to blow the solar wind, a group of astronomers suggests in a paper published in the journal Science on Thursday.

The corona, a star’s outermost layer, is a sheath of undulating plasma. It is almost always hidden in visible light, although it’s thousands of times hotter than the layers below. We might only see this outer layer during a solar eclipse, when the moon blots out the rest of the sun. 

But the corona is not one even layer. Imaging the sun in ultraviolet reveals shifting dark swatches: regions where the corona’s plasma is cooler and less dense. Astronomers call these areas coronal holes.

[Related: Why is space cold if the sun is hot?]

Coronal holes also seem to resculpt the sun’s powerful, endlessly changing magnetic field. In these parts, lines that guide the sun’s magnetic field seem to blow outward. “Usually, magnetic fields loop back to the solar surface, but in these open field regions the lines of force stretch into interplanetary space,” says Lakshmi Pradeep Chitta, an astronomer at the Max Planck Institute for Solar System Research in Göttingen, Germany, and one of the paper’s authors.

It’s also within coronal holes that the sun’s magnetic field lines can knot about themselves. When that happens, the magnetic field realigns and reconnects, creating fierce electrical surges. Those energetic outbursts siphon matter from deeper layers of the sun and toss them away in jets that can stretch more than a thousand miles across. Astronomers had long suspected that these jets fuel the solar wind, but didn’t know if these jets could provide enough particles to fill the solar wind we observe.

Sun-watching spacecraft like Yohkoh and SOHO have been able to see jets since the 1990s. But astronomers say that none have the sightseeing abilities of Solar Orbiter, which launched in 2020. At its closest approach, Solar Orbiter dips closer to the sun than Mercury.

“Solar Orbiter has the advantage of being located close to the sun, so it can detect smaller and fainter jets,” says Yi-Ming Wang, an astronomer at the US Naval Research Laboratory, who was not an author of the paper.

In March 2022, Chitta and his colleagues focused one of Solar Orbiter’s ultraviolet cameras upon a coronal hole situated near the sun’s south pole. When they did, they glimpsed a type of miniature jet never before seen by humans. Each of these tiny jets carried around one-trillionth the energy of a full-size version. The authors dubbed these “picoflare jets,” dipping into SI system prefixes.

These adorable-sounding surges don’t stick around. Each fleeting picoflare jet lasts about a minute. But this is still the sun—a place of immense power. A single solar picojet might create enough energy to power a small city for a year.

[Related: How a sun shade tied to an asteroid could cool Earth]

The authors scoured only one small part of the sun, but they saw picoflare jets in every corner they looked. It’s likely they cover much of the sun’s surface. Myriads of miniature jets, then, might combine into a large-scale process that transfers charged particles away from the star and out toward the planets.

“We suggest that these tiny picoflare jets could actually be a major source of mass and energy to sustain the solar wind,” Chitta says.

In years past, many astronomers thought of the solar wind as a steady flow, streaming away from the sun at a constant rate. But, if surging picoflare jets drive the solar wind, then the phenomenon might actually be ragged, uneven, and constantly in flux. Picoflare jets may not be the only source of the solar wind, but if Chitta and colleagues are correct, they’re at least a significant contributor.

Fortunately, scientists in a few years’ time will have plenty of additional tools to peer into the sun. Alongside the Solar Orbiter—and future sun-seeing spacecraft, such as the Japanese-led SOLAR-C—they’ll have more powerful solar magnetograms, instruments that allow them to directly measure the sun’s magnetic field from places like Southern California and Maui, able to track the magnetic fluctuations powering the sun’s jets from right here on Earth.

The post Mini jets of energy could power the sun’s violent winds appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
India’s successful moon landing makes lunar history https://www.popsci.com/science/chandrayaan-3-moon-mission/ Tue, 22 Aug 2023 10:00:00 +0000 https://www.popsci.com/?p=564159
Yellow spacecraft machinery against a white walled background.
The Chandrayaan-3 lander prior to its launch. ISRO/NASA

Chandrayaan-3 just descended to a region no spacecraft has gone before.

The post India’s successful moon landing makes lunar history appeared first on Popular Science.

]]>
Yellow spacecraft machinery against a white walled background.
The Chandrayaan-3 lander prior to its launch. ISRO/NASA

This post has been updated. It was originally published on August 22.

On August 23, the Indian Space Research Organization (ISRO) successfully landed on the moon on with the Chandrayaan-3 mission. India is now only the fourth country to successfully place a probe on the moon, and the first to land at the lunar south pole. Previous moon missions touched down on the moon’s equator. Scientists now hope to deploy a rover to send images and data back to Earth.

“India’s successful moon mission is not just India’s alone,” said Prime Minister Narendra Modi. He added that the mission is based on a “human-centric” approach and its success belongs to all of humanity.

This has been a record week for space exploration—despite the obliterating crash of Russia’s lunar spacecraft on Sunday. The first Soviet and American soft landings on the moon happened all the way back in the 1960s, at the dawn of the Space Race. But it’s not easy to deposit a lunar lander—since those early successes, China has been the sole country to join Russia and the US in this feat.

“Very few countries have landed on anything. It’s just really hard, and everything has to work just about perfectly,” says Dave Williams, a planetary scientist who archives data of the moon at NASA’s Goddard Space Flight Center.

To start, spaceflight is a huge engineering challenge, and the moon is a particularly tricky target. Unlike Earth or Mars, our satellite has no atmosphere, so there’s nothing natural to slow down a spacecraft—no air for parachutes or gliders to use. The only way to get to the surface without crashing is a controlled descent, in which rockets lower the probe all the way down. Plus, the rocket engines must shut off at a precise moment so the craft doesn’t bounce back up off the lunar surface.

[Related: 10 incredible lunar missions that paved the way for Artemis]

Making matters worse, although the moon doesn’t have oceans or cities, it still has plenty of hazards—namely, rocks and craters. Spacecraft have to navigate this terrain mostly on their own. The moon is far away enough from Earth command centers that a lander must be pre-programmed to do what it needs to for a safe landing.

This isn’t India’s first visit to the moon. The country’s lunar program began back in 2008, with a lunar orbiter and impactor in the Chandrayaan-1 mission. Chandrayaan-1 “played a vital role in raising awareness of space science among the general public,” says University of Florida astronomer Pranav Satheesh. “Many students, including myself, were inspired to pursue careers in space science and astronomy upon witnessing the success of ISRO’s programs.”

India made its first attempt at a soft landing with the Chandrayaan-2 mission in 2019. Unfortunately, that lander, named Vikram after the pioneering physicist Vikram Sarabhai, failed in the very last stages of its descent, crashing into the lunar surface. NASA’s Lunar Reconnaissance Orbiter later spotted debris from Vikram’s crash as bits of metal strewn across the lunar landscape. The Chandrayaan-2 orbiter remained operational, however, and it continues to collect data in support of the current lunar landing attempt.

[Related: Why do all these countries want to go to the moon right now?]

Chandrayaan-3’s journey so far has been right on track. “Excitement about this mission is definitely palpable across Indian news media, WhatsApp chats, and even in everyday conversations for a lot of folks there,” says Pratik Gandhi, an astronomer at the University of California, Davis. 

Chandrayaan-3 launches.

It entered lunar orbit on August 5, separated from its propulsion system on August 17, and even snapped a few teaser pics of the moon on August 18. As the lander descends to the moon in the coming days, the most dangerous moment is likely the landing’s second-to-last step: the fine braking phase. “The lander must kill all of its velocity and enter a hover state at about a kilometer above the lunar surface, at which point it must also decide in 12 seconds if it’s above its desired landing region or not and proceed with the touchdown accordingly,” explains science journalist Jatan Mehta. Russia’s Luna-25 probe, on the other hand, failed much earlier in its journey—which may be a sign of poor manufacturing or a lack of testing.

When the Indian lander touched down, it should have only been moving at about 4 miles per hour. But only the slightest deviations separate a crash landing from a controlled one. “The moon’s gravity, even though it is only about one-sixth of Earth’s, is still more than enough to destroy a spacecraft if it isn’t slowed down,” says Williams. 

Some exciting science investigations are now in store for the spacecraft. Unlike any lander to come before, Chandrayaan-3 is targeting the moon’s south pole, where astronomers think there are deposits of water. Water is a crucial resource for future longer-term space exploration, both for astronauts to drink and for use as rocket fuel. 

Chandryaan-3’s lander, also called Vikram, is carrying a small rover named Pragyan. Pragyan is only about 50 pounds—the weight of a medium-sized Goldendoodle—and will roam the lunar surface for about two weeks. It’s equipped with two spectrometers, which can measure the composition of rocks and soil, providing scientists with crucial information about this never-before-explored region of the moon.

The lunar southlands are also a key target for future installments in NASA’s Artemis program, paving the way for semi-permanent human habitation on our nearest celestial neighbor. In June 2023, India signed on to the Artemis Accords, an agreement for cooperation between countries in space exploration. Japan, another signatory of the accords, even has a rover in the works with India, with the goal of drilling into the lunar south pole in search of more water. All of these plans will have a better chance at fruition if India successfully lands on the moon.

“That India is one of the few countries to be able to build lunar landers means Chandrayaan-3’s success will be a critical part of being able to truly sustain the current global momentum for a return to the moon,” says Mehta. As more nations try to land on the moon, lessons from success—and failures—should help improve each next attempt.

Correction: A previous version of this article described the fine breaking phase as the last step of the landing. It is the penultimate step.

The post India’s successful moon landing makes lunar history appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Why do all these countries want to go to the moon right now? https://www.popsci.com/science/modern-space-race-moon-ice/ Sun, 20 Aug 2023 17:00:00 +0000 https://www.popsci.com/?p=563841
An illustration of two NASA astronauts in a lunar crater.
NASA concept art of American astronauts on the moon. NASA

Call it a gold rush, not a space race.

The post Why do all these countries want to go to the moon right now? appeared first on Popular Science.

]]>
An illustration of two NASA astronauts in a lunar crater.
NASA concept art of American astronauts on the moon. NASA

On December 6, 1968, Time magazine published an issue with a metaphor illustrated on the cover: a Soviet cosmonaut and an American astronaut were in a sprint to the moon. The actual space race had kicked off a decade earlier, when the Soviet Union launched Sputnik, the first artificial satellite, in 1957. It ended less than a year after Time published its cover, when US Apollo 11 astronauts landed on the moon on July 20, 1969. The excitement wore off quickly—the last humans to step foot on the moon, the crew of Apollo 17, did so in 1972. So far, no one has gone back. 

But that’s changing. NASA is committed to landing astronauts on the moon again in 2025 as part of the space agency’s Artemis Program. China has plans to land humans on the moon by 2030. In the meantime, robotic missions to the moon are increasing: Russia’s endeavor to return to the moon for the first time in 47 years, the robotic Luna-25 mission, crashed this week, and India hopes to make its first soft landing there on August 23 with its Chandrayaan-3 lander. 

With so many nations headed for the moon, including an increasingly aggressive if diminished Russia, is the world at the cusp of a second space race? 

The temptation to reach for the historical space race as a model is understandable, but as long as we’re mapping history onto current events, it may not be the best guide, according to Cathleen Lewis, the Smithsonian National Air and Space Museums curator of international space programs. “In my opinion, this isn’t a new race,” she says. “If you want to use historical events, this is more of a gold rush.” 

Or, more precisely, an ice rush. In 2018, scientists discovered water ice preserved in the deep, permanent shadows of polar craters. The US, China, Russia, and India are targeting portions of the lunar South Pole where that frozen resource should be. Water can be used to create rocket fuel or in lunar manufacturing. But it is heavy, and therefore expensive, to launch from Earth.  

Space agencies “haven’t quite worked out” how they are going to use this ice, or for “what technology to what end,” Lewis says. “But everyone wants to get there because we now know there is water ice to be found.” 

[Related on PopSci+: A DIY-rocket club’s risky dream of launching a human to the edge of space]

But it’s not just about the ice. The technological basis for all of this activity is entirely different than in the mid-20th century, Lewis points out. Back then, the US and the Soviet Union were developing the technology to go to the moon for the very first time. 

President Kennedy backed the lunar program because his advisors convinced him the race was technologically winnable, she says. While this competition had a destination, it also referred to the way “the USSR was racing to the maximum capacity of their technological limits.”

The Soviets had difficulty developing vehicles powerful enough to launch a crewed mission to the moon. The US created the Saturn V rocket, a singularly capable technology that was the most powerful ever launched until the first flight of NASA’s new Space Launch System (SLS) rocket in late 2022. 

Today, multiple nations and even private companies have the technological capability to send spacecraft to the moon. Space itself is now more crowded, too, host to satellites tied into terrestrial economies: carrying communications, providing guidance signals, and observing agricultural water and other resources on the ground. 

The goal is no longer to achieve technological superiority. Instead, nations are rushing to acquire existing technologies that are becoming a prerequisite for economic independence and affluence. “This is part of being in a world in a mature space age, that these are no longer optional programs, they’re no longer pickup games, jockeying to see who’s first,” Lewis says. “These are essential, existential programs for 21st century existence.”

[Related: China’s astronauts embark on a direct trip to their brand new space station]

In this sense, the current wave of moon programs are different from those in the past because they are more internally focused on economies, rather than serving as a non-military proxy contest between two superpowers. China, Lewis notes, has scaled its exploration of space to match its economic development over the past 30 years.

However, that’s not to say it will remain that way. The historical Gold Rush, after all, led to conflict over that valuable resource. Once enough players are regularly operating on the moon with regularity, the opportunities for disputes will increase. 

“Who gets to choose what we do with the moon?” Lewis asks. “We haven’t sorted out issues about who has mining and drilling rights.” 

The Outer Space Treaty of 1967 forbids nations from making territorial claims on celestial bodies, but permits using resources there. Whether that use includes mining materials to sell for a profit on Earth is less clear. “We haven’t had to deal with that profit in space,” Lewis says. ”I’m glad I’m not an attorney who specializes in these sorts of things because it’s a part of it that makes my head ache.”

But there may be plenty of time for space lawyers and diplomats to figure that out. Because, when it comes to the moon, even gold rushes move slowly. “We’ve seen missions fail,” Lewis says, such as India’s Chandrayaan-2 mission that crashed on the moon in 2019. “The moon is a lot easier than it was 60 years ago, but it’s still difficult to get there.”

The post Why do all these countries want to go to the moon right now? appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How might life migrate through the universe? https://www.popsci.com/science/how-might-life-migrate-through-the-universe/ Mon, 14 Aug 2023 01:00:00 +0000 https://www.popsci.com/?p=562418
Our galaxy, the Milky Way.
We are used to thinking of space as vast and mostly empty, completely unsuitable for life. Perhaps we should change our minds. NASA

Notes on interstellar hitchhikers and the origins of life.

The post How might life migrate through the universe? appeared first on Popular Science.

]]>
Our galaxy, the Milky Way.
We are used to thinking of space as vast and mostly empty, completely unsuitable for life. Perhaps we should change our minds. NASA

This article is excerpted from Roberto Battiston’s book “First Dawn: From the Big Bang to Our Future in Space.” This article originally published on MIT Press Reader.

By the time we realized that there was an extrasolar intruder, ‘Oumuamua, named after the Hawaiian word for “scout,” had already passed its closest point to the Sun and was leaving, as fast and stealthily as it had arrived. We are talking about the first sighting, in 2017, of an asteroid from another area of the galaxy, a messenger from distant worlds. What do we know about this dark, probably cigar-shaped shard, which visited our solar system with a trajectory and velocity that allowed it to leave so quickly?

Very little. We know that it was not made of ice, so it must be of the rocky type. It did not ignite like a comet as it approached the Sun. We know that it does not emit electromagnetic radiation. The most powerful radio telescopes have found no trace of it. Its orbit is gravitational, determined by the attraction of the Sun; a small, non-inertial component can be explained by the effect of the pressure of the radiation in our star’s vicinity. We know that its speed, before entering the solar system, was compatible with the characteristic speeds of celestial bodies in the region of the Milky Way, of which our solar system is part. This allows us to exclude the idea that it comes from one of the dozen stars closest to us, as its velocity would have been too high. However, we have identified four more distant stars near which it could have passed in the last million years, with a velocity low enough that it could have originated in one of these star systems.

So, we don’t know exactly where it comes from, if it has already been in our solar system, how many other systems it has visited, or its composition. According to one hypothesis, it could be a fragment of an exoplanet destroyed by tidal effects. In this case it would be an object much rarer than main belt asteroids or objects from the Oort cloud, which formed directly from the original nebula. What is certain is that, on timescales of the order of millions or tens of millions of years, fragments like ‘Oumuamua can bring different star systems into contact. One estimate even predicts that 10,000 extrasolar asteroids cross Neptune’s orbit on a daily basis.

On timescales of the order of millions or tens of millions of years, fragments like ‘Oumuamua can bring different star systems into contact.

It would be interesting to be able to explore one to see what it was made of. This type of asteroid would seem to be the kind of vector suitable for transporting life, in hibernating form, from one part of the galaxy to another. While a space mission of this kind would be difficult because of the speed at which these fragments are moving, it wouldn’t be impossible, considering that in the future our observational capacity will improve considerably, allowing us to identify these bodies sooner than we were able to identify ‘Oumuamua. Another idea has to do with the possibility that some of these extrasolar objects have become trapped in our solar system after having lost some of their energy in a close encounter with Jupiter; a few candidates have already been identified. This approach would make an exploratory mission much easier to accomplish.

However, even the planets in our own solar system are in communication and exchanging material at a fairly high rate. Not everyone knows that we have about 10 rock samples from Mars here on Earth, even though there has not yet been a mission that brought back material from that planet. The meteorite bombardment on Mars results in fragments that, given its thin atmosphere, can be projected into space. Some of them can reach the Earth, penetrate our atmosphere, and fall like normal meteorites. By comparing the isotopic composition of various meteorites with those measured on Mars during NASA’s robotic missions to the planet, we are able to identify and distinguish Martian meteorites from all the others.

Finally, we should remember that it takes the solar system about 220 million years to revolve around the center of the galaxy. Since it formed 4.5 billion years ago, it has made the full circuit about 20 times. This means that, in the timescale in which life emerged on Earth, the newborn solar system made at least three complete circuits, coming into contact with fragments from distant star systems.

In 2019 I participated in a Breakthrough Discuss conference in Berkeley on “Migration of Life in the Universe.” I was puzzled by the conference theme: We know almost nothing about life in the universe, I thought, so how we could talk about migration of life? But recalling the observation of ‘Oumuamua, I did participate and I am glad I did. I was surprised by the scientific quality of the talks and by the extreme fascination of the topic. Life probably doesn’t need massive, rocky starships to move from one planetary system to another. Considering the minuscule size of bacteria, the smallest living organisms we know, or even viruses, which can live and reproduce inside bacteria, we can also imagine other mechanisms suitable for this kind of transport.

Microscopic ice crystals and dust, for example, containing bacteria and spores capable of withstanding the conditions in space, can spread into space from areas of a planet’s upper atmosphere. When the dimensions become microscopic, the relationship between gravitational force, which is dependent on mass, and the thrust due to stellar radiation, which is dependent on surface area, tips the balance in favor of the latter. It is as if a planet were leaving a trail of perfume behind it. Planetary dust containing hibernating life can be pushed by radiation until it reaches high velocities and moves beyond a given star system, spreading to other systems or nebulae, where it can find suitable conditions to reproduce and evolve. We are used to thinking of space as vast and mostly empty, completely unsuitable for life. Perhaps we should change our minds. Space is less empty than we might think. In reality, the different parts of the galaxy communicate by exchanging material on timescales comparable to those of the appearance of life on our planet.

We know of various living species that can endure extremely hostile conditions such as those in space: a nearly perfect vacuum, extreme temperatures, and ionizing radiation.

But how possible is it for life to survive in space? Well, even here, nature surprises us. In fact, we know of various living species that can endure extremely hostile conditions such as those in space: a nearly perfect vacuum, extreme temperatures, and ionizing radiation. Different kinds of lichens, bacteria, and spores are able to survive, losing all of their water and entering into a condition of total inactivity — which can last for extremely long periods — from which they can emerge, once they find themselves in a humid atmosphere again. Tests of this kind have been done on the International Space Station and in various laboratories. Even plankton, made of more complex organisms, shows a capacity to resist these prohibitive conditions.

A truly extraordinary case is that of the tardigrades. These very common micro-animals are about a half a millimeter long and live in water. They have eight legs, a mouth and a digestive system, as well as a simple nerve and brain structure. They are also able to sexually reproduce. They exist in nature in thousands of different versions and have a metabolism with unique characteristics. In order to withstand prolonged drought conditions, their bodies can achieve complete dehydration, losing around 90 percent of their water and curling up into a tiny, barrel-shaped structure. In other words, it’s as if they freeze-dry themselves. Once this process is complete, their metabolism becomes 10,000 times slower. The most amazing thing is that they can stay in this state for decades, only to wake up again within 20 or 30 minutes once exposed to moisture. But there’s more. When in a dehydrated state, they can withstand the vacuum of space as well as pressures higher than normal atmospheric pressures, temperatures near absolute zero or temperatures up to 150°C. Their radiation tolerance threshold is hundreds of times higher than what would be deadly for humans. The secret of their ability to harden is due to a sugar, trehalose, which is also widely used in the food industry. When dried, this sugar replaces the water molecules in the cells, leaving the animal in a kind of vitrified state.

In addition, the tardigrade’s DNA is protected by a protein that reduces radiation damage. Is this information enough to make us assume that these micro-animals come from space? I would say no. Their unusual metabolism is more likely the result of evolutionary adaptation that happened on our planet. In fact, tardigrades are among the very few living beings that have emerged unscathed from all five extinction events that have occurred on Earth. That is why they are the best candidates for a long journey into space aboard a meteorite or a comet. Recently, tardigrades have achieved a bit of media notoriety resulting from the Beresheet mission, a private probe launched by Israel, that crashed on the Moon in early April of 2019. The probe was carrying a colony of these micro-animals, in their dehydrated state. Given their microscopic size, it is likely that they survived the crash and will remain inactive for a long time to come, ready to be reawakened from their hibernation. By replacing the Israeli probe with an asteroid, we have a textbook example of how life might have arrived on Earth.

Or how life could have migrated from Earth to other planets in our galaxy.

By replacing the Israeli probe with an asteroid, we have a textbook example of how life might have arrived on Earth.

So, the problem of the origin of life remains open, even if, step by step, we are making progress toward a solution. In the last decade, increasingly powerful calculation instruments have allowed us to reproduce, starting from the first principles of quantum mechanics, the formation of increasingly large and complex molecular systems, now made up of thousands of atoms. The field of computational biology is growing at a formidable rate; it is now only a matter of computing power.

At the same time we have dramatically developed our ability to decode and manipulate DNA, up to the creation of the first simplified genomic structures, derived from living organisms and able to reproduce. We are now talking about synthetic life, built around human-designed DNA, a field with huge development prospects.

Therefore, it is likely that the creation of the complex molecular structures needed for life or the confirmation of the existence of islands of genomic stability in the evolution of viral and bacterial species are objectives that, in future, will be within our reach. At that point, we will have another tool for understanding how life on Earth developed. Who knows? Perhaps we will discover that aliens are particular biological life forms that have lived with us since the beginning of time; and we were looking for them on Mars or below the icy surface of Jupiter and Saturn’s moons!


Roberto Battiston is a physicist who specializes in the field of experimental fundamental and elementary particle physics, both with particle accelerators and in space. He is the author of several books, including “First Dawn,” from which this article is excerpted.

The post How might life migrate through the universe? appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Would a massive shade between Earth and the sun help slow climate change? https://www.popsci.com/science/sun-shade-asteroid-lagrange/ Wed, 09 Aug 2023 10:00:00 +0000 https://www.popsci.com/?p=561882
A NASA image of the sun with a bright solar flare in the upper left.
A solar flare flashes at the edge of the sun, captured by NASA's Solar Dynamics Observatory in 2012. NASA/GSFC/SDO

The concept involves an asteroid counterweight and would be tremendously expensive to pull off.

The post Would a massive shade between Earth and the sun help slow climate change? appeared first on Popular Science.

]]>
A NASA image of the sun with a bright solar flare in the upper left.
A solar flare flashes at the edge of the sun, captured by NASA's Solar Dynamics Observatory in 2012. NASA/GSFC/SDO

Some of the most exotic solutions to climate change are the various forms of geoengineering. Such proposals aim to reduce global warming by shrinking the amount of solar radiation that reaches Earth’s surface—by, say, injecting large amounts of sulfur dioxide or dust into the air to mimic the cooling effect of large volcanic eruptions. Or building catapults to launch lunar dust into orbit around Earth and intercept the sun’s rays in the space near our planet. 

But University of Hawaii cosmologist István Szapudi has an even more far-out idea: place a 372,000-mile-wide sun shade tethered to a captured asteroid between Earth and the sun to reduce the amount of solar radiation reaching our planet by 1.7 percent. His analysis is agnostic to the shade’s shape, though he imagines it could be a circular shade made of triangular segments, able to open or close like flower petals to allow variable amounts of sunlight through. 

“It’s not going to cast a sharp shadow,” Szapudi says. ”Maybe with a telescope you could notice that there is something in front of the sun. But other than that, it would just be that people would notice that the weather is a little bit better.”

He readily admits that this concept would require millions of dollars investment in just preliminary engineering studies to see if it is really possible. “Of course, it’s unrealistic to actually do this, so hopefully, we will slowly give up fossil fuels,” Szapudi says, citing a much more mainstream goal to curb a source of climate change. “But that’s a very long-term process.”

An illustration of a triangle-shaped sun shade.
A concept illustration of a sun shade bound to an asteroid. Istvan Szapudi/Institute for Astronomy

In the meantime, he suggests, maybe the world can consider alternatives to help mitigate the change in climate that occurs from the carbon already in Earth’s atmosphere today. 

Szapudi’s proposal, as described in a paper published on July 31 in the Proceedings of the National Academy of Sciences, would place this massive sun shade at the Sun-Earth Lagrange Point 1, or L1. This is a region of space about 932,000 miles toward the sun from Earth where the gravity of both bodies cancels out, allowing a spacecraft orbiting L1 to maintain a constant position relative to the sun and Earth with minimal maneuvering. The James Webb Space Telescope makes use of the same phenomena at L2, the L1 point’s counterpart 932,000 miles away from Earth in the direction of the outer solar system. 

[Related: How big banks can make real progress against climate change]

Szapudi is not the first to suggest placing a sun shade at L1, but previous proposals ran into problems. Namely, a large sun shade will also act like a solar sail, catching solar radiation that will push the structure out of position at L1. Previous proposals got around this by making the sun shade extremely massive, on the order of 350 million tons, perhaps of metal or asteroid stuff—an utterly unrealistic amount of mass even for a proposal that’s already this far out. 

Szapudi instead proposes connecting it to an asteroid counterweight by tethers up to 1.9 million miles long. Since the sun’s gravity is more potent the further away from L1 and closer to the star you go, the tug of solar gravity on the asteroid will counterbalance the radiation pressure on the sun shade, allowing it to stay in place. 

With such a configuration, Szapudi estimated the shade itself might weigh only 35,000 tons. “That’s something that SpaceX could put up in space” using its current rockets, he says, though it’d take a lot of time and effort. A sun shade could be made even lighter, Szapudi suggests, if made from something like graphene, an extremely light and strong material consisting of atom-thick sheets of carbon atoms arranged in a hexagonal lattice pattern. 

Astronomers would have to identify a suitable near-Earth asteroid for the counterweight through something like the University of Hawaii’s Panoramic Survey Telescope and Rapid Response System (Pan-STARRS), Szapudi says. But once they did, the sun shade could be tethered to the asteroid in its existing orbit and used as a solar sail to divert the space rock toward the L1 point. 

Engineering-wise, the whole idea is extremely speculative, Szapudi emphasizes, relying on technology that is not yet developed, such as materials strong and light enough to serve as the tethers. 

[Related on PopSci+: Cloudy with a chance of cooling the planet]

But it’s also not clear if geoengineering of this sort would actually help mitigate the effects of climate change, or do so without introducing other, unpredictable and negative consequences, according to Rutgers University climatologist Alan Robock. Robock leads the Rutgers Geoengineering Model Intercomparison Project, which uses climate change models to predict the effects of geoengineering interventions.

“What if you start doing it and you say, ‘OK, we figured out that 90 percent of the world is going to be better off, but 10 percent is going to be worse off,” Robock says. “But we don’t know which 10 percent because of randomness in the climate system.”

And some effects are well understood, likely, and not good, he adds. 

“For example, you’d get drought in Africa and Asia, because the summer monsoon is driven by the temperature difference between the land and the ocean in the summer,” Robock says. “If you block out the sun, the land would cool more than the ocean. And so that temperature difference would go down. In the summer monsoon precipitation would be reduced.” 

And if something went wrong with the sun shield, and it stopped blocking the sun suddenly, Earth would warm back up much more rapidly than humans have ever experienced r. 

“That’s called the termination problem,” Robock says, and it’s something that dogs all geoengineering proposals. 

And then there’s also the very human problem of cooperating on what is essentially a species-wide project: building and tuning a sun shade. How do humans agree on how much sun to block, or as Robock puts it, how does the world agree on where to set the planetary thermostat? “Countries like Canada and Russia wouldn’t mind it being a little bit warmer,” he says. “In fact, we’ve calculated their agriculture would improve, but countries in the tropics would want it cooler because sea levels are going up, they’re already drowning.”

Ultimately Robock sees geoengineering projects as potential distractions from reducing emissions today. The best solution to climate change, Robock says—and Szapudi agrees—is to leave fossil fuels in the ground. 

 But Szapudi sees his proposal as a project to help mitigate the lasting effects of emissions that have already taken place. It could be an insurance policy to help turn off the worst effects of global warming that are already baked into the climate—but it only works if we start such a long term research project now. 

As an insurance policy, though, it’d have one expensive premium. “If technology develops the way I hope it would, maybe this is a trillion-dollar project,” Szapudi says. “You would need at least an army of engineers, probably tens of millions of dollars just to explore the concept to enough detail.”

The post Would a massive shade between Earth and the sun help slow climate change? appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How do you keep a spacesuit clean? One answer is antimicrobial fabric. https://www.popsci.com/science/clean-spacesuit-antimicrobial-fabric/ Mon, 07 Aug 2023 10:00:00 +0000 https://www.popsci.com/?p=561323
Two astronauts walking in spacesuits in a desert
Analog astronauts Anika Mehlis, left, and Carmen Köhler, right, wear Mars-style spacesuits in Israel’s Negev Desert in 2021. Florian Voggeneder/OeWF

The quest to make space travel safer and less stinky.

The post How do you keep a spacesuit clean? One answer is antimicrobial fabric. appeared first on Popular Science.

]]>
Two astronauts walking in spacesuits in a desert
Analog astronauts Anika Mehlis, left, and Carmen Köhler, right, wear Mars-style spacesuits in Israel’s Negev Desert in 2021. Florian Voggeneder/OeWF

Sealed safely inside the International Space Station, astronauts dress for comfort and convenience. Their typical getups—short-sleeve collared shirts and long cargo pants—are regular Earth clothes, sourced from retailers that include Cabela’s and Lands’ End. But astronauts require exceptional attire when outside the ISS’s climate-controlled confines. NASA’s chunky spacesuits are, essentially, spacecraft condensed to human size. They protect wearers from an environment that swings from 250 degrees Fahrenheit in the sun to minus 250 degrees in the shade. 

Inside the suits, spacewalkers often work up a sweat, despite cooling tubes that wick away body heat. Extravehicular activities, or EVAs, may involve hours of strenuous labor. To stay warm and pressurized, astronauts also have to wear layers—including an inner form-fitting garment akin to long underwear—that they re-wear and even share. Complicating matters still: There are no laundry machines on the ISS. Because water is so valuable, washing a suit in orbit is not an option. Which is why NASA, the European Space Agency (ESA), and other organizations have asked textiles experts to investigate the problem of biocontamination in suits and develop fabrics that might solve it.

[Related: Future astronauts and space tourists could rock 3D printed ‘second skin’]

Heavy work in heavy gear leads to filth. After mock EVAs on Earth, technicians who help peel stand-in astronauts out of their suits have learned to turn their heads away on the first unzip to avoid a stinky blast, says Gernot Grömer, director of the Austrian Space Forum, a research group that conducts simulated astronautical missions. “Everybody sees those beautiful, shiny white spacesuits. But nobody knows what it smells like at the ISS.” (It’s not particularly pleasant.)

As these suits are used again and again, worries go beyond foul odors to hygiene and health hazards. The possibility for biocontamination, which includes human debris, bacteria, and other foreign substances, may get worse as spacefarers travel past low-Earth orbit for longer trips to the moon. 

“Washing spacesuit interiors on a consistent basis may well not be practical” in lunar habitats, ESA materials and processes engineer Malgorzata Holynska says in a statement. That space agency is investing in unusual ways to keep suits clean, such as antibiotic chemicals churned out by microbes.

Sanitary death metal

During NASA’s shuttle program, which ran from 1981 to 2011, spacesuits were designed to be used on two-week trips. But as astronauts began to live on the ISS for longer periods in the late 2000s, suit lifespans had to be extended up to six years. That meant microbes became a concern in ways they hadn’t before, says Evelyne Orndoff, a textiles engineer at the NASA Johnson Space Center. 

In NASA’s first comprehensive attempt to address spacesuit contamination more than a decade ago, Orndoff and her colleagues evaluated several off-the-shelf methods to kill germs on fabric, including Cupron and SilverClear. They cut treated textiles into two-inch squares, placed them in petri dishes, and grew several species of fungi and bacteria on the samples. 

Astronauts’ typical getups are regular Earth clothes, sourced from retailers that include Cabela’s and Lands’ End.

Some of the fabrics were infused with copper, which has impressive antimicrobial properties. When bacteria touch the element, it destabilizes their cell walls and membranes, making the microbes vulnerable to damage from the metal’s ions. The NASA scientists also examined textiles treated with silver—likewise toxic to germs on contact—and silicone.

After observing the gunk that grew on the fabrics for up to 14 days, they found that only one compound kept bacteria and fungi below targets set by NASA’s Constellation program—a now-defunct plan for lunar missions in which a spacesuit would have been reused up to 90 times in six months. The winner was a solution of silver molecules used for disinfecting hospital dressings and other fabrics. But the metal ion was too good at its job. “It kills everything,” Orndoff says. Total sterility can cause even more problems than grime, given than humans need a balanced ecosystem of millions of microorganisms to keep the skin and other organs healthy.

The experiments showed that concentrations of other antimicrobial compounds were generally too low to be effective. Some microbes would initially dip in numbers, but the resistant ones would repopulate the samples. The scientists worried that, at high-enough amounts, antimicrobial particles would irritate anyone wearing the fabric or pollute the space station. “After that we never really revisited antimicrobial treatments,” Orndoff explains, for the “simple reason” that it would present complications for the ISS life-support system that provides clean air and water. 

[Related: Onboard the ISS, nothing goes to waste—including sweat and pee]

While Orndoff’s team did not pursue their idea further, NASA’s commercial contractors have. In 2022, the agency hired US companies Axiom Space and Collins Aerospace to develop the next generation of suits for spacewalks. Earlier this year, Axiom unveiled a prototype suit that Artemis III astronauts might use to explore the lunar south pole. In a statement to Popular Science, the company says: “The Axiom Space AxEMU spacesuits will use textiles that have antimicrobial properties to reduce biocontamination.” The suits’ cooling system will also use biocide in its water loops “to prevent microbial buildup.” The company did not share the exact type of the agents, citing their proprietary nature.

Biological agents at work

Future astronauts might get a helping hygienic hand from the microscopic world. Partnering with the Vienna Textile Lab, and with funding from the ESA, Austrian Space Forum researchers have been studying how to turn a bacterial cell’s own defenses against it

Specifically, Grömer and his collaborators have been investigating biological compounds called secondary metabolites that microbes sweat out as a defense against other microorganisms. The researchers bonded several of these molecules to textiles and, over the past few years, subjected those samples to hundreds of tests, including zaps of radiation from a nuclear accelerator in Austria and baths in synthetic sweat. (The nasty liquid, which reminds Grömer of the acidic blood of the monsters in Alien, ages fabrics quickly.)

Fabric fibers under magnification. In greyscale.
A scanning electron microscope view of textiles tested by the Austrian Space Forum. OeWF

One metabolite in particular, named violacein, survived every hostile attack with its antimicrobial properties intact. The purple-black substance can be found in the bacteria that live on the skin of red-backed salamanders. It’s so good at killing microbes that some biologists suspect it protects the amphibians from deadly chytrid fungus infections. The Austrian Space Forum plans to field-test violacein in a simulated Mars mission, in which six astronaut roleplayers will spend four weeks in Armenia’s rugged mountains in 2024. 

Grömer envisions a future where this pigment’s potent defenses leave the planet, not only on treated spacesuits but also towels and other gear. While dirty linens might just sound like a chore, they can be a breeding ground for microbes, which thrive in low gravity and may mutate faster in space. “When you go to Mars, you’re at the edge of what’s technologically possible, so little nuisances can transform into real disaster-prone situations,” Grömer says. “And so if there’s a risk we can control, hell, let’s do it.”

The post How do you keep a spacesuit clean? One answer is antimicrobial fabric. appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
7 US parks where you can get stunning nightsky views https://www.popsci.com/science/where-to-stargaze-state-national-parks/ Fri, 04 Aug 2023 20:00:00 +0000 https://www.popsci.com/?p=561265
Stars form a half-circle above a mountain lake.
Our galaxy curves above the water trapped in a collapsed volcano at Crater Lake, Oregon. Depositphotos

These public parks and monuments offer exceptional scenes of the natural world—and of the splendor above.

The post 7 US parks where you can get stunning nightsky views appeared first on Popular Science.

]]>
Stars form a half-circle above a mountain lake.
Our galaxy curves above the water trapped in a collapsed volcano at Crater Lake, Oregon. Depositphotos

If you’re part of the 83 percent of Americans who live in an urban area, you probably can’t see many stars from your home. Cities are overwhelmed with lights, shining from lamps in skyscrapers, the streets, and the ones in bedroom windows. All of this light from the ground drowns out the stars in a phenomenon called light pollution.

Thankfully, a few organizations including the National Park Service (NPS) and the International Dark Sky Association (IDA) are fighting to preserve stargazing spots across the country and the world. Their goals are to ensure that people can access the majesty of the cosmos and safeguard eons-old cultures tied into the night sky. The IDA designates certain areas as “dark sky parks”—or even “dark sky sanctuaries” for the most remote, precious locations.

Of the US’s many dark sky sites, we’re highlighting seven of the most spectacular stargazing spots in the continental states. These might not be the country’s absolute darkest places, but they’re where you can see some incredible natural views and the beauty of the night sky at the same time.

Crater Lake National Park, Oregon

Crater Lake, Oregon’s only national park, is a showstopper, as seen in the top photo. The 6,000-plus foot elevation atop the volcanic caldera makes for pristine skywatching, since at this height there’s just less atmospheric stuff to get in the way between you and the stars. The website Space Tourism Guide recommends the Scenic Rim Drive, the path that circles the lake, as a popular spot. The starlight is supposedly so bright that flashlights are optional.

Rainbow Bridge National Monument, Utah

An arc of rock forms the Rainbow Bridge in Utah.
People have been photographing this geologic structure since 1909. Jonathan Parker/NPS

The Rainbow Bridge National Monument in Utah, which the IDA recently designated as a dark sky sanctuary, is a magnificent rock formation and one of the world’s largest natural bridges. It is a sacred site to the Hopi, Navajo, Zuni, and other Indigenous nations of the Southwest. Getting there isn’t easy: It is only accessible by boat or a lengthy 14-plus mile backpacking trip. If you are looking for a reverent experience of the night sky, this may be the place. As the National Park Service says on its website, “Please visit Rainbow Bridge in a spirit that honors and respects the cultures to whom it is sacred.”

Chaco Culture National Historical Park, New Mexico

Star trails above a stone structure, Casa Rinconada, Chaco Culture National Historical Park.
Stars make trails over Casa Rinconada, an Ancestral Puebloan archaeological site. D. Davis/NPS

Designated as a dark sky park in 2013, Chaco Culture NHP in New Mexico bears the marks of millenia of human astronomical activities. In this canyon, Ancestral Puebloan people built massive structures that reflected their observations of the night sky, such as the solar cycles. They also created astronomical rock art that still stands today. The park even offers night sky programs to carry on this long tradition, including public stargazing nights and a yearly astronomy festival.

[Related: The 10 most underrated national parks in the US]

Cherry Springs State Park, Pennsylvania

A tent is illuminated beneath the night sky.
The Pennsylvania Department of Conservation and Natural Resources declared Cherry Springs the state’s first dark sky park in 2000. Pa DCNR/Flickr

Cherry Springs Dark Sky Park in rural Pennsylvania is a contender for the absolute best stargazing in the United States—and unlike so many of the national parks, which are located in the southwest, this one’s an easy drive for urban New Englanders. Plus, it’s a personal favorite; my college’s astronomy group took yearly camping trips here, driving out of the glare of New York City and into this idyllic preserve. The park has a designated overnight astronomy observation field, complete with restrooms and telescope domes.

Big Bend National Park, Texas

Big Bend officially takes the title of having the darkest skies in a national park, at least in the lower 48 states. This Texas gem boasts over 150 miles of trails, drawing over half a million visitors per year. The National Park Service offers three campgrounds for stargazers, plus backcountry camping for the more adventurous wilderness enthusiasts. (Just don’t forget your permit!) It’s a great place to see the splendor of the Milky Way.

Stephen C. Foster State Park, Georgia

The terrain in Georgia’s Stephen C. Foster State Park is a bit different from the other deserts and forests on this list. It’s home to the Okefenokee Swamp, the largest wetland in the Southern US, which is bursting with biodiversity from alligators and black bears to storks and ibis. Plus, Foster State Park is the only gold-tier dark sky part in the Southeast, scoring the highest rating for a dark sky park from the IDA. It’s the best bet for folks living in Georgia, Florida, and other nearby states. You can even go for a late night paddle on the swamp and enjoy the stars from the water.

Katahdin Woods & Waters National Monument, Maine

The Milky Way above the Katahdin Woods and Waters National Monument.
The Milky Way sparkles above the Katahdin Loop Road Overlook. John Meader/NPS

Although it’s better known as the northern terminus of the Appalachian Trail, this forested region in Maine also hosts a stellar stargazing site. Katahdin Woods and Waters National Monument is a reserve that sprawls over 87,000 acres. The NPS claims this monument has “some of the darkest night skies east of the Mississippi River.” Just be sure to visit in a warmer season, since Katahdin freezes into a snowmobiler’s paradise in the winter.

The post 7 US parks where you can get stunning nightsky views appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The Ring Nebula is a glowing gas-filled donut in the latest JWST snap https://www.popsci.com/science/ring-nebula-jwst/ Fri, 04 Aug 2023 17:00:00 +0000 https://www.popsci.com/?p=561247
JWST/NIRcam composite image of the Ring Nebula. The image clearly shows the main ring, surrounded by a faint halo and with many delicate structures. The interior of the ring is filled with hot gas. The star which ejected all this material is visible at the very center.
JWST/NIRcam composite image of the Ring Nebula. The image clearly shows the main ring, surrounded by a faint halo and with many delicate structures. The interior of the ring is filled with hot gas. The star which ejected all this material is visible at the very center. NASA, ESA, CSA, JWST Ring Nebula Team photo. Image processing by Roger Wesson

The plenary nebula about 2,600 light-years away can be seen with backyard telescopes and boasts stunning colors.

The post The Ring Nebula is a glowing gas-filled donut in the latest JWST snap appeared first on Popular Science.

]]>
JWST/NIRcam composite image of the Ring Nebula. The image clearly shows the main ring, surrounded by a faint halo and with many delicate structures. The interior of the ring is filled with hot gas. The star which ejected all this material is visible at the very center.
JWST/NIRcam composite image of the Ring Nebula. The image clearly shows the main ring, surrounded by a faint halo and with many delicate structures. The interior of the ring is filled with hot gas. The star which ejected all this material is visible at the very center. NASA, ESA, CSA, JWST Ring Nebula Team photo. Image processing by Roger Wesson

The James Webb Space Telescope (JWST) has just headed into its second year in service, and recently recorded new images of the Ring Nebula named Messier 57. This nebula is about 2,600 light-years away from Earth, located in the Lyra constellation. The images were released by an international team of astronomers who are part of the JWST Ring Nebula Project.

[Related: James Webb Space Telescope reconstructed a ‘star party,’ and you’re invited.]

The Ring Nebula is a common target for space enthusiasts and is known for a donut-shaped ring of dust and gas that can even be viewed with backyard telescopes in the summer months. 

“I first saw the Ring Nebula as a kid through just a small telescope,” Western University astrophysicist and member of the JWST Ring Nebula Imaging Project Jan Cami said in a statement. “I would never have thought that one day, I would be part of the team that would use the most powerful space telescope ever built, to look at this object.”

Messier 57 is known as a planetary nebula. These objects are the colorful remnants of dying stars that have tossed a majority of their mass at the end of their stellar lives. Nebulae like the Ring Nebula come in a variety of shapes and patterns, from something that looks like a lobster, to expanding bubbles, to cotton candy-like clouds. The Ring Nebula’s vibrant colors are shown in a whole new light with JWST’s NIRcam.

“We are amazed by the details in the images, better than we have ever seen before. We always knew planetary nebulae were pretty. What we see now is spectacular,” University of Manchester astrophysicist Albert Zijlstra said in a statement. 

A close-up of the southern part of the outer halo, the part outside the main ring. The team finds several hundred linear features, pointing approximately at the central star. Their origin is not yet clear. How a single star can create such a complex nebula is not well understood. JWST will be used to study the structure, and the origin of the clumps and stripes. In the background, thousands of more distant, numerous faint galaxies can be seen, some with clear spiral structure. CREDIT: The University of Manchester.
A close-up of the southern part of the outer halo, the part outside the main ring. The team finds several hundred linear features, pointing approximately at the central star. Their origin is not yet clear. How a single star can create such a complex nebula is not well understood. JWST will be used to study the structure, and the origin of the clumps and stripes. In the background, thousands of more distant, numerous faint galaxies can be seen, some with clear spiral structure. CREDIT: The University of Manchester.

The patterns in the Ring Nebula are the consequence of a complicated array of different physical properties that astronomers are still figuring out. The light from its hot and central star is illuminating the layers in the pattern. Similar to fireworks, different chemical elements within the Ring Nebula emit specific light colors. The colors help scientists understand the chemical evolution of these objects in better detail. 

“These images hold more than just aesthetic appeal; they provide a wealth of scientific insights into the processes of stellar evolution. By studying the Ring Nebula with JWST, we hope to gain a deeper understanding of the life cycles of stars and the elements they release into the cosmos,” member and co-lead scientist of the JWST Ring Nebula Imaging Project Nick Cox said in a statement.

[Related: This highly detailed image of the Cat’s Eye Nebula might finally help us understand how it formed.]

Investigating Messier 57 in this detail can also help astronomers better understand the sun. When stars of similar sizes to our solar system’s central star run out of the fuel needed for nuclear fusion, they can’t support themselves against their own gravity. This ends the balancing forces that kept the star stable for millions to billions of years.

The star’s outer layers are blasted outward as the core collapses, since nuclear fusion is still occurring in these outside layers. The star will initially become a red giant, which is expected to happen to our sun in about five billion years. Eventually, the outer shells will cool and disperse in the variety of shapes nebulae are famous for. 

“We are witnessing the final chapters of a star’s life, a preview of the Sun’s distant future so to speak, and JWST’s observations have opened a new window into understanding these awe-inspiring cosmic events,” astronomer and co-lead scientist of the JWST Ring Nebula Imaging Project Mike Barlow from University College London said in a statement. “We can use the Ring Nebula as our laboratory to study how planetary nebulae form and evolve.”

The post The Ring Nebula is a glowing gas-filled donut in the latest JWST snap appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Two full moons, colorful meteors, and an asteroid will light up August’s sky https://www.popsci.com/science/stargazing-guide-august-2023/ Mon, 31 Jul 2023 14:00:00 +0000 https://www.popsci.com/?p=559506
A shower of Perseids meteors lights up the sky in 2009 in this NASA time-lapse image.
A shower of Perseids meteors lights up the sky in 2009 in this NASA time-lapse image. NASA/JPL

Blue Moons occur every two to three years. This month’s second full moon is the closest and brightest supermoon until 2025.

The post Two full moons, colorful meteors, and an asteroid will light up August’s sky appeared first on Popular Science.

]]>
A shower of Perseids meteors lights up the sky in 2009 in this NASA time-lapse image.
A shower of Perseids meteors lights up the sky in 2009 in this NASA time-lapse image. NASA/JPL
August 1Full Sturgeon Supermoon
August 12-13Perseids meteor shower peaks
August 24Moon occults Antares
August 26Asteroid 8 Flora at opposition
August 30Full Blue Supermoon

The last full month of the summer in the Northern Hemisphere is not only getting two full moons—this year, August brings two full super moons and a Blue Moon. Also expect the annual Perseids meteor shower as the midsummer night skies heat up. Here are some events to look out for. If you happen to get any stellar sky photos, tag us and include #PopSkyGazers.

[Related: The world needs dark skies more than ever. Here’s why.]

August 1: Full Sturgeon Supermoon

The first full moon of the month is the Surgeon Moon which is set to appear on the afternoon of August 1, reaching peak illumination at 2:32 p.m. EDT. As the sun sets that night, look to the southeast to see the moon rise. 

The Surgeon Moon is the second of four scheduled supermoons this year. A supermoon typically exceeds the disk size of an average-sized moon by up to 8 percent and is about 16 percent brighter than the average moon.  

The name Sturgeon Moon refers to the time of year when the giant sturgeon of the Great Lakes and Lake Champlain were most frequently caught. Additional names for August’s full moon include the Corn Moon or Skumoone Neepãʔuk in the Mahican Dialect of the Stockbridge-Munsee Band of Wisconsin, the Ricing Moon or Manoominike-giizis in Anishinaabemowin (Ojibwe), and the Hot Moon or Gëdë́’ökneh in Seneca. 

[Related: Lunar laws could protect the moon from humanity.]

August 12-13: Perseids meteor shower peaks

The annual Perseids meteor shower is predicted to peak around August 13. According to EarthSky, the moon will be about 10 percent illuminated during this year’s peak. Perseids rise to a peak gradually and then fall pretty quickly. They also tend to strengthen in numbers as the night turns into the early hours of the morning. Another bonus is that these meteors are often colorful.

This meteor shower is also often best seen before dawn. With a dark sky with no moon, up to 90 meteors per hour are possibly visible. This year, the light from the waning crescent moon will not interfere with Perseids.

August 24: Moon occults Antares

In this rare event, the moon will pass in front of the star Antares (Alpha Scorpii), creating a lunar occultation that is expected to be visible in Mexico, the contiguous United States, and Canada. For those in Eastern time, the occultation will begin with the disappearance of Antares (Alpha Scorpii) behind the moon at about 10:52 p.m.

This moon will be 25 days past the new moon and 57 percent illuminated. Antares (Alpha Scorpii) will disappear behind the darkest side of the moon and then reappear from behind the illuminated side.

August 26: Asteroid 8 Flora at opposition

Not to be upstaged by two moons and a beloved meteor shower, Asteroid 8 Flora will be visible in the constellation Aquarius and will be positioned well above the horizon for much of the night on August 26. 

[Related: Smashed asteroid surrounded by a ‘cloud’ of boulders.]

The 91-mile in diameter Asteroid 8 Flora will reach its highest point in the sky around midnight local time wherever you are on Earth. In Eastern time, it will be visible between 10:42 PM and 3:43 AM, according to In the Sky

Asteroid 8 Flora is the largest rock in the Flora family of asteroids and is named after the Roman goddess of flowers and gardens

August 30: Full Blue Supermoon

The month will end with a Blue Moon, a term usually used for a month that has two full moons like this August. According to NASA, they occur once every two to three years and are not usually blue in color. Moons with a blue hue are “the result of water droplets in the air, certain types of clouds, or particles thrown into the atmosphere by natural catastrophes, such as volcanic ash and smoke,”

The Blue Moon will reach peak illumination at 9:36 p.m. EDT on Wednesday, August 30. This full moon will also be the closest, biggest, and brightest full supermoon of the year. It will be 222,043 moon miles from Earth, which is fairly close by. A full supermoon won’t be any closer until November 2025.

The same skygazing rules that apply to pretty much all space-watching activities are key this month: Go to a dark spot away from the lights of a city or town and let the eyes adjust to the darkness for about a half an hour. 

The post Two full moons, colorful meteors, and an asteroid will light up August’s sky appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Space junk is a precious treasure trove to some archaeologists https://www.popsci.com/science/archaeology-artifacts-space/ Sun, 30 Jul 2023 17:00:00 +0000 https://www.popsci.com/?p=559970
NASA astronaut Buzz Aldrin walking across Tranquility Base with equipment after the Apollo 11 moon landing. Black and white photo.
Astronaut Buzz Aldrin looks back on Tranquility Base after the Apollo 11 moon landing. NASA

Artifacts scattered across the solar system can reflect its changes over time.

The post Space junk is a precious treasure trove to some archaeologists appeared first on Popular Science.

]]>
NASA astronaut Buzz Aldrin walking across Tranquility Base with equipment after the Apollo 11 moon landing. Black and white photo.
Astronaut Buzz Aldrin looks back on Tranquility Base after the Apollo 11 moon landing. NASA

Terms like “cultural heritage” and “archaeology” might conjure Indiana Jones-lie scenes of old and ancient things buried under the sands of time. But even now, each one of us is producing material that could interest future humans trying to record and study our own era.

For those who believe that space exploration and astronauts’ first departures from Earth are culturally significant, then there is a wealth of objects that spacefarers—crewed and uncrewed, past and present—have left in the realms beyond our atmosphere.

“This stuff is an extension of our species’ migration, beginning in Africa and extending to the solar system,” says Justin Holcomb, an archaeologist with the Kansas Geological Survey. “I argue that a piece of a lander is the exact same thing as a piece of a stone tool in Africa.”

This idea is the heart of what Holcomb and his colleagues call “planetary geoarchaeology.” In a paper published in the journal Geoarchaeology on July 21, these “space archaeologists” detail how they want to study the interactions between the items we’ve left around the solar system and the  hostile environments they now occupy. This research, the authors believe, will only become more important as human activity on the moon is set to blossom in the decades to come.

The idea of documenting and preserving what we leave behind in space isn’t a completely new concept. In the early 2000s, New Mexico State University anthropologist Beth O’Leary (who co-authored the paper with Holcomb) cataloged objects scattered around Tranquility Base, Apollo 11’s landing site on the moon. O’Leary later helped get some of those artifacts registered in California and New Mexico as culturally significant properties.

“I would argue that Tranquility Base could easily be considered the most important archaeological site that exists,” says Justin St. P. Walsh, an archaeologist at Chapman University in California who was not involved with the new paper. The base’s lunar soil can’t be declared a cultural heritage site because that would violate the 1967 Outer Space Treaty, which prevents any country from claiming the soil of the moon or another world. But scholars can still list objects found there as heritage.

Naturally, O’Leary’s catalog includes the remnants of Apollo 11’s lunar module and its famed US flag, along with empty food bags, utensils, hygiene equipment, and wires. What is space junk to some is precious culture to space archaeologists. Even long-festering astronaut poop has its value—“that’s human DNA,” Holcomb says.

Archaeological sites on Earth are deeply impacted by the processes of the world around them, both natural and artificial. Likewise, Tranquility Base doesn’t just sit in tranquility. The moon’s surface is constantly bombarded by cosmic rays and micrometeoroids; even faraway human landings can kick up regolith showers.

[Related: Want to learn something about space? Crash into it.]

Holcomb and his colleagues want to study the various states objects are left in to learn how sites on the moon and other worlds change over time—and how to preserve them for our distant descendants. “We think in deep time scales,” says Holcomb. “We’re not thinking in just the next five years. We’re thinking in a thousand years.”

That sort of research, the authors say, is still quite new. Holcomb, for instance, wants to study what happens to NASA’s Spirit rover on Mars as a sand dune washes over it. Other planetary geoarchaeology projects might focus on what the moon’s environment has wrought upon artificial materials we’ve left on the lunar surface.

“We can find out more about what happened to [castoffs] in the length of time they’ve been there,” says Alice Gorman, an archaeologist at Flinders University in Adelaide, Australia, who also wasn’t a co-author. 

NASA Opportunity rover false-color image of Mars Endurance crater
The Opportunity rover now rests in the same Martian sand dunes that it once photographed. NASA officially lost contact with the long-lived robot in 2019. NASA/JPL/Cornell

On Earth, Gorman and colleagues plan to replicate Apollo astronauts’ boot prints in simulated lunar soil and subject them to forces like rocket exhaust. Gorman believes even engineers with no interest in archaeology may want to take interest in work like this. “These same processes will be happening to any new habitats built on the surface,” she says. “With the archaeological sites, we get a bit of a longer-term perspective.”

The moon is the immediate focus for both this paper’s authors and other space archaeologists, and it’s easy to see why. After several decades of occasional uncrewed missions and flybys, NASA’s Artemis program promises to spearhead a mass return to the satellite’s surface. The Artemis program is slated to land on the moon’s south pole, far away from existing Apollo landing sites. But a flurry of private companies have emerged with the goal of not just touching the moon as Apollo did, but extracting its resources.

Space archaeologists fear that all this future activity will place past sites at risk. “We barely know how to operate on the moon,” says Walsh.

There are some indications that the broader space community is thinking about the problem. The Artemis Accords (a US-initiated document that aims to outline the ethical guidelines for the Artemis era) and the Vancouver Recommendations on Space Mining (a 2020 white paper by primarily Canadian academics that proposes a framework for sustainable space mining) express a desire to protect space heritage sites.

Of course, these are only words on nonbinding paper, and space archaeologists do not think they go far enough. Holcomb and colleagues want experts in their field to be involved in planning—for instance, steering scientific and commercial space missions away from spots where they might interfere with existing cultural heritage. There is earthbound precedent for such a role: In many countries, archaeologists already assist infrastructure projects.

“We know we’re going to go there someday, so let’s make sure that we have the protections in place before we go and ruin things,” says Walsh.

[Related: What an extraterrestrial archaeological dig could tell us about space culture]

Moves like this can’t protect lunar heritage from every possible harm: A future satellite could very well crash-land on Tranquility Base and wreck the last remnants of Apollo 11 there. But space archaeologists say that it is valuable to take any steps we can.

“I think the paper is a really fantastic demonstration of how any mission to the moon has to be about more than just engineering, and it has to be interdisciplinary,” Gorman notes. “It’s very timely that it’s been published now, while there’s still time to incorporate its recommendations into actual lunar missions.”

The post Space junk is a precious treasure trove to some archaeologists appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Dust clumps around a young star could one day form planets https://www.popsci.com/science/young-star-planet-formation/ Tue, 25 Jul 2023 14:00:00 +0000 https://www.popsci.com/?p=558964
A young star named V960 Mon is at the center, with dusty material with the potential to form planets surrounding it. V960 Mon is located over 5000 light-years away from Earth in the constellation Monoceros.
A young star named V960 Mon is at the center, with dusty material with the potential to form planets surrounding it. V960 Mon is located over 5000 light-years away from Earth in the constellation Monoceros. ESO/ALMA (ESO/NAOJ/NRAO)/Weber et al.

The 'captivating' discovery shows the potential birth of planets 5,000 light-years from Earth.

The post Dust clumps around a young star could one day form planets appeared first on Popular Science.

]]>
A young star named V960 Mon is at the center, with dusty material with the potential to form planets surrounding it. V960 Mon is located over 5000 light-years away from Earth in the constellation Monoceros.
A young star named V960 Mon is at the center, with dusty material with the potential to form planets surrounding it. V960 Mon is located over 5000 light-years away from Earth in the constellation Monoceros. ESO/ALMA (ESO/NAOJ/NRAO)/Weber et al.

A stellar new image from the European Southern Observatory (ESO) is offering up some clues about how planets as enormous as the gas giant Jupiter could form. Researchers used the ESO’s Very Large Telescope (VLT) and an international astronomy facility called Atacama Large Millimeter/submillimeter Array (ALMA) to detect large dusty clumps located close to a young star. The clumps may collapse and one day create planets. The findings were published July 25 in the The Astrophysical Journal Letters.

[Related: Your guide to the types of stars, from their dusty births to violent deaths.]

“This discovery is truly captivating as it marks the very first detection of clumps around a young star that have the potential to give rise to giant planets,” study co-author and researcher at the Universidad Diego Portales in Chile Alice Zurlo said in a statement

This new analysis is based on a picture obtained with the VLT’s Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument that shows more detail of the material around the star V960 Mon. This is a young star that is located over 5,000 light-years away from Earth in the constellation Monoceros

V960 Mon attracted astronomers’ attention in 2014 when it suddenly increased its brightness by more than 20 times. SPHERE took observations shortly after the onset of this burst of brightness, which revealed that the material orbiting V960 Mon is coming together in a series of spiral arms extending over distances bigger than the entire solar system.

Astronomers were motivated by this finding to go back and look at older observations of the same system that ALMA made. Observations made by the VLT probe the surface of the dusty material around the star, while ALMA can look deeper into deeper into its structure. 

“With ALMA, it became apparent that the spiral arms are undergoing fragmentation, resulting in the formation of clumps with masses akin to those of planets,” said Zurlo.

Giant planets either form when dust grains come together in a core accretion, or when large fragments of material contract and collapse around a star by gravitational instability. Astronomers have found evidence of core accretion, but support for gravitational instability has been more difficult to capture. 

[Related: Wiggly space waves show neutron stars on the edge of becoming black holes.]

“No one had ever seen a real observation of gravitational instability happening at planetary scales—until now,” study co-author and University of Santiago researcher Philipp Weber said in a statement. 

The group on this study has been searching for signs of how planets form for over a decade. Future studies will hopefully unveil more details of V960 Mon and the “captivating planetary system in the making.” According to the team, the future Extremely Large Telescope (ELT) will play a key role. This new telescope is currently under construction in Chile’s Atacama Desert, and will be able to observe the V960 Mon system in even better detail. 

“The ELT will enable the exploration of the chemical complexity surrounding these clumps, helping us find out more about the composition of the material from which potential planets are forming,” said Weber.

The post Dust clumps around a young star could one day form planets appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
New image reveals a Jupiter-like world that may share its orbit with a ‘twin’ https://www.popsci.com/science/exoplanet-twin-exotrojan-orbit/ Wed, 19 Jul 2023 16:00:00 +0000 https://www.popsci.com/?p=557713
This image taken with the Atacama Large Millimeter/submillimeter Array (ALMA) shows the young planetary system PDS 70, located nearly 400 light-years away from Earth. The system features a star at its center, around which the planet PDS 70 b is orbiting. On the same orbit as PDS 70b, astronomers have detected a cloud of debris that could be the building blocks of a new planet or the remnants of one already formed. The ring-like structure that dominates the image is a circumstellar disc of material, out of which planets are forming. There is in fact another planet in this system: PDS 70c, seen to the right of the inner rim of the disc.
This image taken with the Atacama Large Millimeter/submillimeter Array (ALMA) shows the young planetary system PDS 70, located nearly 400 light-years away from Earth. The system features a star at its center, around which the planet PDS 70 b is orbiting. On the same orbit as PDS 70b, astronomers have detected a cloud of debris that could be the building blocks of a new planet or the remnants of one already formed. ALMA (ESO/NAOJ/NRAO) /Balsalobre-Ruza et al.

Exoplanet system PDS 70 could be home to the first-found 'exotrojan.'

The post New image reveals a Jupiter-like world that may share its orbit with a ‘twin’ appeared first on Popular Science.

]]>
This image taken with the Atacama Large Millimeter/submillimeter Array (ALMA) shows the young planetary system PDS 70, located nearly 400 light-years away from Earth. The system features a star at its center, around which the planet PDS 70 b is orbiting. On the same orbit as PDS 70b, astronomers have detected a cloud of debris that could be the building blocks of a new planet or the remnants of one already formed. The ring-like structure that dominates the image is a circumstellar disc of material, out of which planets are forming. There is in fact another planet in this system: PDS 70c, seen to the right of the inner rim of the disc.
This image taken with the Atacama Large Millimeter/submillimeter Array (ALMA) shows the young planetary system PDS 70, located nearly 400 light-years away from Earth. The system features a star at its center, around which the planet PDS 70 b is orbiting. On the same orbit as PDS 70b, astronomers have detected a cloud of debris that could be the building blocks of a new planet or the remnants of one already formed. ALMA (ESO/NAOJ/NRAO) /Balsalobre-Ruza et al.

Researchers using Chile’s Atacama Large Millimeter/submillimeter Array of telescopes (ALMA) may have found a rare “sibling” sharing the same orbit of a Jupiter-like planet about 370 light-years away from Earth in the Centaurus constellation. The newly discovered twin shares the same orbit as PDS 70b around a young star in the  PDS 70 system

[Related: How engineers saved NASA’s new asteroid probe when it malfunctioned in space.]

While two Jupiter-like planets, PDS 70b and PDS 70c, are already known to orbit this star, the team detected a cloud of debris within PDS 70b’s orbital path following this planet’s orbit. The debris could be the beginnings of a new planet, or even the remnants of one that is already formed. The findings were published on July 19 in the journal Astronomy and Astrophysics. If confirmed, this discovery would present the strongest known evidence that two exoplanets can share one orbit. 

“Two decades ago it was predicted in theory that pairs of planets of similar mass may share the same orbit around their star, the so-called Trojan or co-orbital planets. For the first time, we have found evidence in favor of that idea,” Olga Balsalobre-Ruza study co-author and a student at Centre for Astrobiology in Madrid, Spain said in a statement.

Rocky bodies that are in the same orbit as a planet called Trojans are common throughout our solar system. Jupiter’s more than 12,000 known Trojan asteroids that are in the same orbit as our sun are the most common example. The asteroids in Jupiter’s orbit were named after heroes of the Trojan War when they were first discovered, which is why the catch-all name Trojans is used to describe these celestial objects. 

Astronomers have speculated that systems like this could exist around a star other than our sun—appropriately called exotrojans.

“Exotrojans have so far been like unicorns: they are allowed to exist by theory but no one has ever detected them,” study co-author and researcher at the Centre for Astrobiology Jorge Lillo-Box said in a statement.

In this new study, an international team of scientists analyzed archival ALMA observations of the PDS 70 system system, and spotted the cloud of debris at the location in PDS 70b’s orbit where Trojans are expected to exist. Trojans typically occupy two extended regions in a planet’s orbit where the combined gravitational pull of the star and the planet can trap material called Lagrangian zones/points. By studying these two regions of PDS 70b’s orbit, the team noticed a faint signal coming from one of them, indicating that a cloud of debris that has a mass roughly two times that of our moon might be present. 

[Related: The James Webb Space Telescope just identified its first exoplanet.]

This cloud of debris could point to an existing Trojan world in this system, or a planet in the process of forming, according to the team.

 “Who could imagine two worlds that share the duration of the year and the habitability conditions? Our work is the first evidence that this kind of world could exist,” said  Balsalobre-Ruza. “We can imagine that a planet can share its orbit with thousands of asteroids as in the case of Jupiter, but it is mind blowing to me that planets could share the same orbit.”

Patience will be key to fully confirm this detection. The team will have to wait until after 2026, when they plan to use ALMA to see if both PDS 70b and its sibling debris cloud move significantly along their orbit together around the star. 

“The future of this topic is very exciting and we look forward to the extended ALMA capabilities, planned for 2030, which will dramatically improve the array’s ability to characterize Trojans in many other stars,” study co-author and European Southern Observatory Head of the Office for Science Itziar De Gregorio-Monsalvo concluded in a statement.

The post New image reveals a Jupiter-like world that may share its orbit with a ‘twin’ appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A Jupiter-sized dwarf star burns half as hot as a campfire https://www.popsci.com/science/ultracool-brown-dwarf-star-radio-emissions/ Mon, 17 Jul 2023 15:00:00 +0000 https://www.popsci.com/?p=557106
In this artist’s rendering from 2020, the small white orb represents the white dwarf (a remnant of a long-dead sun-like star), while the purple foreground object is the newly discovered brown dwarf companion, confirmed by NASA’s Spitzer Space Telescope. This faint brown dwarf was previously overlooked until being spotted by citizen scientists working with Backyard Worlds: Planet 9, a NASA-funded citizen science project.
In this artist’s rendering from 2020, the small white orb represents the white dwarf (a remnant of a long-dead sun-like star), while the purple foreground object is the newly discovered brown dwarf companion, confirmed by NASA’s Spitzer Space Telescope. This faint brown dwarf was previously overlooked until being spotted by citizen scientists working with Backyard Worlds: Planet 9, a NASA-funded citizen science project. NOIRLab/NSF/AURA/P. Marenfeld/Acknowledgement: William Pendrill

The 'ultracool' star is possibly around 44 times as dense as our solar system's largest member.

The post A Jupiter-sized dwarf star burns half as hot as a campfire appeared first on Popular Science.

]]>
In this artist’s rendering from 2020, the small white orb represents the white dwarf (a remnant of a long-dead sun-like star), while the purple foreground object is the newly discovered brown dwarf companion, confirmed by NASA’s Spitzer Space Telescope. This faint brown dwarf was previously overlooked until being spotted by citizen scientists working with Backyard Worlds: Planet 9, a NASA-funded citizen science project.
In this artist’s rendering from 2020, the small white orb represents the white dwarf (a remnant of a long-dead sun-like star), while the purple foreground object is the newly discovered brown dwarf companion, confirmed by NASA’s Spitzer Space Telescope. This faint brown dwarf was previously overlooked until being spotted by citizen scientists working with Backyard Worlds: Planet 9, a NASA-funded citizen science project. NOIRLab/NSF/AURA/P. Marenfeld/Acknowledgement: William Pendrill

A group of astronomers found that a small, faint “brown dwarf” star is the coldest star yet recorded that still produces emission at radio wavelength. The findings were published last week in The Astrophysical Journal Letters and describe a star that is only 797 degrees Fahrenheit, compared to campfires on Earth which can hit 1500 to 1650 degrees.

[Related: Your guide to the types of stars, from their dusty births to violent deaths.]

The “ultracool brown dwarf” named T8 Dwarf WISE J062309.94−045624.6 is not the coldest star ever found, but it is the coolest to be analyzed using radio astronomy, according to the team on this study.

“It’s very rare to find ultracool brown dwarf stars like this producing radio emission. That’s because their dynamics do not usually produce the magnetic fields that generate radio emissions detectable from Earth,” co-author and University of Sydney PhD student Kovi Rose said in a statement. “Finding this brown dwarf producing radio waves at such a low temperature is a neat discovery. Deepening our knowledge of ultracool brown dwarfs like this one will help us understand the evolution of stars, including how they generate magnetic fields.”

Astronomers are still questioning the internal dynamics of brown dwarf stars  that produce radio waves. They do have a good idea of how larger stars like the sun generate radio emissions, but it is not fully known why less than 10 percent of brown dwarf stars produce these emissions. 

It’s possible that the rapid rotation of ultracool dwarfs may play a part in generating their strong magnetic fields. Electrical current flows may be created when the magnetic field rotates at a different speed than the star’s ionized atmosphere. For this star, the team believes that radio waves could be being produced by the inflow of electrons to the star’s magnetic polar region, which when added together with the star’s rotation, is producing regularly repeating radio bursts.

Solar System photo
The relative size of a typical brown dwarf star. In the instance of the star in this study, the brown dwarf is smaller than Jupiter (between 0.65 and 0.95 its radius) but is more massive, somewhere between four and 44 times the mass of Jupiter. CREDIT: NASA/JPL.

This star is considered a brown dwarf because it does not give off a ton of light or energy, and is not big enough to ignite nuclear fusion the way our sun and other stars do.

“These stars are a kind of missing link between the smallest stars that burn hydrogen in nuclear reactions and the largest gas giant planets, like Jupiter,” said Rose. 

[Related: These 5 mysterious space objects straddle the line between planets and stars.]

T8 Dwarf WISE J062309.94−045624.6 was first discovered in 2011 and is about 37 light years from Earth. Brown dwarfs are considered “failed stars” because despite typically being larger than gas giants, they are still smaller than other stars. This particular star’s width is believed to be between 65 percent and 95 percent of the size of our solar system’s largest planet, Jupiter. However, this brown dwarf is somewhere between four and 44 times more dense than Jupiter.

New data from the CSIRO ASKAP telescope in Western Australia followed up with observations from the Australia Telescope Compact Array near Narrabri in New South Wales. The MeerKAT telescope in South Africa also helped make this discovery possible. 

“We’ve just started full operations with ASKAP and we’re already finding a lot of interesting and unusual astronomical objects, like this,” co-author and University of Sydney astrophysicist Tara Murphy said in a statement.  “As we open this window on the radio sky, we will improve our understanding of the stars around us, and the potential habitability of exoplanet systems they host.”

The post A Jupiter-sized dwarf star burns half as hot as a campfire appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Check out NASA’s fun new electric vans https://www.popsci.com/technology/nasa-canoo-vehicles-artemis/ Thu, 13 Jul 2023 18:00:00 +0000 https://www.popsci.com/?p=556708
three electric vehicles for nasa parked in a row
The vehicles won't travel too far, but they'll look good doing it. Isaac Watson/NASA

The cute vehicles come from a company called Canoo and are intended to be used by the Artemis II crew before they leave Earth.

The post Check out NASA’s fun new electric vans appeared first on Popular Science.

]]>
three electric vehicles for nasa parked in a row
The vehicles won't travel too far, but they'll look good doing it. Isaac Watson/NASA

Yesterday, electric vehicle maker Canoo announced in a press release that it had delivered three new Crew Transportation Vehicles (CTVs) to NASA. The cute-looking and totally electric vehicles will transport astronauts to the launch pad at Kennedy Space Center in Florida for the Artemis lunar missions.

Designed as a big update to shuttle-era Astrovan, the CTVs were made specifically for the requirements of the Artemis missions, NASA says. Each vehicle can accommodate up to four astronauts in their brand-new Orion spacesuits, plus a spacesuit technician, on the drive to Launch Pad 39B. There’s also “room for specialized equipment,” NASA says. 

“The collaboration between Canoo and our NASA representatives focused on the crews’ safety and comfort on the way to the pad ahead of their journey to the Moon,” Charlie Blackwell-Thompson, the Artemis launch director, said in a press release. 

Although safety and comfort were obviously important, NASA also put a lot of thought into the visual design of the CTVs, which is meant to pay “homage to the legacy of the agency’s human spaceflight and space exploration efforts.” Apparently, everything “from the interior and exterior markings to the color of the vehicles to the wheel wells” was carefully chosen. 

[Related: With Artemis 1 launched, NASA is officially on its way back to the moon]

“I have no doubt everyone who sees these new vehicles will feel the same sense of pride I have for this next endeavor of crewed Artemis missions,” Blackwell-Thompson, who was involved in the design process, added. Canoo intends to reveal the interior and exterior in more detail later this year.

Canoo is one of the more interesting electric vehicle manufacturers in the US. It has developed a “skateboard” modular EV platform (other EV makers use the skateboard approach too). Basically, it consists of four wheels, a battery, a motor or two, and a drive-by-wire steering wheel on a 9.35-foot wheelbase, allowing the company to develop different vehicles from the same chassis. So far, it has a van-style Lifestyle Vehicle (which the NASA CTVs are based on), a delivery-van, and a pickup truck, which the US Army is currently testing

Of course, developing a brand-new platform like this is never a smooth process. Canoo’s press release boasts of an “on time” delivery, hinting at some of its past troubles. As recently as May last year, the company only had enough cash on hand to last another three months. It seems a spate of binding orders for more than 15,000 vehicles from companies like Walmart and two fleet leasing companies, Zeeba and Kingbee, were enough to keep it in the clear. It’s a big reminder that the EV space is still very new, and some of the companies making headlines right now might not be the ones that we are talking about in 10 year’s time.

Although they were delivered this week, the CTVs won’t have their big day until at least November of 2024. That’s the current planned launch date for NASA’s first crewed mission to the moon in 53 years, Artemis II. The little CTVs will drive the four astronauts the first nine miles of their trip into space, though the hulking Space Launch System (SLS) and Orion spacecraft will take them for the rest of their 10-day mission. Until then, the three EVs will be used for astronaut training exercises. 

The post Check out NASA’s fun new electric vans appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
NASA rover finds evidence of carbon-based chemistry in Martian crater https://www.popsci.com/science/perseverance-rover-organic-matter-mars/ Thu, 13 Jul 2023 15:00:00 +0000 https://www.popsci.com/?p=556599
This image of NASA’s Perseverance Mars rover at the rim of Belva Crater was taken by the agency’s Ingenuity Mars Helicopter during the rotorcraft’s 51st flight on April 22, 2023, the 772nd Martian day, or sol, of the rover’s mission. At the time the image was taken, the helicopter was at an altitude of about 40 feet.
This image of NASA’s Perseverance Mars rover at the rim of Belva Crater was taken by the agency’s Ingenuity Mars Helicopter during the rotorcraft’s 51st flight on April 22, 2023, the 772nd Martian day, or sol, of the rover’s mission. At the time the image was taken, the helicopter was at an altitude of about 40 feet. NASA/JPL-Caltech

The Red Planet may be home to a much more complex geochemical cycle than originally suspected.

The post NASA rover finds evidence of carbon-based chemistry in Martian crater appeared first on Popular Science.

]]>
This image of NASA’s Perseverance Mars rover at the rim of Belva Crater was taken by the agency’s Ingenuity Mars Helicopter during the rotorcraft’s 51st flight on April 22, 2023, the 772nd Martian day, or sol, of the rover’s mission. At the time the image was taken, the helicopter was at an altitude of about 40 feet.
This image of NASA’s Perseverance Mars rover at the rim of Belva Crater was taken by the agency’s Ingenuity Mars Helicopter during the rotorcraft’s 51st flight on April 22, 2023, the 772nd Martian day, or sol, of the rover’s mission. At the time the image was taken, the helicopter was at an altitude of about 40 feet. NASA/JPL-Caltech

NASA’s Perseverance rover has detected evidence for an array of different organic molecules in Mars’ Jezero Crater. The findings are detailed in a paper published July 12 in the journal Nature. This latest discovery suggests that a more complex geochemical cycle may have existed on the Red Planet. It’s not direct evidence of living things on that world, but it shows that the planet had mineral processes like those on Earth that support life.

[Related: Mars’s barren Jezero crater had a wet and dramatic past.]

The Perseverance rover landed at Jezero Crater in February 2021, where the remains of an ancient Martian lake basin holds clays that may preserve organic materials—and could provide clues regarding the planet’s past habitability. The rover has already found evidence of past chemical reactions in the crater that could hold more clues to former Martian life. 

Organic compounds are the building blocks of life. They are molecules composed of the element carbon and often have other elements such as nitrogen, oxygen, hydrogen, phosphorus, and sulfur. Several types of organic molecules of Martian origin have been detected in meteorites that blasted away from Mars and landed on Earth, and in Mars’ Gale Crater. 

The researchers believe that explanations for the origins of organic matter on the Red Planet include water-rock interactions or deposits on the surface of the planet through space dusts or meteors. The team notes that the “key building blocks for life may have been present over an extended period of time,” making this area of Jezero crater “potentially habitable.” The study authors also acknowledge that clusters of other compounds could be responsible for some of the rover’s detections, though an inorganic explanation for these signals is less likely than carbon-based chemistry.

“As planetary scientists and astrobiologists, we are very careful with laying out claims—claiming that life is the source of organics or possible biosignatures is a last-resort hypothesis, meaning we would need to rule out any non-biological source of origin,” study co-author and CalTech planetary scientist Sunanda Sharma told Space.com

For this study, the team analyzed data from the Perseverance Rover’s Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument. It is a crucial tool on Mars that can conduct fine-scale mapping and analysis of organic molecules.

The team honed in on SHERLOC data on two rock formations on Jezero Crater’s floor–Máaz and Séítah. When SHERLOC’s ultraviolet light shines on organic compounds, they can glow. Measuring the wavelengths in the glow from a molecule can help identify what molecule it is.

Signals of organic molecules were detected on all 10 of the targets that SHERLOC observed, which covers a span of time from at least 2.3 billion to 2.6 billion years ago. Even if this material is not really biological in origin, it may still give scientists important clues about whether or not Mars was formerly able to host life.  

[Related: Mars rover snaps pics of dusty craters that may have once roared with water.]

“This finding may indicate that Mars once had diverse surface processes and relatively complex organic geochemistry, which on Earth, such mineralogy is associated with habitable environments capable of preserving signs of ancient life,” study co-author and Planetary Science Institute researcher Ashley E. Murphy said in a statement. 

Murphy also added that studying the spatial relationships between minerals and organics is critical when examining organic origins and potential biosignatures. Using Earth’s geologic history as a reference point will help determine what, if anything, could have lived on Mars in the past.

“Mars may have had a similar early geologic history to Earth so we use our knowledge of life as we know it on Earth for where to look for potential evidence of past life on Mars,” said Murphy. “Mapping organics allows for a better understanding of if the Martian carbon cycle is similar to or different from Earth, and the potential of Mars to host life.”

The post NASA rover finds evidence of carbon-based chemistry in Martian crater appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Four-legged dog robots could one day explore the moon https://www.popsci.com/technology/robot-dog-team-moon/ Wed, 12 Jul 2023 18:00:00 +0000 https://www.popsci.com/?p=556224
Three quadruped robots standing on rocky terrain
Teams of quadruped robots could one day prove vital to lunar mining. ETH ZURICH / TAKAHIRO MIKI

Built-in redundancies may enable teams of quadruped dog bots to explore the lunar surface.

The post Four-legged dog robots could one day explore the moon appeared first on Popular Science.

]]>
Three quadruped robots standing on rocky terrain
Teams of quadruped robots could one day prove vital to lunar mining. ETH ZURICH / TAKAHIRO MIKI

Humans are going to need a lot of supplies if they hope to establish a permanent lunar base on the moon—an incredibly expensive logistical hurdle to clear. While return missions can hypothetically restock a great deal of the astronauts’ needs, it would be a lot cheaper and easier to harvest at least some of the necessary materials right there for base construction and repair projects. Of course, doing so will require serious teamwork to pull off—a team that could one day include packs of four-legged robots.

According to a study published on Wednesday in Science Robotics, researchers at Switzerland’s ETH Zurich university recently oversaw a series of outdoor excursions for a trio of modified quadruped ANYmal robots. Researchers tested their team on a variety of terrains across Switzerland and at the European Space Resources Innovation Centre (ESRIC) in Luxembourg.

[Related: NASA could build a future lunar base from 3D-printed moon-dust bricks.]

Engineers at ETH Zurich worked alongside the Universities of Basel, Bern, and Zurich to program each ANYmal with specific lunar tasks: One was taught to utilize a microscopy camera alongside a spectrometer to identify varieties of rock, while another focused on using cameras and a laser scanner to map and classify its surrounding landscape. Finally, a third robot could both identify rocks and map its surroundings—albeit less precisely for each task than either of its companions.

“Using multiple robots has two advantages,” doctoral student and researcher Philip Arm explains. “The individual robots can take on specialized tasks and perform them simultaneously. Moreover, thanks to its redundancy, a robot team is able to compensate for a teammate’s failure.” Because of their overlaps, a mission could still be completed even if one of the three robots breaks down during its duties.

The team’s redundancy-focused explorers even won an ESRIC and ESA Space Resources Challenge, which tasked competitors with locating and identifying minerals placed throughout a test area modeled after the lunar surface. In taking first place, the jury provided another year of funding to expand both their number and variety of robots. Researchers say future iterations of the lunar exploration team could include both wheeled and flying units. Although all of the robots’ tasks and maneuvers are currently directly controlled by human inputs, the researchers also hope to eventually upgrade their explorers to be semi-autonomous.

The post Four-legged dog robots could one day explore the moon appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Updated forecast shows northern lights won’t be visible in most US states this week https://www.popsci.com/science/northern-lights-solar-storms-south/ Mon, 10 Jul 2023 13:00:00 +0000 https://www.popsci.com/?p=554586
A green and blue aurora borealis glows above a body of water and mountains.
The northern lights occur when the sun’s continuous solar wind and solar storms interact with Earth’s magnetic field. Sami Takarautio/Unsplash

NOAA’s Space Weather Prediction Center updated their aurora forecast, dimming chances for some states to see the northern lights this week.

The post Updated forecast shows northern lights won’t be visible in most US states this week appeared first on Popular Science.

]]>
A green and blue aurora borealis glows above a body of water and mountains.
The northern lights occur when the sun’s continuous solar wind and solar storms interact with Earth’s magnetic field. Sami Takarautio/Unsplash

Update (July 11, 2023, 5:22 pm): An early forecast released by the University of Alaska Fairbanks Geophysical Institute initially indicated that given the right weather, the northern lights may be visible on Thursday July 13 in at least 17 states. The forecast was updated on Monday evening to show that aurora was unlikely to be seen in those initially forecasted regions, but may be visible in regions where they are more commonly seen, namely parts of Alaska and several Canadian provinces. 

“The accuracy of the models to predict the auroral activity depend strongly on the accuracy and number of input measurements of the activity on the sun and the intervening space where the solar wind is flowing and evolving after it leaves the sun. There are only a few satellites and instruments dedicated to collecting these data, so the models typically have a wide range of predictions since the observations are relatively sparse. While large solar storms can be seen leaving the vicinity of the sun, and their direction and speed can be estimated, once they leave the local solar vicinity they cannot be tracked. During this time the solar storms can be slightly diverted or even reduced, and the final impact on Earth’s magnetic field may be different than predicted,” research associate professor Don Hampton, a space physicist at the University of Alaska Fairbanks Geophysical Institute, told PopSci in an email.

This prediction was made several days ahead of time and is based on models that are run by NOAA’s Space Weather Prediction Center. The Geophysical Institute doesn’t make long-term auroral predictions and this more short-term forecast is from the SWPC. (An article on EarthSky has contested the University of Alaska Fairbanks Geophysical Institute’s aurora forecast.)

Only a few satellites and instruments are dedicated to collecting this data, so models generally have a wide range of predictions due to more sparse observations. It’s possible large solar storms can be seen leaving the sun and their speed and direction can be estimated. However, once they leave the vicinity of the sun they can’t be tracked. During this time, solar storms can be slightly moved off course or even reduced which can change the final impact that the solar storm has on Earth’s magnetic field.

Additionally, Lieutenant Bryan R. Brasher from the SWPC said that this initial prediction for moderate geomagnetic storming on Thursday was influenced by the recurrence of a particular coronal hole in the sun. This spot caused higher geomagnetic activity.

“Some features –such as corona holes–can persist for many weeks and so a good starting point for predicting long range behavior is how these features affected the space environment the last time they faced Earth,” Brasher told PopSci in an email. “This was reflected in our weekly 27-day outlook product. As this particular coronal hole rotated back into view however–meaning we could see and analyze it–it was clear that it had diminished and we adjusted our forecast accordingly.”

Brasher added that while the immediate forecast doesn’t necessarily call for aurora activity this week, the Earth is approaching a solar maximum phase in the sun’s roughly 11-year cycle. This period is characterized by heightened solar activity, similar to the storms seen in March and April.

An earlier version of this story follows.

Residents of 17 states could catch a glimpse of the elusive aurora borealis, also known as the northern lights, this Thursday. The predicted rainbow of colors that light up the night sky when solar wind hits the atmosphere is part of a solar cycle that is expected to peak in 2024, and is making the northern lights visible in points further south. 

[Related: We finally know what sparks the Northern Lights.]

The Geophysical Institute at the University of Alaska at Fairbanks has forecast auroral activity on July 12 and 13 parts of in Alaska, Oregon, Washington, Idaho, Montana, Wyoming, North Dakota, South Dakota, Minnesota, Wisconsin, Michigan, New York, New Hampshire, Vermont, Indiana, Maine, and Maryland.

The Kp index, or planetary index, ranks auroral activity on a scale from zero up to nine—zero being not very active and nine being bright and active. Thursday’s storm has a forecast for Kp6, according to the Geophysical Institute.

The forecast predicts that on Wednesday, the storm could be highly visible “low on the horizon from Seattle, Des Moines [Iowa], Chicago, Cleveland, Boston, and Halifax [Nova Scotia].”

On Thursday, it could get stronger and may be seen overhead in cities including Minneapolis, Milwaukee, Bay City, Michigan. The lights could be visible on the horizon in Salem, Boise, Cheyenne, Lincoln, Indianapolis, and Annapolis. 

The northern lights occur when the sun’s continuous solar wind and solar storms, specifically those called coronal mass ejections, interact with Earth’s magnetic field. The light show happens very frequently in locales like northern parts of Canada, Alaska, and Scandinavia. Huge bursts of plasma are ejected via this wind, spraying electrons into the magnetic field. These super charged particles then combine with the field and shoot into Earth’s atmosphere, following the path of the magnetic field towards the Earth’s poles. When these particles collide with molecules in the atmosphere, they produce the dazzling colored lights in our sky.

UCLA space science professor Robert McPherron told PopSci in September 2022 that this process is similar to switching off old television sets. “When you turn them on, if you had good hearing, you’d hear a very high pitched whine indicative of a very high frequency” caused by a beam of electrons. And if you turned it off, you’d see a spot right in the center of the screen.”

That glowing spot on the fluorescent screen occurs when a beam of electrons hits it from the inside. “And that’s exactly what the aurora is,” McPherron said. “It is electrons coming down along a magnetic field line, and the screen is the atmosphere.”

[Related: Hold onto your satellites: The sun is about to get a lot stormier.]

The greens, blues, and reds that result come from the electrons as well. As they enter the Earth’s atmosphere, the electrons excite gasses, particularly oxygen and nitrogen. Once the molecules within the oxygen and nitrogen are charged with this energy beyond their normal state, they emit photons as they return back to their baseline levels. Oxygen emits greens and reds, while nitrogen glows blue

In April,  the northern lights were visible as far south as Arizona during a huge surge of solar activity. This next storm is the third severe geomagnetic storm since this current solar cycle began in 2019

According to the National Oceanic and Atmospheric Administration’s Space Weather Prediction Center, those hoping to catch a glimpse of the aurora should head away from city lights and that the best viewing times are between 10 PM and 2 AM local time.

The post Updated forecast shows northern lights won’t be visible in most US states this week appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
NASA’s quirky new lunar rover will be the first to cruise the moon’s south pole https://www.popsci.com/science/nasa-viper-moon-rover-test/ Sun, 09 Jul 2023 17:00:00 +0000 https://www.popsci.com/?p=554322
VIPER moon rover coming down a ramp during a test at the NASA Ames Research Center
Antoine Tardy, VIPER rover egress driver, adjusts the cables that power and send commands to the VIPER test unit as engineers practice its exit/descent from the model Griffin lunar lander at NASA's Ames Research Center in California's Silicon Valley. NASA/Dominic Hart

Four wheels are better than six for off-roading in craters.

The post NASA’s quirky new lunar rover will be the first to cruise the moon’s south pole appeared first on Popular Science.

]]>
VIPER moon rover coming down a ramp during a test at the NASA Ames Research Center
Antoine Tardy, VIPER rover egress driver, adjusts the cables that power and send commands to the VIPER test unit as engineers practice its exit/descent from the model Griffin lunar lander at NASA's Ames Research Center in California's Silicon Valley. NASA/Dominic Hart

It’s no simple feat to send a rover to space, land it on a celestial body, and get the wheels rolling. NASA has used all kinds of techniques: The Pathfinder rover landed on Mars in 1997 inside a cluster of airbags, then rolled down its landing vehicle’s “petals,” which bloomed open like a flower, to the dusty surface. Cables attached to a rocket-powered “sky crane” spacecraft dropped the Perseverance Mars rover to the Red Planet’s surface in 2021. On the moon, Apollo 15, 16, and 17 astronauts pulled mylar cables to unfold and lower their buggies from the vehicles’ compact stowage compartments on lunar landers. 

But NASA’s first-ever rover mission to the lunar south pole will use a more familiar method of getting moving on Earth’s satellite: a pair of ramps. VIPER, which stands for Volatiles Investigating Polar Exploration Rover, will roll down an offramp to touch the lunar soil, or regolith, when it lands on the moon in late 2024. 

This is familiar technology in an unforgiving location. “We all know how to work with ramps, and we just need to optimize it for the environment we’re going to be in,” says NASA’s VIPER program manager Daniel Andrews.

A VIPER test vehicle recently descended down a pair of metal ramps at NASA’s Ames Research Center in California, as seen in the agency’s recently published photos, with one beam for each set of the rover’s wheels. Because the terrain where VIPER will land—the edge of the massive Nobile Crater—is expected to be rough, the engineering team has been testing VIPER’s ability to descend the ramps at extreme angles. They have altered the steepness, as measured from the lander VIPER will descend from, and differences in elevation between the ramp for each wheel. 

”We have two ramps, not just for the left and right wheels, but a ramp set that goes out the back too,” Andrews says. “So we actually get our pick of the litter, which one looks most safe and best to navigate as we’re at that moment where we have to roll off the lander.” 

[Related: The next generation of lunar rovers might move like flying saucers]

VIPER is a scientific successor to NASA’s Lunar Crater Observation and Sensing Satellite, or LCROSS mission, which in 2009 confirmed the presence of water ice on the lunar south pole. 

“It completely rewrote the books on the moon with respect to water,” says Andrews, who also worked on the LCROSS mission. “That really started the moon rush, commercially, and by state actors like NASA and other space agencies.”

The ice, if abundant, could be mined to create rocket propellant. It could also provide water for other purposes at long-term lunar habitats, which NASA plans to construct in the late 2020s as part of the Artemis moon program

But LCROSS only confirmed that ice was definitely present in a single crater at the moon’s south pole. VIPER, a mobile rover, will probe the distribution of water ice in greater detail. Drilling beneath the lunar surface is one task. Another is to move into steep, permanently shadowed regions—entering craters that, due to their sharp geometry, and the low angle of the sun at the lunar poles, have not seen sunlight in billions of years. 

The tests demonstrate the rover can navigate a 15-degree slope with ease—enough to explore these hidden dark spots, avoiding the need to make a machine designed for trickier descents. “We think there’s plenty of scientifically relevant opportunities, without having to make a superheroic rover that can do crazy things,” Andrews says.

Developed by NASA Ames and Pittsburgh-based company Astrobotic, VIPER is a square golf-cart-sized vehicle about 5 feet long and wide, and about 8 feet high. Unlike all of NASA’s Mars rovers, VIPER has four wheels, not six. 

”A problem with six wheels is it creates kind of the equivalent of a track, and so you’re forced to drive in a certain way,” Andrews says. VIPER’s four wheels are entirely independent from each other. Not only can they roll in any direction, they can be turned out, using the rover’s shoulder-like joints to crawl out of the soft regolith of the kind scientists believe exists in permanently shadowed moon craters. The wheels themselves are very similar to those on the Mars rovers, but with more paddle-like treads, known as grousers, to carry the robot through fluffy regolith.

“The metaphor I like to use is we have the ability to dip a toe into the [permanently shadowed region],” Andrews says. ”If we find we’re surprised or don’t like what we’re finding, we have the ability to lift that toe out, roll away on three wheels, and then put it back down.”

But VIPER won’t travel very far at all if it can’t get down the ramp from its lander, which is why Andrews and his team have been spending a lot of time testing that procedure. At first, the wheels would skid, just momentarily, as the VIPER test vehicle moved down the ramps. 

”We also found we could drive up and over the walls of the rampway,” Andrews says. “That’s probably not desirable.”

[Related on PopSci+: How Russia’s war in Ukraine almost derailed Europe’s Mars rover]

Together with Astrobotic, Andrews and his team have altered the ramps, and they now include specialized etchings down their lengths. The rover can detect this pattern along the rampway, using cameras in its wheel wells. “By just looking down there,” the robot knows where it is, he says. “That’s a new touch.”

Andrews is sure VIPER will be ready for deployment in 2024, however many tweaks are necessary. After all, this method is less complicated than a sky crane, he notes: “Ramps are pretty tried and true.”

The post NASA’s quirky new lunar rover will be the first to cruise the moon’s south pole appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Uranus got its name from a very serious authority https://www.popsci.com/science/how-did-uranus-get-its-name/ Fri, 07 Jul 2023 10:00:00 +0000 https://www.popsci.com/?p=553708
Uranus captured by Voyager 2 in true color and false color. Uranus got its name from Greek mythology.
These two pictures of Uranus were compiled from images recorded by Voyager 2 on January 10, 1986. The picture on the left has been processed to show Uranus as human eyes would see it from the vantage point of the spacecraft. The second picture is an exaggerated false-color view that reveals details not visible in the true-color view, including indications of what could be a polar haze of smog-like particles. NASA / JPL

From kings to Shakespearian sprites, Uranus captures the imagination that goes into naming objects in space.

The post Uranus got its name from a very serious authority appeared first on Popular Science.

]]>
Uranus captured by Voyager 2 in true color and false color. Uranus got its name from Greek mythology.
These two pictures of Uranus were compiled from images recorded by Voyager 2 on January 10, 1986. The picture on the left has been processed to show Uranus as human eyes would see it from the vantage point of the spacecraft. The second picture is an exaggerated false-color view that reveals details not visible in the true-color view, including indications of what could be a polar haze of smog-like particles. NASA / JPL

Everyone loves a good Uranus crack—the mere mention of its name can draw snickers in a serious science class. But the sideways planet has a surprisingly respectable backstory that few people know. 

How did Uranus get its name?

Uranus (officially pronounced yur-un-us) was the god of the sky in ancient Greece, but actually was not the first choice for the seventh planet’s name. The ice giant was discovered by British astronomer William Herschel in 1781, and finally recognized as a planet at that time. It had been seen in the night sky for millennia, but people simply assumed it was another star. “There were many observations of the position of Uranus before its discovery as a planet,” says Bonnie Buratti, planetary scientist at NASA’s Jet Propulsion Laboratory.

Herschel thought his new celestial trophy should be called Georgium after King George III, the reigning king of England at the time. Astronomers from other countries weren’t too happy with this choice, though, so they proposed a number of alternatives. A year later, German astronomer Johann Bode suggested the winning name, Uranus, the Latin word for the Greek god Ouranos. He made quite a persuasive argument with two main points. First, King George would stand out in a very strange way from the other planetary names, all based on ancient gods. Second, Saturn is the father of Jupiter in mythology, and Uranus’s Roman counterpart (Caelus) is the father of Saturn, making a neat hierarchy in the order of the planets. The element uranium was named in 1789 in support of Bode’s proposed title for the planet.

[Related: How old is Earth?]

It is a bit strange, however, that Uranus is the only Greek god amongst a planetary neighborhood full of Romans. It’s unclear if this was a mistake—maybe Bode didn’t know the Roman equivalent of Ouranos was actually Caelus—or if 18th-century astronomers simply preferred the Greek version of the name.

Such mistakes don’t really happen nowadays, as the International Astronomical Union (IAU) meticulously oversees the naming of celestial discoveries (and has done so since its founding in 1919), from whole new objects to detailed features on planets’ surfaces. 

“The IAU is the sole authority for official names for solar system objects,” says Tenielle Gaither, database manager for the U.S. Geological Survey Gazetteer of Planetary Nomenclature. Chuck Wood, Wheeling University scientist and member of the IAU Working Group on Planetary Nomenclature, adds, “the IAU is the only international body that is concerned with astronomy, and every professional astronomer and nation accepts their authority.”

How do astronomers choose names today?

When a new body in space needs a label, the IAU committee for that kind of object gets to work. Planetary scientists can suggest names, but the ultimate authority still rests with the IAU, which has specific themes for each planetary system and kind of feature. Exoplanets, for example, are named after the star they orbit or the telescope that found them (like 51 Pegasi b or Kepler-16b), followed by a lowercase letter assigned in order of discovery. Meanwhile, comets are named after their discoverers plus a standardized number, like 1P/Halley. Asteroids, on the other hand, are named by their discoverers (not after their discoverers), and can be a reference to anyone or anything as long as it’s not inappropriate. “An asteroid [363115 Chuckwood] is named after me, so I passed the bar,” says Wood. 

The IAU also maintains a list of categories for every planet and its moons in the solar system. The six largest known rocks that orbit Uranus are borrowed from works of Shakespeare and Alexander Pope: Puck, Miranda, Ariel, Umbriel, Titania, and Oberon. The features on these satellites have even more individualized naming conventions. For example, all the cracks, crevasses, and craters on Puck must be named after mischievous Puck-like spirits. On Miranda, names come from characters and places in Shakespeare plays. 

Just like in Herschel’s time, some proposals can stir up debate and drama. “You might think that deciding on names would be a dry, humdrum activity,” says Wood. “But it has often been contentious, starting with the US and Soviet naming of lunar features in the early [space race].” He’s been cursed at by other scientists, threatened with appeals to the president of the United States, and more, simply for insisting that names adhere to the IAU’s established rules.

There is a lot of beauty in planetary naming, too. “While IAU nomenclature is first and foremost a tool for scientists to discuss surface features clearly and unambiguously in the literature, some names certainly have personal significance,” says Gaither, whose favorite planetary feature name is Morrison crater on Mercury, which she helped propose. “I read most of Toni Morrison’s novels in my late teens and early 20s, and they were pivotal in developing my understanding of the tragedy of Black women’s lived experiences of racism, sexism, and poverty,” she adds.

[Related: How long does it take to get to Mars?]

In recent history, astronomical names have expanded from ancient gods of Western societies and works of famous white authors to now include important figures and landmarks from other cultures. Arguably the best-known example is the suspected interstellar comet 1I/2017 U1 ‘Oumuamua: Its name is Hawaiian for “a messenger from afar arriving first” because it was discovered with a telescope located atop Haleakala volcano on Maui.

A scientific name can capture history, culture, bureaucracy, and more. With Uranus, it captures people’s endless appreciation for bathroom humor, even though it’s not really pronounced that way.

Correction (July 7, 2023): Due to an editing error, this story incorrectly stated that the Haleakala volcano is located on the big Island of Hawai’i. It is on Maui.

The post Uranus got its name from a very serious authority appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A toaster-sized NASA instrument captured a UV scene of the Milky Way https://www.popsci.com/science/juice-nasa-uv-milky-way/ Wed, 05 Jul 2023 18:30:00 +0000 https://www.popsci.com/?p=553364
A Southwest Research Institute scientist named Norm Pelletier is wearing all white protective gear as he prepares the Ultraviolet Spectrograph (UVS) for delivery and integration onto the European Space Agency’s JUICE spacecraft. As part of a 10-instrument payload to study Jupiter and its large moons, UVS will measure ultraviolet spectra that scientists will use to study the composition and structure of the atmospheres of these bodies and how they interact with Jupiter’s massive magnetosphere.
Southwest Research Institute’s Norm Pelletier prepares the Ultraviolet Spectrograph (UVS) for delivery and integration onto the European Space Agency’s JUICE spacecraft. As part of a 10-instrument payload to study Jupiter and its large moons, UVS will measure ultraviolet spectra that scientists will use to study the composition and structure of the atmospheres of these bodies and how they interact with Jupiter’s massive magnetosphere. Southwest Research Institute

The JUICE spacecraft is well on its way to Jupiter to study the gas giant’s icy moons.

The post A toaster-sized NASA instrument captured a UV scene of the Milky Way appeared first on Popular Science.

]]>
A Southwest Research Institute scientist named Norm Pelletier is wearing all white protective gear as he prepares the Ultraviolet Spectrograph (UVS) for delivery and integration onto the European Space Agency’s JUICE spacecraft. As part of a 10-instrument payload to study Jupiter and its large moons, UVS will measure ultraviolet spectra that scientists will use to study the composition and structure of the atmospheres of these bodies and how they interact with Jupiter’s massive magnetosphere.
Southwest Research Institute’s Norm Pelletier prepares the Ultraviolet Spectrograph (UVS) for delivery and integration onto the European Space Agency’s JUICE spacecraft. As part of a 10-instrument payload to study Jupiter and its large moons, UVS will measure ultraviolet spectra that scientists will use to study the composition and structure of the atmospheres of these bodies and how they interact with Jupiter’s massive magnetosphere. Southwest Research Institute

It’s been almost two months since the European Space Agency’s JUpiter ICy Moons Explorer (JUICE) launched and the spacecraft has successfully collected its first ultraviolet data. The spacecraft’s Ultraviolet Spectrograph (UVS) instrument is one of three projects that make up NASA’s contribution to the space mission to focus on our solar system’s largest planet and its moons. The spacecraft will explore potentially habitable worlds located around the gas giant and investigate Jupiter as an archetype for gas giants in our solar system and beyond.

[Related: Follow the JUICE mission as it launches to Jupiter and its many mysterious moons.]

As JUICE begins its eight year, 4.1-billion-mile roundabout journey to the Jovian system, the spacecraft is deploying and activating multiple antennas, booms, sensors, and instruments. The UVS instrument is the latest to succeed in this critical task.

The UVS was developed by the Southwest Research Institute (SwRI) in San Antonio, Texas.

A bit smaller than a microwave, UVS weighs just over 40 pounds and draws 7.5 watts of power. It is designed to determine the relative concentrations of various elements and molecules in the atmospheres of Jupiter’s moons once it reaches the Jovian system. 

“Our team of SwRI scientists traveled to Darmstadt, Germany, to put JUICE-UVS through its paces,” JUICE-UVS principal investigator Randy Gladstone said in a statement. “On June 20, we opened the UVS aperture door to collect UV light from space for the first time. Soon after, we observed a swath of the sky to verify the instrument was performing well.” 

A segment of this data was imaged by the team just as the UVS scanned a swath of the Milky Way.  

A segment of JUICE-UVS data shows a swath of the southern sky, revealing many UV-bright stars in the Milky Way near the southern constellation Carina on the left. The cloud-like structure on the right is a nearby galaxy called the Large Magellanic Cloud
The SwRI-led Ultraviolet Spectrograph (UVS) aboard ESA’s Jupiter Icy Moons Explorer, JUICE, has successfully completed its initial commissioning following the spacecraft’s April 14 launch. This segment of JUICE-UVS data shows a swath of the southern sky, revealing many UV-bright stars in the Milky Way near the southern constellation Carina on the left. The cloud-like structure on the right is a nearby galaxy called the Large Magellanic Cloud. CREDIT: ESA/NASA/SwRI/P. Molyneux/M. Versteeg/S. Ferrell/T. Greathouse/M. Davis.

UVS is the fifth instrument in a series of spectrographs developed by SwRI for other spacecraft, including ESA’s Rosetta comet orbiter and NASA’s Pluto-bound New Horizons. It will get close-up views of three of Jupiter’s Galilean moons–Europa, Ganymede, and Callisto. 

These celestial bodies are all thought to have liquid water beneath their icy surfaces.  It will record the ultraviolet light that is emitted, transmitted, and reflected by these bodies, which could reveal the composition of their surfaces and their atmosphere, as well as how both interact with the planet and its enormous magnetosphere. 

[Related: This hot Jupiter exoplanet unexpectedly hangs out with a super-Earth.]

In 2024, a similar instrument called Europa-UVS will launch aboard NASA’s Europa Clipper. This spacecraft is scheduled to take a more direct route to arrive at the Jovian system roughly 15 months before JUICE, and will focus on studying Europa’s habitability. Europa is the smallest of Jupiter’s Galilean moons and one of at least 90 known moons orbiting the gas giant.

“Having two UVS instruments making measurements in the Jupiter system at roughly the same time will offer exciting complementary science possibilities,” principal investigator of Europa-UVS and deputy PI for JUICE-UVS Kurt Retherford said in a statement

The JUICE missions will be the first close-ups of Jupiter’s moons since NASA’s Galileo probe visited the gas giant from 1995 and 2003 and the spacecraft and science instruments were constructed by teams from 15 European countries, Japan, and the United States.

The post A toaster-sized NASA instrument captured a UV scene of the Milky Way appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Saturn’s rings get a glow up in new near-infrared telescope images https://www.popsci.com/science/jwst-saturn-images/ Mon, 03 Jul 2023 14:30:00 +0000 https://www.popsci.com/?p=553020
The ringed planet Saturn imaged for the first time using near-infrared observations. The planet itself appears quite dark and the rings are bright.
On June 25, 2023, NASA’s James Webb Space Telescope turned to famed ringed world Saturn for its first near-infrared observations of the planet. Image- NASA, ESA, CSA, Matthew Tiscareno (SETI Institute), Matthew Hedman (University of Idaho), Maryame El Moutamid (Cornell University), Mark Showalter (SETI Institute), Leigh Fletcher (University of Leicester), Heidi Hammel (AURA). Image Processing: Joseph DePasquale (STScI). Image Processing- Joseph DePasquale (STScI)

The brilliant images are thanks to James Webb Space Telescope's NIRCam.

The post Saturn’s rings get a glow up in new near-infrared telescope images appeared first on Popular Science.

]]>
The ringed planet Saturn imaged for the first time using near-infrared observations. The planet itself appears quite dark and the rings are bright.
On June 25, 2023, NASA’s James Webb Space Telescope turned to famed ringed world Saturn for its first near-infrared observations of the planet. Image- NASA, ESA, CSA, Matthew Tiscareno (SETI Institute), Matthew Hedman (University of Idaho), Maryame El Moutamid (Cornell University), Mark Showalter (SETI Institute), Leigh Fletcher (University of Leicester), Heidi Hammel (AURA). Image Processing: Joseph DePasquale (STScI). Image Processing- Joseph DePasquale (STScI)

It’s been almost one year since NASA’s James Webb Space Telescope (JWST) released its first finds to the public. Now the JWST has its sights set on the ringed planet Saturn. On June 25, JWST used its hard working Near-Infrared Camera (NIRCam) to capture stellar images of Saturn using near-infrared observations for the first time.

[Related: NASA hopes its snake robot can search for alien life on Saturn’s moon Enceladus.]

The planet itself appears very dark at this infrared wavelength observed by the telescope. The methane gas in the planet absorbs almost all of the sunlight that is falling on the atmosphere. Its famed icy rings are still relatively bright, making Saturn look a bit more unusual.  

This new image was taken as part of Webb Guaranteed Time Observation program 1247. Several very deep exposures of the sixth planet from the sun, which were designed to test JWST’s capacity to detect faint moons around Saturn and its bright rings. Newly discovered Saturnian moons could help scientists paint a more complete picture of the planet’s current system and its past history. 

Space Telescope photo
On June 25, 2023, NASA’s James Webb Space Telescope turned to famed ringed world Saturn for its first near-infrared observations of the planet. The initial imagery from JWST’s NIRCam (Near-Infrared Camera) is already fascinating researchers. CREDITS: Image- NASA, ESA, CSA, Matthew Tiscareno (SETI Institute), Matthew Hedman (University of Idaho), Maryame El Moutamid (Cornell University), Mark Showalter (SETI Institute), Leigh Fletcher (University of Leicester), Heidi Hammel (AURA). Image Processing: Joseph DePasquale (STScI). Image Processing- Joseph DePasquale (STScI).

Saturn’s ring system is shown in clear detail along with several of the planet’s over 140 known moons—Dione, Enceladus, and Tethys. Deeper exposure will help the team probe some of Saturn’s more faint rings that aren’t visible in this image. These include the thin G ring and the diffuse E ring. The rings of Saturn are made up of rocky and icy fragments, with particles running in size from smaller than a single grain of sand up to some that are as large as mountains here on Earth. Researchers recently used JWST to explore the moon Enceladus, and found a large plume jetting from its southern pole that contains both particles and plentiful amounts of water vapor. This moon plume feeds Saturn’s E ring.

The image also shows Saturn’s atmosphere in some surprising and unexpected detail. The Cassini spacecraft observed the atmosphere at greater clarity, but this is the first time that the atmosphere has been observed this clearly at this particular wavelength (3.23 microns), which is unique to JWST. The planet’s northern hemisphere has large, dark, diffuse structures that don’t follow its lines of latitude, so according to NASA, this image is lacking the familiar striped appearance that is typically seen from Saturn’s deeper atmospheric layers. 

[Related: Saturn’s rings have been slowly heating up its atmosphere.]

Comparing Saturn’s northern and southern poles in this image shows differences that are typical with the known seasonal changes on the planet. Saturn is currently experiencing summertime in its northern pole, with the southern pole emerging from darkness at the end of its winter.  However, it also shows a particularly dark northern pole, due to an unknown seasonal process that is particularly affecting polar aerosols. There is a small hint of brightening towards the edge of Saturn’s disk that could be due to a process called high-altitude methane fluorescence. During this process, light is emitted after it is absorbed. It could also be due to emission from the trihydrogen ion (H3+) in the ionosphere or a combination of both processes. Spectroscopy from JWST could help confirm the reason behind this brightness.

This new yet to be peer-reviewed data on Saturn will add to the famed Pioneer 11, Voyagers 1 and 2, missions and the decades of work done by the Cassini spacecraft and the Hubble Space Telescope

The post Saturn’s rings get a glow up in new near-infrared telescope images appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
July’s skies heat up with the Buck Moon, a shimmery Venus, and more https://www.popsci.com/science/stargazing-guide-july-2023/ Fri, 30 Jun 2023 10:00:00 +0000 https://www.popsci.com/?p=551820
A full moon known as the Buck Moon is seen as a deer grazes outside the village of Taarbaek, Denmark on July 14, 2022.
A full moon known as the Buck Moon is seen as a deer grazes outside the village of Taarbaek, Denmark on July 14, 2022. Sergei Gapon/Anadolu Agency via Getty Images

Warm weather makes for perfect meteor and moon watching.

The post July’s skies heat up with the Buck Moon, a shimmery Venus, and more appeared first on Popular Science.

]]>
A full moon known as the Buck Moon is seen as a deer grazes outside the village of Taarbaek, Denmark on July 14, 2022.
A full moon known as the Buck Moon is seen as a deer grazes outside the village of Taarbaek, Denmark on July 14, 2022. Sergei Gapon/Anadolu Agency via Getty Images
July 1Conjunction of Venus and Mars
July 3Full Buck Supermoon
July 7Venus at its Brightest
July 16Lāhaina Noon Begins
July 29-30Delta Aquarids Meteor Shower Peaks

With the summer solstice behind us, it’s true that we are losing tiny bits of sunlight per day.  But that just means the short summer nights are growing a bit longer—all the better to catch exciting things happening this month. Skygazing in July should be pretty comfortable for those in the Northern Hemisphere as temperatures reach their summer highs. Here are some events to look out for and if you happen to get any stellar sky photos, tag us and include #PopSkyGazers.

July 1: Conjunction of Venus and Mars 

Kicking off the first full month of summer with Venus and Mars at making a close approach to one another. The two planets will be visible just after 8 PM EDT on June 30, and will reach their closest approach at 3:09 AM EDT on July 1 as dusk fades into darkness. Both planets will lie roughly within the constellation Leo. 

[Related: We finally know why Venus is absolutely radiant.]

July 3: Full Buck Supermoon

July’s full moon will rise on Monday, July 3 and reach peak illumination at 7:39 AM EDT. The moon will be below the horizon, so skygazers should look towards the southeast after the sunset to watch the Buck Moon rise. 

It is also a supermoon, which means that it will appear bigger than many other full moons this year. It will be 224,895.4 miles away from Earth, and only next month’s Blue Moon will venture closer to Earth this year. According to the Old Farmer’s Almanacs, this is the first of four total supermoons for 2023.

The name Buck Moon refers to the time of year when the antlers of male deer are in full-growth mode. Additional names for July’s full moon include the Blueberry Moon or Miini-giizis in Anishinaabemowin (Ojibwe), the String Bean Moon or Ohyotsheli in Oneida, and the Thunderstorm Moon or Hiyeswa Tiriri Nuti in the Catawba Language.

[Related: ‘Skyglow’ is rapidly diminishing our nightly views of the stars.]

July 7: Venus at its brightest point of the year

The second planet from our sun is already an extremely luminescent planet, but it will be at its brightest point for all of 2023 this month. It’s hard to miss this dazzling planet, so look in the direction of sunset on any clear summer evening beginning on July 7. The lighted portion of the planet, known as the crescent Venus, will cover its greatest area on our sky’s dome. 

July 16-27: Lāhaina Noon

This twice a year event occurs during the months of May and July in the Earth’s tropical region when the sun is directly overhead at around solar noon. At this point, upright objects do not cast shadows. 

According to the Bishop Museum, in English, the word “lāhainā” can be translated as “cruel sun,” and is a reference to severe droughts experienced in that part of the island of Maui in Hawaii. An older term in ʻŌlelo Hawaiʻi is “kau ka lā i ka lolo,” which means “the sun rests upon the brain,” and references both the physical and cultural significance of the event.

July 29-30: Delta Aquarids meteor shower peaks

The lesser known Delta Aquarids is the first of the summer’s annual meteor showers. It starts on July 18, but is predicted to peak on July 29 and 30. However, if you miss it, don’t worry. The meteor shower doesn’t have a noticeable peak like others. It “rambles” along steadily from the end of July into the beginning of August, when it joins up with the Perseids Meteor shower—but more on that next month.

The Delta Aquarids’ can reach a maximum rate 15 to 20 meteors per hour in a dark sky with no moon. Since August’s full moon arrives early, take advantage of the moonless nights towards the end of July. Skygazing for this meteor shower is a bit better in the Southern Hemisphere, but can still be quite visible in the southern United States. 

The same skygazing rules that apply to pretty much all space-watching activities are key this month: Go to a dark spot away from the lights of a city or town and let the eyes adjust to the darkness for about a half an hour. 

The post July’s skies heat up with the Buck Moon, a shimmery Venus, and more appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How to get your name engraved on a NASA spacecraft bound for Europa https://www.popsci.com/science/europa-clipper-name-signup/ Wed, 28 Jun 2023 20:00:00 +0000 https://www.popsci.com/?p=551983
Europa Clipper Propulsion Module
Europa Clipper's propulsion module being worked on at NASA’s Goddard Space Flight Center in Greenbelt, Maryland on August 3, 2021. PL/Ed Whitman

The Europa Clipper is scheduled to launch in October 2024, but you can reserve a space for your name now.

The post How to get your name engraved on a NASA spacecraft bound for Europa appeared first on Popular Science.

]]>
Europa Clipper Propulsion Module
Europa Clipper's propulsion module being worked on at NASA’s Goddard Space Flight Center in Greenbelt, Maryland on August 3, 2021. PL/Ed Whitman

The odds that you will ever travel to one of Jupiter’s moons is next-to-zero, but getting your name to icy Europa is only a few keystrokes away. Earlier this month, NASA and the Library of Congress announced their collaboration, Message in a Bottle—a project offering anyone the opportunity to co-sign their name alongside an original poem penned by US Poet Laureate Ada Limón.

In doing so, each signee reserves a free, guaranteed spot for their name to be laser etched into a microchip mounted aboard the solar powered Europa Clipper robotic spacecraft. Following its October 2024 scheduled launch, participants’ names will then travel the approximately 6-year, 1.8-billion-mile voyage alongside Limón’s new, moon-inspired ode, “In Praise of Mystery” also to be engraved onto Europa Clipper.

[Related: We just got our most detailed look yet at Jupiter’s icy moon, Europa.]

Europa’s icy surface alongside the likely existence of an internal ocean have long intrigued scientists as potential locations that could support extraterrestrial life. Although it won’t actually touch down on the moon’s surface, Europa Clipper’s dozens of flybys will allow it to amass detailed information on its composition, geology, and vaporous geyser eruptions.

According to NASA, Europa Clipper will span roughly 100 feet after its solar arrays are deployed, and weigh-in at approximately 13,000 pounds—half of which is solely the propellant needed to get it to its final destination. Following its scheduled October 2024 launch from Florida’s Kennedy Space Center aboard a SpaceX Falcon Heavy Rocket, the craft will first travel around Mars before soaring once again past Earth to gain some much needed “gravity assist” momentum. After another three years of travel, Clipper will pass by Europa almost 50 times beginning in 2030, transmitting data back home while observing “nearly the entire” moon to gain a better sense of its potential to support life.

This isn’t the first time NASA has encouraged the public to add their names to objects bound for space, including those aboard Artemis I, as well the Preservation Rover and InSight on their multiple trips to Mars. In 1977, Voyager 1 and 2 both launched with gold-plated phonographic records aboard featuring 90 minutes of music, including a concerto by Bach and Chuck Berry’s “Johnny B. Goode.”

At the time of writing, over 305,000 people from nearly every nation across the world have already signed the Europa Clipper’s roster, and earthbound participants have until the end of 2023 to enter in their names. Until then, you can also tune into regular livestreams of the Europa Clipper’s construction and assembly.

The post How to get your name engraved on a NASA spacecraft bound for Europa appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How Russia’s war in Ukraine almost derailed Europe’s Mars rover https://www.popsci.com/science/exomars-mission-russia-ukraine/ Tue, 27 Jun 2023 13:00:00 +0000 https://www.popsci.com/?p=550290
rosalind franklin rover on mars background
The ESA’s Rosalind Franklin rover is scheduled to launch in 2028. ESA / ATG Medialab (Rosalind Franklin); NASA/JPL-Caltech (Mars)

After Russia’s invasion of Ukraine, Roscosmos was summarily cut out of the ExoMars project, taking with it the rocket that was to deliver the Rosalind Franklin rover to space.

The post How Russia’s war in Ukraine almost derailed Europe’s Mars rover appeared first on Popular Science.

]]>
rosalind franklin rover on mars background
The ESA’s Rosalind Franklin rover is scheduled to launch in 2028. ESA / ATG Medialab (Rosalind Franklin); NASA/JPL-Caltech (Mars)

SCHIAPARELLI WAS OUT OF CONTROL. As the probe entered Mars’ atmosphere on October 19, 2016, an onboard computer miscalculated its altitude, prematurely jettisoning the craft’s parachute. The disc-shaped probe with what looked like a futuristic World’s Fair of instruments on its flat back sent one last swan song of a data package back to its circling companion, the Trace Gas Orbiter, as it tumbled into free fall. Onboard thrusters fired for three seconds rather than 30. Then, some 1,272 pounds of atmospheric and meteorological sensors—and nearly two decades of European deep space ambition—slammed into Mars at 335 mph. The probe added another crater to the pockmarked surface, peppered a stretch of the Red Planet with mechanical debris, and joined a growing list of disappointments in the European Space Agency’s quest to make its first successful landing on Martian soil.

Part of the first mission of the ExoMars program (a reference to exobiology, the study of life beyond Earth), the Trace Gas Orbiter still circles the Red Planet today, high above its failed entry module. But the program is defined by continued setbacks. Since the project’s inception in 2001, it’s been plagued by bureaucratic delays, budget shortfalls, geopolitical turmoil, and mechanical failures. But Exo­Mars received its fiercest blow in more than two decades when Russia invaded Ukraine in February 2022. The ongoing war has left the future of ESA’s next ­attempt—which was meant to touch down on Mars in June 2023—up in the air. 

Despite the resilience of the engineering teams and scientists behind the mission, their efforts increasingly seem more Sisyphean than Herculean. As the rover sits motionless in a facility in northern Italy, its precious components—some made of rare-earth minerals and gold—are at risk of atrophy and decay. Funding is in limbo until the US Congress and European member states decide whether to invest more cash. 

If the rover launches in 2028, as is currently planned, it will represent the culmination of roughly 30 years of patience, redevelopment, and, most recently, a European reunion of sorts for NASA. This follows a long line of setbacks and disappointments that began long before Russia’s war in Ukraine booted Russian space agency Roscosmos and its booster engines from the program.

ExoMars Trace Gas Orbiter shown on Mars background
Launched in 2016 in a partnership between the European Space Agency and Russia’s Roscosmos, the ExoMars Trace Gas Orbiter analyzes Martian gases. ESA

Getting Rosalind Franklin (named in honor of the late English chemist known for her contributions in identifying DNA’s double helix) to a safe landing spot millions of miles away will require unfettered determination and a level of global cooperation that seems increasingly difficult to maintain. If they want a chance of making it to the finish line, the mission’s leaders will have to let go of some of their original goals. 

As Jorge Vago, an ExoMars project scientist, puts it: “It’s now about surviving.”

MARS HAS BEEN a primary target of international space exploration since NASA launched Mariner 4 in 1964. This fly-by mission supercharged modern humanity’s fascination with the Red Planet, which has inspired a relentless, decades-long quest to uncover its secrets. Central to this exploration is the search for extraterrestrial life, a pursuit that has spawned numerous rover projects and brought together leading global space agencies.

The modern era of Mars exploration started when NASA’s Pathfinder arrived on the Martian surface in 1997. Among its discoveries were confirmation about ancient water and new information about the planet’s thin atmosphere, fueling the scientific community’s interest in Earth’s neighbor as a potential human habitat. That focus brought us the Mars Science Laboratory, launched in 2011 to deliver NASA’s car-size Curiosity. Equipped with a state-of-the-art scientific payload, it discovered organic molecules and complex chemistry in the Red Planet’s soil, strengthening the case for past or even present microbial life. Through these discoveries, NASA remained close partners with ESA, which launched its Mars Express orbiter on a Russian Soyuz in 2003. In 2009, NASA and ESA made joint commitments to two more Mars missions. Meanwhile, ESA’s ExoMars Trace Gas Orbiter, launched in 2016 in collaboration with Russia’s Roscosmos, is still analyzing the Martian atmosphere for gases associated with biological or geological activity.

Astronomers now know that Mars once hosted a climate that could sustain life, before a dramatic shift made the dusty planet as hostile as it is today. Uncovering what happened millions of years ago could help improve our understanding of how and when life tends to evolve in our galaxy. It could also provide hints about the trajectory of Earth’s own changing climate.

Projects in the heavens also serve as tools for diplomacy, fostering international cooperation and shared scientific goals to better the planet. ExoMars was meant to be one such collaboration, but NASA couldn’t sustain its financial partnership and departed the program in 2012. Roscosmos partnered with ESA in NASA’s stead, securing the future of the mission. 

Then everything came undone. 

copy of Rosalind Franklin drills into earth on a rover background
The Rosalind Franklin’s earthly twin Amalia performs drill testing at ALTEC in Turin, Italy, to help prepare the Mars-bound rover for its future mission. ESA

After Russian troops and weapons entered Ukraine in February 2022 in an unprovoked assault on the eastern European nation, ESA canceled its contract with Roscosmos in line with Western sanctions. The program already had its rover, but nothing to deliver it to Mars. ESA scrubbed the September 2022 launch date.

Russian scientists spent that April dismantling their equipment from the lander, while engineers at ESA facilities across Europe worked to reimagine how they might adopt outside equipment into their designs. One example is the lightweight radioisotope heater units that would save energy and keep the rover from freezing during Martian winters. Those heaters are produced only by Russia and the US, but a swap will not be seamless: The Russian versions were each about the size of a mini soda can, and the Rosalind Franklin rover was designed to accommodate three. The American substitutes are more like 35mm film canisters, and it will take at least 30 to keep the rover warm. Attaching them will require some nimble tinkering. 

Now NASA is poised to give ESA the boost it needs to vault over the mission’s final hurdles. If the agencies are able to retrofit lander parts for instruments customized for Roscosmos tech (also not a small feat), the rover could be launched from Kennedy Space Center on a US-owned rocket. But the success of the salvaged mission hinges on more than just engineering.

“It’s a Russian nesting doll in that sense, the way we built up the partnership,” says Albert Haldemann, Mars chief engineer at ESA. Now the two space agencies have to assemble the parts and make sure they fit well enough to survive the journey to Mars—and its volatile atmosphere.

SINCE 2022, Russia’s invasion of Ukraine has killed tens of thousands of people, displaced millions more, exacerbated political tensions around the globe, and cast a shadow over future collaborations in space exploration, including the International Space Station. Vago recalls having difficulty processing the news. “We were devastated…wrenched,” he says. 

The team was tormented by two realities following the loss of Russia’s space instruments and expertise: the potential collapse of ExoMars and a void in the world’s astronomical knowledge. A morose fog fell over the mission.

five mars rovers shown on mars background
The Mars rovers of past and present: 1. Perseverance (2021–­present); 2. Curiosity (2012–present); 3. Sojourner (1997); 4. Opportunity (2004–2018); 5. Spirit (2004– 2010). NASA / JPL-Caltech (1); NASA / JPL-Caltech (2); NASA / JPL (3); NASA / JPL / Cornell University / Maas Digital (4); NASA / JPL-Solar System Visualization Team (5); NASA / JPL-Caltech / ASU / MSSS (background)

“The realization of what was happening hit different people in different ways at different times,” Vago says. For a brief period, it wasn’t clear how they would or should proceed. “If it was someone else’s mission, looking with some detachment, you’d say, ‘Yes, of course you can’t launch with this war going on and with cooperation with the side that started it,’” he explains. “The other half of your brain is thinking, I’ve been working on this thing with colleagues from the US, Russia, Europe, and they are nice and sweet. That’s 20 years down the toilet.”

The abrupt end of the partnership severed emotional ties too, says Haldemann. “There are personal stories on both sides.” The main Russian partner was NPO Lavochkin, a military supplier to the Russian army. “I suspect some of the people I worked with are full supporters [of the invasion], and that feels a little weird,” Haldemann adds.

When Russian cooperation collapsed, the European team moved back to one of the very first phases of development for the lander, essentially backtracking from final flight checks to the process of creating basic equipment. NASA saw an opportunity to rejoin another mission with a longstanding ally, which will mean a surprise comeback if it moves to officially support the project again. ESA is now cobbling together a new game plan that accounts for the loss of resources—and includes replacements it hopes it can count on. The new launch date is tentatively set for 2028; the six-year delay represents the bare-minimum time the team will need to design and build and test new equipment. 

“The uncertainties now are more on whether we will get the US contributions in time to match with the plans that we have at the moment,” Vago says.

Plenty of US players are eager to see a successful continued collaboration on Mars. The reengagement with overseas partners after years of “America First” diplomacy was a long time coming, says Charles Bolden, who served as the NASA administrator from 2009 to 2017. Despite the uncertainties surrounding the ExoMars project, its original intent to promote international cooperation through scientific exploration remains an inspiring one. As the world grapples with the challenges of the present, the quest to uncover the secrets of Mars and the potential for life beyond Earth serves as a powerful reminder of what humanity can achieve when working together toward a common goal.

“It’s a golden opportunity for us to work with the Europeans in this project,” Bolden says.

In a way, the mission replicates the tensions surrounding the future of global space exploration and cooperation.

This March, the White House proposed $27.2 billion for NASA’s 2024 budget, with almost $950 million supporting the agency’s ongoing collaboration with ESA to bring samples from the previously launched Mars 2020 project back to Earth. The desired budget also allocated an unspecified amount “toward US collaboration with the European Space Agency’s ExoMars rover mission.”

The Presidential Office Budget still needs to wend its way through a Congressional process of budgetary drafting, amendment, and approval. So for now the wait continues. “We’re encouraged by what we’ve seen [from the US], so hopefully we’ll see a commensurate amount of funds,” says Eric Ianson, Mars Exploration Program director at NASA. “We’re operating under the assumption right now that we will get the funding, so we’re continuing.”

But while that may be enough to save the mission, it won’t be enough to save every part of the nesting doll. “If anything, we’re cutting,” says Vago of the mission’s scientific instruments. “We are [now] interested in keeping things as simple as possible. We’re getting rid of anything that is not essential for the landing and for helping to deliver the rover to Mars.” With a drill capable of digging to depths of up to two meters, however, Rosalind Franklin’s main objective of subsurface sample extraction and analysis remains unchanged. She will plumb the Martian soil farther than any of her predecessors—anything else will be a bonus.

With ESA workers investing time and brainpower into facilitating the use of American equipment, each month without a US commitment intensifies the palpable anxiety of the team. In a way, the mission replicates the tensions surrounding the future of global space exploration and cooperation.

On a recent afternoon in March, a reminder of the dissolved partnerships sat at an unassuming gated factory on a windy industrial stretch south of the Alps in Turin, Italy. Inside lies a modified clean room where a mission control station overlooks a mock Martian landscape. The Russian landing platform sits abandoned in a corner. Once meant to provide its own package of instruments to monitor an alien environment, the glorified ramp now collects dust. 

Rosalind Franklin is stowed a few buildings away, in an over-pressurized room at the Thales Alenia Space facility. Along with her earthbound training twin Amalia, she’s undergoing regular maintenance and continued testing to stay prepared for a launch that should have happened last year. The hopes and setbacks for the mission are on display as scientists and engineers continue exercising the rover and its operators in the hopes of maintaining mission readiness. Meanwhile, they scramble to source batteries, plutonium, and booster engines that were meant to come from Russian collaborators. 

The mission’s chances will now be determined by NASA, which has both the engines and the plutonium necessary for the launch. So the ESA team’s work is never done—a nesting doll of collaborations that must be revisited, maintained, and renewed. 

“I’m reinvigorated by the fact that [EU] members have committed money on the table to see that the rover happens,” says Haldemann. He notes that for some, the mission has made up the bulk of their careers. Russia’s war in Ukraine shattered some of those dreams. “It’s bittersweet. It’s an emotional roller coaster for a lot of members of the team who were on the verge of launch.”

“It bothers everyone that the war happened,” Vago adds. “If I look at it in terms of the mission…the war has affected so many people, but it has also affected our colleagues who were working on these teams from the Russian and Ukrainian side.”

Until NASA officially commits to the mission, the ExoMars team has to muscle its way forward, as it has for many years. “If we had been able to pluck a ready-made lander off the shelf, we could have launched in 2024,” Vago says. “But no such luck.” In times of war, it’s important to be resourceful, pick the right allies, and survive.

Kenneth R. Rosen is an independent journalist based in Italy and the author of “Troubled: The Failed Promise of America’s Behavioral Treatment Programs.”

Read more PopSci+ stories.

The post How Russia’s war in Ukraine almost derailed Europe’s Mars rover appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
There might be an ice giant planet hiding in our solar system https://www.popsci.com/science/planet-solar-system-oort-cloud/ Tue, 27 Jun 2023 10:00:00 +0000 https://www.popsci.com/?p=551271
An illustration of Planet Nine, a possible other world in our solar system.
Planet Nine, seen in this illustration, might be one of two additional worlds in our solar system. Caltech/R. Hurt (IPAC)

The odds are low, but not zero, that another world lurks in the distant Oort cloud.

The post There might be an ice giant planet hiding in our solar system appeared first on Popular Science.

]]>
An illustration of Planet Nine, a possible other world in our solar system.
Planet Nine, seen in this illustration, might be one of two additional worlds in our solar system. Caltech/R. Hurt (IPAC)

You probably learned growing up there are nine planets around the sun—or eight, after Pluto’s infamous demotion. But what if another world lurked in the distant outer reaches of our solar system? 

There may be more than just comets at the solar system’s extreme edges, astronomers show in a new paper accepted to the journal MNRAS Letters. In fact, they calculate  a 7 percent chance that Earth has another neighboring planet hiding in the Oort cloud, the spherical region of icy chunks and rocks where comets reside. The Oort cloud is mind-bogglingly large and far away: Its edge is tens of thousands of times farther from the sun than Earth is from our star. Around one in every 200 to 3,000 other stars likely has one of these far-out planets, too, according to the researchers’ computer simulations.

“It’s completely plausible for our solar system to have captured such an Oort cloud planet,” says Nathan Kaib, a co-author on the new work and an astronomer at the Planetary Science Institute. These hidden strangers are “a class of planets that should definitely exist but have received relatively little attention” until now, he adds.

If there’s a planet in this cloud, it’d almost definitely be an ice giant. When large planets like Jupiter, Saturn, Uranus, or Neptune form, they’re born as twins. The problem is that these hefty worlds have quite the gravitational pull, and, like quarreling siblings, often knock each other around. The nudges destabilize the young solar system, and sometimes a planet gets shoved out—either kicked out of the system entirely, or maybe exiled to the outer reaches with a few odd orbital quirks that mark its journey.

[Related: Planet Nine might not be a planet at all]

“The survivor planets have eccentric orbits, which are like the scars from their violent pasts,” says lead author Sean Raymond, researcher at the University of Bordeaux’s Astrophysics Laboratory. This means that not only would the exiled Oort cloud planet be really far from its star, its orbit would also be elongated, like a comet’s ellipse and unlike the near-perfect circle Earth follows around the sun. The immense distance is also precisely why we haven’t actually seen such a planet. If it does exist, it would be incredibly faint. “It would be extremely hard to detect,” adds Raymond.

Solar System photo
The Oort cloud extends in a vast sphere around our neighborhood, even beyond the Kuiper Belt (inset). NASA

If a Neptune-sized planet existed in our own Oort cloud, there’s a good chance that we wouldn’t have found it yet,” agrees Malena Rice, an astronomer at MIT not involved in this work. “Amazingly, it can sometimes be easier to spot planets hundreds of light-years away than those right in our own backyard!” 

Despite the difficulty, astronomers have been searching the Oort cloud (and the nearer Kuiper Belt) for decades, in the hopes of finding the elusive “hypothetical Planet X.” Planet X, also known as Planet Nine—to the chagrin of Pluto’s loyal supporters—is a Neptune-sized planet thought to orbit 60 billion miles from the sun. Caltech astronomers Mike Brown and Konstantin Batygin used observations of objects in the Kuiper Belt to infer that something as massive as a Planet X must be shepherding them into the arrangements we see, but this theory has yet to be confirmed.

[Related: This alien world could help us find Planet Nine in our own solar system]

Unfortunately, the Oort cloud planet from Raymond and team couldn’t be the same Planet X that Brown and Batygin have been hunting. Although this supposed Oort cloud planet would be far away and have a stretched-out, eccentric orbit, that’s where the similarities end. “The Oort cloud planets in our simulations would be much more distant than the proposed Planet Nine orbit—at least 10 times further away,” explains Kaib. “Our simulations cannot place planets on Planet-Nine-like orbits.”

So not one but two planets might be waiting for us to discover them in the outer solar system, plus countless others around different stars. “These results highlight just how much remains to be discovered not only in exoplanet systems, but even in our own solar system,” says Rice.

The post There might be an ice giant planet hiding in our solar system appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Every essential ingredient for life exists on an ocean moon in our solar system https://www.popsci.com/science/life-on-enceladus-phosphorus/ Wed, 14 Jun 2023 16:00:00 +0000 https://www.popsci.com/?p=548591
A mosaic of ocean world Enceladus, a geologically active moon of Saturn.
NASA's Cassini captured this mosaic of Enceladus in 2008, as the spacecraft sped away from Saturn’s moon. NASA/JPL/Space Science Institute

There are six key elements for being alive. All of them, including phosphorus, exist on Saturn's moon Enceladus.

The post Every essential ingredient for life exists on an ocean moon in our solar system appeared first on Popular Science.

]]>
A mosaic of ocean world Enceladus, a geologically active moon of Saturn.
NASA's Cassini captured this mosaic of Enceladus in 2008, as the spacecraft sped away from Saturn’s moon. NASA/JPL/Space Science Institute

From space, Saturn’s moon Enceladus might not seem like a hospitable place for life. Its cold surface is caked thick with fresh ice, marked by craters and active cryovolcanoes that spew ice crystals. But scientists believe beneath that frozen exterior hides a salty liquid ocean. With energy from geothermal vents on the ocean floor, and a smattering of the right ingredients, it might just provide a place for life to evolve and take hold. A new analysis of data from NASA’s Cassini mission reveals that the moon has, in theory, all the chemicals it needs to support living things. 

Plumes of water erupting from Enceladus contain phosphorus, according to a study published Wednesday in the journal Nature by an international team of researchers. They found the phosphorus by examining data collected by the Cassini probe from its 13-year survey of the Saturian system. It’s the first time this element—an essential component of being alive—has been found in an ocean not on Earth. 

“Phosphorus in the form of phosphates is vital for all life on Earth,” says study author Frank Postberg, a planetary scientist at the Free University of Berlin. “Life as we know it would simply not exist without phosphates. And we have no reason to assume that potential life at Enceladus—if it is there—should be fundamentally different from Earth’s.”

The discovery does not provide any evidence for aliens on Enceladus. But the presence of phosphorus removes a major obstacle to any life that might evolve there. Previous studies had suggested Enceladus’s ocean might not contain any phosphorus, according to Postberg. This discovery changes how scientists must think about the moon’s potential habitability, and it may guide research on other icy moons with subsurface oceans, such as Jupiter’s moon Europa.

[Related: NASA hopes its snake robot can search for alien life on Saturn’s moon Enceladus]

Cassini was launched in 1997 and arrived at Saturn in 2004. It stayed there to study the ringed gas giant and its moons, until NASA ordered the probe  to plunge into Saturn’s atmosphere to destroy itself at the end of its mission in 2017. During its mission, Cassini flew past Enceladus several times, including a 2005 flyby when the probe discovered plumes of icy material, capturing crystals that the moon had ejected. Those plumes probably represent ocean water escaping to space—planetary scientists believe that a global ocean of liquid water lies beneath the moon’s icy shell.  

Researchers had looked at data from the ice grains during the Cassini mission primarily to hunt for inorganic and organic compounds, according to Postberg. But in 2017, his research team received a grant from the European Research Council to examine  a larger set of Enceladus ice grain data. After four years of work, they discovered phosphorus in salt form: phosphates.  

Phosphorus is one of six key elements of life as humans know it needs to exist, says Morgan Cable, an astrobiologist at NASA’s Jet Propulsion Laboratory who was not involved in the study. The other five key elements are carbon, hydrogen, nitrogen, sulfur, and oxygen. “Those elements, when you combine them in different organic molecules, they allow biochemistry, certain reactions to happen that cells need to stay alive,” Cable says. 

Phosphate is particularly important because it is the backbone of the DNA molecule. It’s also  a crucial component of cell membranes and of adenosine triphosphate, or ATP, which provides the energy for cellular activity.  “That’s the energy-carrying molecule for all known life, the energy currency,” Cable says, an arrangement likely to be used by any life that arises on Enceladus too, though perhaps in different combinations with the other elements.

[Related: Here’s why Saturn’s ‘ocean moon’ is constantly spewing liquid into space]

Enceladus’s ocean is somewhat chemically different from Earth, according to Mikhail Zolotov, a planetary geochemist at Arizona State University and the author of a commentary on the study also published Wednesday in Nature. “In our ocean, it’s mostly table salt, like sodium chloride,” Zolotov says. On Enceladus, the salt is baking soda—the same stuff you’d find in a kitchen. 

Plenty of marine Earth life could survive Enceladus’s waters just fine, according to Cable. But if any life has evolved, or ever does evolve, on the icy moon, it’s likely to be microorganisms rather than the extraterrestrial equivalent of fish or whales. That has less to do with the chemistry of the Enceladean ocean than the energy available there for life. 

“On Earth the dominant energy source that all life uses, either directly or indirectly, is sunlight. You either photosynthesize directly, or you eat the plants that do it, or you eat the animals that eat the plants,” she says.  Sunlight doesn’t reach the moon’s waters through its icy shell, so energy likely comes from geothermal sources—the structure of ice crystals caught by Cassini suggests the grains formed near geothermal vents on the ocean floor, where water meets a rocky interior. 

“If you look at the net amount of energy that you get from that versus from sunlight, it’s orders of magnitude less,” Cable says. “That means you can either support a community of microbial cells, or you can have a handful of more energy-hungry organisms.” Enceladean whales are not entirely out of the question, but it would likely be “a lonely whale singing a sad, sad song all by itself,” she says with a laugh. “How terrible would that be?”  

To know whether any kind of life exists on Enceladus will require another mission to the moon. Nothing is immediately in the works, though the influential Astrobiological Decadal Survey has recommended a flagship NASA mission to Enceladus in the next 10 years. 

But two missions are heading to worlds similar to Enceladus. The European Space Agency’s Jupiter Icy Moons Explorer, or JUICE, mission launched in April and will arrive at Jupiter in 2031 to study the gas giant and its icy moons Ganymede, Callisto, and Europa. In 2024, NASA will launch the Europa Clipper mission, which should arrive at that moon by 2030. The recent findings on Enceladus give a tantalizing glimpse of what might lurk beneath those other icy surfaces: All three of the satellites are believed to contain subsurface oceans, too.

The post Every essential ingredient for life exists on an ocean moon in our solar system appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A spacecraft engineer’s wisdom from Mars 2020 and a disaster-stricken island https://www.popsci.com/science/the-boy-who-reached-for-the-stars/ Wed, 07 Jun 2023 10:00:00 +0000 https://www.popsci.com/?p=546465
NASA Perseverance rover being readied indoors for launch for the Mars 2020 mission
The Mars 2020 Perseverance rover being prepared for encapsulation in the a payload facility at Kennedy Space Center in Florida on June 18, 2020. NASA/KSC

'The Space Mechanic' illustrates the importance of taking risks, close to home and millions of miles away.

The post A spacecraft engineer’s wisdom from Mars 2020 and a disaster-stricken island appeared first on Popular Science.

]]>
NASA Perseverance rover being readied indoors for launch for the Mars 2020 mission
The Mars 2020 Perseverance rover being prepared for encapsulation in the a payload facility at Kennedy Space Center in Florida on June 18, 2020. NASA/KSC

Excerpt from The Boy Who Reached for the Stars: A Memoir by Elio Morillo. Published by HarperOne. Copyright © 2022 HarperCollins.

On September 20, 2017, Category 5 Hurricane María hit my beloved Puerto Rico, hovering over the island for the next 48 hours, uprooting trees, causing power and phone outages, and inflicting catastrophic devastation throughout the land. It was a terrifying stretch of time when those of us with loved ones in the path of this

destruction could only hope and pray they were okay. As we waited to get any type of news, my fix-it mentality kicked in—I needed to do something to channel my helplessness into action. I joined forces with a Puerto Rican who worked in another team at NASA Jet Propulsion Laboratory to begin collecting donations, so we would be ready to ship them out as soon as it was possible. Relief washed over us both when the worry laden silence was finally broken and we heard from our respective families and friends. More than anything, they had suffered material damage to their homes and surrounding streets, but everyone within our circles was okay otherwise. Rosa and Sonia described the experience as a powered-on jet engine sucking everything up into the air.

As more news was released of the extent of the damage people had suffered, my friend and I continued to organize donation efforts in Los Angeles. It was all we could do at the time. I had to carry my worry while I continued to work. I was assigned to avionics and thermal functions testing. In simple terms, the rover has two brains: its main day-to-day brain and what I call its lizard brain. The lizard brain is always running in the background, ready for fight or flight. It checks to make sure that the main computer, or main brain, is working well. If something goes south with the main brain, then the lizard brain can go through particular states to keep the system at a basic level of safety, putting the rover in a partially autonomous configuration that allows us time to figure out what to input to safely reconfigure its hardware.

The rover’s thermal behaviors are what helps keep it alive overnight, when Mars temperatures can drop to −100°F or lower, depending on the season. There are particular instruments and mechanisms that can only operate within a specific range of temperatures.

If they become too cold, we must be able to heat them up. If they’re too warm, we have to stop using them or actively cool them down to the range we want them to operate in. As we gradually entered an all-hands-on-deck phase ahead of our July 2020 launch date, I knew that if I was going to be an effective and successful member of the team, I needed to make the conscious decision to put my work first, but not before making my all-important pit stop to spend Christmas with my family.

We were developing the capabilities, the hardware, all of it, to fulfill a technology demonstration to test the first powered flight on Mars, but NASA HQ still hadn’t given the okay to add it to the Mars 2020 mission.

This time we met up in Florida. My grandparents, who didn’t travel often, joined us from New York. And I got to reunite with Sonia and Robert, who were temporarily living in the area while they sorted through Hurricane María’s damage back home. While my abuelo made sure the TV and music were set up and ready for our gathering, my abuela got busy in the kitchen, whipping up her famous casuela or caldo de bola together with extra sides to keep us all fed, full, and happy. My tías and tíos would give them a hand while making fun of each other and roasting my cousins. And a round of Telefunken (a game similar to rummy) was always in order, with bets of up to two dollars per person per round.

The highlight of this break wasn’t just spending quality time with my relatives and chosen family; it was also getting the chance to take my 91-year-old grandfather and my brother to the Kennedy Space Center—a first for the three of us. Walking into the center and suddenly being in the presence of all this antiquated hardware took my breath away. The exhibit featuring the Saturn V launch vehicle made me feel so small. I was mesmerized by how the 1950s team was able to design the stunning hardware displayed before me with the limited technology they had access to in comparison to what we have now. Sure, they had a relatively bigger budget and thousands of people working on one problem, which is not a luxury we enjoy, but they didn’t have our software and automated procedures, and they were doing it all for the first time. As if taking all of this in wasn’t enough, being there as a NASA engineer, walking the entire center by my grandfather’s side, with me as our tour guide, explaining each piece before us, was an unparalleled full-circle moment for me. I stopped several times, glanced at my grandfather, and quietly asked, “Abuelo, are you okay? Would you like us to sit down for a little while to rest?” but he outright refused any break, likely pushed forward by a sense of pride for his walking abilities as well as the sense of wonder that had taken hold of us all as we witnessed this history-making equipment. It was an unequivocal reminder of the legacy I was now helping build with the Mars 2020 mission.


Inspired by the history I had witnessed at the Kennedy Center, and with a renewed sense of purpose, I was more eager than ever to dive even deeper into the mission at stake. February 2018 found me interacting with the Ingenuity helicopter for the first time, more specifically its base station, a component of the helicopter system that would live on the rover. This is the piece of hardware that would communicate with the helicopter on Mars. We were developing the capabilities, the hardware, all of it, to fulfill a technology demonstration to test the first powered flight on Mars, but NASA HQ still hadn’t given the okay to add it to the Mars 2020 mission. So we were operating with the hope this green light would eventually be given, and we kept plowing ahead on the rover side, considering how we’d carry the helicopter, how we’d communicate with it, how we’d operate it from this base station. Initially, many of the people on the integration side of the rover were against the idea of integrating the helicopter as a separate system, because that meant it would also have its own separate battery. What if its battery caught fire while cruising through space or on the Mars surface? How would that damage the rover itself? “There’s no way the helicopter will work” was one line of thought. The other: “There’s no way you’ll be able to get all of this work done in time.” And the third: “This helicopter will be a distraction from the rest of the science the rover has to accomplish.” Was it a risk to do this tremendous amount of work for a helicopter that might never launch? Yes, but it was one some of us were willing to take.


As the summer neared, I set my mind on Puerto Rico and the risks and sacrifices they had been forced to take when Hurricane María hit their shores. The island had far from recovered from the damage sustained a little less than a year earlier, and my colleague (turned girlfriend) and I were still eager to help in any way we could. I decided to use my social media to reach out to teachers in Puerto Rico to see how we could help that summer. I quickly received a reply from a University of Michigan friend whose mom had a colleague, Marisa, in need of some help. With the community’s blessing, she and her husband had decided to take over an abandoned school in Los Naranjos, a neighborhood in Vega Baja, located near Dorado, and turn it into a community center. The local residents had lost so much during the hurricane that she was hell-bent on making a difference. Now they were looking for volunteer to get the center off the ground. My girlfriend and I created a three-day STEM program for kids between the ages of eight and 15, called Ingenieros del Futuro (Engineers of the Future). The activities we planned introduced the kids to basic engineering concepts and revolved around three themes: robotics, electricity, and rockets. I set up a GoFundMe to help pay for some of the materials, while we paid for everything else out of pocket.

When we arrived, seeing the devastation firsthand threw me off my orbit and momentarily pushed me into an impotent void. As I painstakingly drove through intersections where the traffic lights had gone dark due to the lack of power, I slowly took in the trees scattered around the area like giant twigs, displaced rooftops, cut-down electricity cables, and attempted to store this harrowing data in a corner of my mind so I could find my way back to our main focus: the kids. I’d give myself time to process this emotional oscillation later, when I returned home.

The Boy who reached for the Stars book cover. Silhouette of a NASA engineer in front of a blue starry sky. Text is in white with Mars replacing the "o" in "boy."
Courtesy of HarperOne

We immediately got the kids working and building several projects—a basic robot, an electric car that used a solar panel to power it, a satellite model, and a wind turbine—to illustrate robotics, sustainable energy, and space exploration. We also scheduled outdoor time to give their brains a break and burn some energy playing soccer with us. For the last project of their three-day journey, I taught them how to build a rocket with a two-liter plastic bottle and a few other readily available components. I had also purchased a bottle launch system that pumped up the rockets and had a trigger that allowed each kid to send their own rocket into the air.

Once it reached a certain height, a parachute they had built into their system with their own hands deployed, safely landing their creation. Their excitement during each launch, descent, and landing, about further engaging with technology and pursuing opportunities in STEM, gave me hope for the people of Puerto Rico. The island currently has to import most of its food, despite once being fully reliant on its own agriculture sector. With agritech becoming more accessible, combined with the development of hydroponics, vertical farming, and more, I see this as a potentially booming sector for Puerto Rico in the future. But they will need dedicated STEM workers to make it happen. The same goes for the ever-controversial power grid. As energy storage and solar, hydro, and wind power become more accessible, microgrids will thrive, and so will the jobs related to those renewable systems.

Sinergia Los Naranjos is still active in the community. Marisa successfully launched a kitchen for folks to run catering businesses, and her husband, Ricardo, runs a reef restoration effort where many of the kids participate and get scuba training. Workshops occur in partnership with local student groups from nearby universities, mostly through grassroots funding and efforts. These kids have the power to build a better future, and I hope to continue to be able to come alongside them and encourage these developments through outreach, philanthropy, and policy influence.


By the spring of 2019, I was working with a few team members to test the capability of our rover to charge the helicopter battery through its base station while traversing space. Batteries, including those in computers and cell phones, left uncharged for a long period of time lose their properties and can’t regain their full charging potential.

Similarly, overcharging a battery and leaving it stored for a long period of time will degrade its lifetime. We had to figure out the sweet spot for the helicopter battery, then find how to measure that charge and, based on that, how to charge it from the rover battery.

Once we figured this out through tests and failures and finally verified what worked, we had to come up with the sequence of steps that needed to be taken to charge the helicopter while flying through space. It was a complicated set of tests that took up a lot of our time but was essential to the helicopter’s functionality and safety.

That summer I began to write and execute integration procedures for the helicopter deployment system, which is the assembly at the bottom of the rover that would hold the helicopter and deploy it. The system consisted of a tiny robotic arm with a motor that would keep the helicopter upright so that it could be successfully dropped onto the Martian surface. After testing this capability and gathering the necessary parameters, we determined that we could indeed deploy it on Mars. A short while after this, JPL finally approved the addition of the helicopter to the Mars 2020 mission. We got the green light. Like most times in my life, the risk proved to be worth taking.

Buy The Boy Who Reached for the Stars by Elio Morillo here.

The post A spacecraft engineer’s wisdom from Mars 2020 and a disaster-stricken island appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Witness space history by tuning into the first almost-live stream from Mars https://www.popsci.com/science/mars-live-stream-watch-june-2023/ Fri, 02 Jun 2023 13:00:00 +0000 https://www.popsci.com/?p=545411
A graphic rendering of the ESA's Mars Express orbiter. Mars Express lifted off from Baikonur Cosmodrome aboard a Soyuz–Fregat rocket on June 2, 2003. It entered orbit around Mars on December 25, 2003 and reached its operational orbit in January 2004. The initial mission duration was one Martian year (687 Earth days), completed in September 2005.
Mars Express lifted off from Baikonur Cosmodrome aboard a Soyuz–Fregat rocket on June 2, 2003. It entered orbit around Mars on December 25, 2003 and reached its operational orbit in January 2004. The initial mission duration was one Martian year (687 Earth days), completed in September 2005. ESA/Alex Lutkus

Live from the Red Planet, it’s Mars Express’ 20th birthday!

The post Witness space history by tuning into the first almost-live stream from Mars appeared first on Popular Science.

]]>
A graphic rendering of the ESA's Mars Express orbiter. Mars Express lifted off from Baikonur Cosmodrome aboard a Soyuz–Fregat rocket on June 2, 2003. It entered orbit around Mars on December 25, 2003 and reached its operational orbit in January 2004. The initial mission duration was one Martian year (687 Earth days), completed in September 2005.
Mars Express lifted off from Baikonur Cosmodrome aboard a Soyuz–Fregat rocket on June 2, 2003. It entered orbit around Mars on December 25, 2003 and reached its operational orbit in January 2004. The initial mission duration was one Martian year (687 Earth days), completed in September 2005. ESA/Alex Lutkus

Today, the European Space Agency (ESA) will livestream imagery from its Mars Express orbiter in near-real time. The live stream is scheduled to begin on June 2 at 12:00 PM EDT. You can watch the hour-long live stream on the ESA’s YouTube channel

Mars Express has been orbiting Mars for the past 20 years, sending back data on the vast landscape of the Red Planet along the way. Slight technical delays have hampered these views, and sometimes the images take hours and even days to transmit to Earth. 

[Related: The Mars Express just got up close and personal with Phobos.]

That changes with today’s historic livestream. If all goes according to plan, today’s images will get to Earth about 18 minutes after they are taken. It will take 17 minutes for light to travel from Mars to Earth and then about one minute to pass through the servers and wires on the ground.

According to the ESA, “This will be the closest you can get to a live view from the Red Planet.”

New images will be seen roughly every 50 seconds as they are beamed down directly from the orbiter’s Visual Monitoring Camera (VMC).

On June 2, 2003, Mars Express launched with a lander called Beagle 2. The pair arrived in orbit on December 25, 2003, and Beagle 2 touched ground the same day. However, Beagle 2 never made contact with Earth because at least one of its four solar panels failed to deploy properly, thus blacking the landers communications antenna. 

Mars Express still moved on as planned and began to study our celestial neighbor with seven different instruments. In two decades, the orbiter has already accomplished a great deal, including detecting methane in the Martian atmosphere, spotting a possible subsurface lake near the Red Planet’s south pole, and mapping the composition of ice near both of the planet’s poles. 

The VMC, or Mars Webcam, was not initially planned to break so many records. Its primary job was just to monitor the separation of the Beagle 2 lander from the Mars Express spacecraft. After completing that first mission, the camera was turned off. 

In 2007, the VMC was turned back on and used for science and educational outreach activities. It even took advantage of the social media boom of the aughts and got its own Flickr page and a Twitter account that has now moved to Mastodon. Scientists realized a little later that these images could be used for “proper” science.

[Related: The ill-fated Beagle 2 may have landed on Mars after all.]

“We developed new, more sophisticated methods of operations and image processing, to get better results from the camera, turning it into Mars Express’s 8th science instrument,” VMC team member Jorge Hernández Bernal said in a statement. “From these images, we discovered a great deal, including the evolution of a rare elongated cloud formation hovering above one of Mars’ most famous volcanoes – the 20 km-high [12 miles] Arsia Mons.”

To celebrate Mars Express’ 20th birthday, multiple ESA teams have spent months developing the tools that will allow for higher-quality, science-processed images to be streamed live for a full hour back on Earth. 

“This is an old camera, originally planned for engineering purposes, at a distance of almost three million kilometers [18 million miles] from Earth—this hasn’t been tried before and to be honest, we’re not 100 percent certain it’ll work,” Spacecraft Operations Manager at ESA’s mission control center in Darmstadt, Germany James Godfrey said in a statement. “But I’m pretty optimistic. Normally, we see images from Mars and know that they were taken days before. I’m excited to see Mars as it is now – as close to a martian ‘now’ as we can possibly get!’

The post Witness space history by tuning into the first almost-live stream from Mars appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A Strawberry Moon, solstice, and meteor shower will dance across the skies this June https://www.popsci.com/science/stargazing-guide-june-2023/ Wed, 31 May 2023 20:00:00 +0000 https://www.popsci.com/?p=544716
A full moon rises with clouds below. June's Strawberry Moon peaks on June 3.
Moon fans should keep their eyes peeled for the Strawberry Moon on June 3 and 4. NASA/Joel Kowsky

Summer officially begins in the Northern Hemisphere on June 21 at 10:58 AM EDT.

The post A Strawberry Moon, solstice, and meteor shower will dance across the skies this June appeared first on Popular Science.

]]>
A full moon rises with clouds below. June's Strawberry Moon peaks on June 3.
Moon fans should keep their eyes peeled for the Strawberry Moon on June 3 and 4. NASA/Joel Kowsky
June 1 and 2Mars Passes Through Beehive Star Cluster
June 3 and 4Full Strawberry Moon
June 21Summer Solstice
June 27Bootid Meteor Shower Maximum

Those of us in the Northern Hemisphere are enjoying the longest daylight hours of the year ahead of the summer solstice, and across the world many may even be able to see a unique sunspot on the surface of our favorite star.  Summer stargazing season is quickly approaching, but summer skies can be hazy which makes  some celestial events difficult to see. But there is still plenty to see in the mild night skies this June. Here are some events to look out for and if you happen to get any stellar sky photos, tag us and include #PopSkyGazers.

[Related: The Strawberry Moon, explained.]

June 1 and 2- Mars passes through Beehive star cluster

To kick off the month, Mars will be passing through a star cluster called the Beehive cluster or M44. It’s located in the crabby constellation Cancer, and Mars will appear as a brilliant red ruby surrounded by sparkly diamonds.  

To find Mars, first look for the bright planet Venus in the western sky. The two bright stars that are strung out to one side of Venus are the constellation Gemini’s twin stars Castor and Pollux. Mars should be the reddish light just above Venus, Pollux, and Castor. Binoculars and a dark sky will help you see a smattering of stars just beside Mars. 

The Beehive cluster is about 557 light-years away from Earth and is home to at least two planets. 

June 3 and 4- Full Strawberry Moon

June’s full moon will reach peak illumination at 11:43 PM EDT on June 3. Just after sunset, look in the southeastern sky to watch the moon rise above the horizon. June’s full moon is typically the last full moon of the spring or the first of the summer. 

The name Strawberry Moon is not a description of its color, but instead a reference to the ripening of “June-bearing” strawberries that are ready to be gathered and gobbled. For thousands of years, the  Algonquian, Ojibwe, Dakota, and Lakota peoples used this term to describe a time of great abundance. Some tribal nations in the northeastern US, including the Wampanoag nation, celebrate Strawberry Thanksgiving to show appreciation for the spring and summer’s first fruits. 

Other names for June’s full moon include the Gardening Moon or Gitige-giizis in Anishinaabemowin (Ojibwe), the Moon of Birthing or Ignivik in Inupiat, and the River Moon or Iswa Nuti in the Catawba Language of the Catawba Indian Nation in South Carolina.

[Related: See hot plasma bubble on the sun’s surface in powerful closeup images.]

June 21- Summer Solstice

Summer officially begins in the Northern Hemisphere at 10:58 AM EDT on June 21 which marks the summer solstice. This is when the sun travels along its northernmost path in the sky. At the solstice, Earth’s North Pole is at its maximum tilt of roughly 23.5 degrees towards the sun. It is also the longest day of the year, and you can expect roughly 16 hours of daylight on June 21 in some spots in the Northeast.

After June 21, the sun appears to reverse course and head back in the opposite direction, towards the south, until the next solstice in December. 

June 27- Bootid Meteor Shower Maximum

June’s Bootid meteor shower begins on June 22, but it is expected to reach its peak rate of meteors around 7 PM EDT on June 27. The Bootid meteors should be visible when the constellation Bootes is just above the horizon. The moon will be in its first quarter phase at the shower’s peak, and will set at about 1:30 in the morning, making for minimal light interference later in the night. 

June’s Bootid meteor shower was created by the comet 7P/Pons-Winnecke and expected to last until July 2.

The same skygazing rules that apply to pretty much all space-watching activities are key this month: Go to a dark spot away from the lights of a city or town and let the eyes adjust to the darkness for about a half an hour. Then, just sit back and let the summer skies dazzle.

The post A Strawberry Moon, solstice, and meteor shower will dance across the skies this June appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This hot Jupiter exoplanet unexpectedly hangs out with a super-Earth https://www.popsci.com/science/gas-giant-hot-jupiter-exoplanet/ Wed, 24 May 2023 10:00:00 +0000 https://www.popsci.com/?p=542886
An illustration of a hot Jupiter planet, based on Hubble observations.
A cloudy Jupiter-like planet orbiting close to a fiery star, in an illustration based on space telescope observations. NASA/JPL-Caltech

Gas giants that orbit very close to stars are normally loners. But this one has a friend.

The post This hot Jupiter exoplanet unexpectedly hangs out with a super-Earth appeared first on Popular Science.

]]>
An illustration of a hot Jupiter planet, based on Hubble observations.
A cloudy Jupiter-like planet orbiting close to a fiery star, in an illustration based on space telescope observations. NASA/JPL-Caltech

Our solar system has a suite of eight planets—rocky Mars and Earth, the ice giants, and massive gas planets—but other stars often have a much smaller group. Some suns have just one exoplanet orbiting around them. These loner worlds are often one specific type: A huge gas giant that orbits very close to its star, known as a hot Jupiter.

A newly discovered exoplanet, however, has challenged this view, showing that maybe not all hot Jupiters go solo. Last week, astronomers announced that a hot Jupiter orbiting a star 400 light years away has a pal: It shares its solar system with WASP-84c, a rocky planet so large it’s known as a super-Earth. This discovery was made public as a preprint, a research paper that has yet to undergo peer review, and submitted to the journal Monthly Notices of the Royal Astronomical Society for official publication.

Hot Jupiters are a weird kind of planet. We don’t have any in our own solar system. Until the first was spotted, astronomers never expected them to exist. Gas giants like Jupiter usually only form far away from their stars, where things are cool enough for gas to stay safe from blazing solar heat. If a Jupiter-like planet has to be born at a distance, then, how can it get so close to its star? 

Astronomers have three main theories for how this happens. Two are gentle, and one is catastrophic. First, a hot Jupiter could move inward from its birthplace due to little gravitational nudges from the protoplanetary disk, a collection of dust and gas used to form planets in a star’s youth. Second, maybe we’re wrong about the theory that Jupiter-like planets must form far from stars. Instead, these planets are simply born where we see them. Both of these scenarios would allow hot Jupiters to have smaller friend planets hanging out nearby.

[Related: Ridiculously hot gas giant exoplanet is about to be swallowed by its dying sun]

But the third option is the most dynamic. Jupiters could form far out, but then encounter other planets that change the gas giants’ orbits. The gravity of the other planets would force a hot Jupiter into a stretched out, elliptical path, and then the gravity of the star would pull the gas giant in close, resulting in a circular, super-short orbit. In this violent dance, any low mass planets would be destroyed—creating the lonely hot Jupiter.

The best theory for the origin of this particular hot Jupiter, named WASP-84b, is the first—that a disk helped shepherd the planet through the solar system. Previous observations showed that the gas giant’s spin is aligned with the star’s, a sign that the large planet migrated within the protoplanetary disk instead of pinballing around with other planets. The discovery of super-Earth WASP-84c now adds more evidence to the case that this hot Jupiter formed with a nudge, not a planet-destroying bang—and that scenario may be more common than previously thought.

WASP-84c joins a growing list of smaller planetary buddies to hot Jupiters: WASP-47 b, Kepler 730 b, and WASP-132 b, to name a few. “The discovery of low-mass planetary companions like WASP-84c suggests that not all hot Jupiter systems formed under violent scenarios, as previously thought,” says lead author Gracjan Maciejewski from the Institute of Astronomy of the Nicolaus Copernicus University in Torun, Poland.

Maciejewski and his colleagues used NASA’s Transiting Exoplanet Survey Satellite (TESS) to spot WASP-84c. TESS hunts for exoplanets using the transit method, where a telescope watches a star for teensy dips in its brightness, caused by a dark planet passing in front. 

[Related: A deep-space telescope spied an exoplanet so hot it can vaporize iron]

WASP-84c “was too small in radius to have been discovered by the original WASP survey, who discovered the hot Jupiter,” according to Caltech astronomer Juliette Becker, who is not affiliated with the new discovery. “It’s a great example of what TESS can do,” she adds.

With the transit method, astronomers can figure out a planet’s dimensions. However, to find out how much it weighs, they need different data, from another exoplanet-detecting technique known as the radial velocity method. When WASP-84c’s discoverers gathered this extra data, they determined that the planet has about 15 times the mass of Earth. Like our Blue Marble, it’s probably made of iron and rocks, too.

Jonathan Brande, a University of Kansas astronomer not involved in the discovery, thinks such discoveries will become even more common as the James Webb Space Telescope brings in new exoplanet data, deepening our understanding of how these planet pairs came to be. “I would not be surprised if we see further results on this system in the near future,” he says.

The post This hot Jupiter exoplanet unexpectedly hangs out with a super-Earth appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
See hot plasma bubble on the sun’s surface in powerful closeup images https://www.popsci.com/science/sun-images-powerful-solar-telescope/ Mon, 22 May 2023 17:00:00 +0000 https://www.popsci.com/?p=542668
A detailed example of a light bridge crossing a sunspot’s umbra. Hot solar material (plasma) rises in the bright centers of these surrounding “cells,” cools off, and then sinks below the surface in dark lanes in a process known as convection.
Hot solar material (plasma) rises in the bright centers of surrounding “cells,” cools off, and then sinks below the surface in dark lanes in a process known as convection. Image Credit: NSF/AURA/NSO Image Processing: Friedrich Wöger(NSO), Catherine Fischer (NSO) Science Credit: Philip Lindner at Leibniz-Institut für Sonnenphysik (KIS)

Hawaii's Daniel K. Inouye Solar Telescope is giving us a detailed look at sunspots and convection cells.

The post See hot plasma bubble on the sun’s surface in powerful closeup images appeared first on Popular Science.

]]>
A detailed example of a light bridge crossing a sunspot’s umbra. Hot solar material (plasma) rises in the bright centers of these surrounding “cells,” cools off, and then sinks below the surface in dark lanes in a process known as convection.
Hot solar material (plasma) rises in the bright centers of surrounding “cells,” cools off, and then sinks below the surface in dark lanes in a process known as convection. Image Credit: NSF/AURA/NSO Image Processing: Friedrich Wöger(NSO), Catherine Fischer (NSO) Science Credit: Philip Lindner at Leibniz-Institut für Sonnenphysik (KIS)

Just in time for the light-filled days before the summer solstice in the Northern Hemisphere, the National Science Foundation’s Daniel K. Inouye Solar Telescope (DKIST) has released some stellar new images of the sun. Observations from the biggest and most powerful solar telescope on Earth show the movement of plasma in the solar atmosphere, intricate details of the sunspot regions, and the sun’s roiling convective cells. One of DKIST’s first-generation instruments, called the Visible-Broadband Imager, obtained these snaps of the sun that were released to the public on May 19.

The sunspots in the images are cool and dark regions on the sun’s “surface,” called the photosphere. Although sunspots are short-lived, strong magnetic fields persist here. The sunspots vary in size, but many are about the size of Earth, if not even bigger. Groups of sunspots can erupt in explosive events such as solar flares or coronal mass ejections (CME), which generate solar storms. Flares and CMEs influence the sun’s outermost atmospheric layer called the heliosphere, and these disturbances have a long reach, even messing with Earth’s infrastructure.

[Related: The sun’s chromosphere is shades of golden in these new images.]

Sunspot activity is also tied to cycles of about 11 years. During a cycle, sunspot and flare activity will rise to a peak solar maximum, when the sun’s poles switch places. Then the activity recedes, falling to almost zero at solar minimum. Our most recent solar cycle, Solar Cycle 25, began in 2019, and is on the upswing: The next solar maximum is expected to take place in 2025.

Astronomers and solar physicists don’t know what creates sunspots or drives these solar cycles, but understanding more can help Earth prepare for CMEs. These ejections can hurl giant clouds of charged particles that slam into our planet’s magnetic field, affecting satellites, radio communications, and even the power grid. 

Not all CMEs wreak havoc, though. Some cause the colorful aurora borealis (or northern lights) in the Northern Hemisphere and aurora australis in the Southern Hemisphere. In April, a CME generated a severe geomagnetic storm. While this geomagnetic storm was not disruptive, the northern lights it made were visible as far south as Arizona. 

[Related: How hundreds of college students are helping solve a centuries-old mystery about the sun.]

The images also show convection cells, which measure up to 994 miles across, in the sun’s quiet regions down to a resolution of about 12 miles. The convection cells give the protosphere, or the visible surface of the sun, a speckled popcorn-like texture, as piping hot plasma rises up from the cells’ center and then travels out to the edges before cooling and falling

Sun photo
Heating plasma rises in the bright, convective “bubbles,” then cools and falls into the dark, intergranular lanes. The bright structures within these intergranular lanes are signatures of magnetic fields. CREDIT: Imaging: NSF/AURA/NSO. Image Processing: Friedrich Wöger(NSO), Catherine Fischer (NSO)

In the layers of the solar atmosphere, the chromosphere sits above the photosphere. The chromosphere sometimes has dark hair-like threads of plasma called fibrils or spicules. They range from 125 to 280 miles in diameter and erupt up to the chromosphere from the photosphere and last only for a few minutes. 

We can expect to see more stunning images of the cells and other solar features in the coming years, as the solar telescope becomes fully operational. DKIST is named in honor of the late Hawaiian Senator Daniel K. Inouye, is the largest solar telescope in the world at 13 feet-wide. It rests on the peak of the mountain and volcano Haleakalā (or “House of the Sun”) on the island of Maui. It is currently in Operations Commissioning Phase, the observatory’s learning and transitioning period. Scientists will use the solar telescope’s unique ability to capture data in unprecedented detail to better understand the sun’s magnetic field and drivers behind solar storms.

The post See hot plasma bubble on the sun’s surface in powerful closeup images appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Mars rover snaps pics of dusty craters that may have once roared with water https://www.popsci.com/science/perseverance-rover-mars-nasa-river/ Fri, 19 May 2023 15:00:00 +0000 https://www.popsci.com/?p=542167
NASA’s Perseverance Mars rover captured this mosaic of an isolated hill nicknamed “Pinestand.” Scientists think sedimentary layers stacked on top of one another here could have been formed by a deep, fast-moving river
NASA’s Perseverance Mars rover captured this mosaic of an isolated hill nicknamed “Pinestand.” Scientists think sedimentary layers stacked on top of one another here could have been formed by a deep, fast-moving river. NASA/JPL-Caltech/ASU/MSSS

NASA’s ‘six-wheeled scientist’ is chugging along.

The post Mars rover snaps pics of dusty craters that may have once roared with water appeared first on Popular Science.

]]>
NASA’s Perseverance Mars rover captured this mosaic of an isolated hill nicknamed “Pinestand.” Scientists think sedimentary layers stacked on top of one another here could have been formed by a deep, fast-moving river
NASA’s Perseverance Mars rover captured this mosaic of an isolated hill nicknamed “Pinestand.” Scientists think sedimentary layers stacked on top of one another here could have been formed by a deep, fast-moving river. NASA/JPL-Caltech/ASU/MSSS

In its two years and three months of exploring the Red Planet, NASA’s Perseverance Rover has been one busy moving Martian science lab. It has detected signs of past chemical reactions, begun building  a Martian rock depot, and recorded audio of a dust devil for the first time.

[Related: Mars’s barren Jezero crater had a wet and dramatic past.]

Here are a few of the “six-wheeled scientist’s” most recent highlights this month.

New Belva Crater images

Perseverance’s Mastcam-Z instrument collected 152 images while looking deep into Belva Crater. Belva is a large impact crater that lies within the far larger Jezero Crater, which is where Perseverance landed in 2021. The new images are dramatic to look at, but also provide the science team with new insights into Jezero crater’s interior. 

“Mars rover missions usually end up exploring bedrock in small, flat exposures in the immediate workspace of the rover,” deputy project scientist of Perseverance at NASA’s Jet Propulsion Laboratory Katie Stack Morgan said in a statement. “That’s why our science team was so keen to image and study Belva. Impact craters can offer grand views and vertical cuts that provide important clues to the origin of these rocks with a perspective and at a scale that we don’t usually experience.”

According to NASA, it is similar to a geology professor on Earth taking their students to visit highway “roadcuts.” These are places where rock layers and other geological features are visible after construction crews have sliced vertically into the rock. Belva Crater represents a natural Martian roadcut. 

The interior of Belva Crater on Mars.
This view of the interior of Belva Crater was generated using data collected by the Mastcam-Z instrument aboard NASA’s Perseverance Mars rover on April 22, 2023. CREDIT: NASA/JPL-Caltech/ASU/MSSS.

The rover took the images on April 22– the mission’s 772nd Martian day, or “sol”. It was parked just west of Belva Crater’s rim on a light-toned rocky outcrop that Perseverance’s science team calls “Echo Creek.” This 0.6-mile-wide crater was created by a meteorite impact eons ago, and shows multiple locations of exposed bedrock and a region where the sedimentary layers angle downward. 

These steep “dipping beds” potentially indicate the presence of a large Martian sandbar that was deposited by a river channel flowing into the ancient lake that Jezero Crater once held. The science team believes that the large boulders in the crater’s foreground are either chunks of bedrock that the meteorite impact exposed, or the rocks were potentially carried to the crater by a long gone river system.

NASA says the team will continue to search for answers by comparing the features found in the bedrock near the rover with the larger larger-scale rock layers that are visible in the distant crater walls.

Ancient and wild Martian river

Perseverance’s Mastcam-Z instrument also took some new images that possibly show signs of an ancient Martian river. Some evidence shows that this rocky river was possibly very deep and incredibly fast. This now-dry river was part of a network of waterways that flowed into Jezero Crater.

[Related: Name a better duo than NASA’s hard-working Mars rover and helicopter.]

Better understanding of these watery environments could help scientists find signs of ancient microbial life that may have been preserved in the reddish-hued rocks of Mars.

The rover is exploring the top of an 820 feet tall fan-shaped pile of sedimentary rock, with curving layers that suggest water once flowed there. Scientists want to answer whether the water flowed into relatively shallow streams like one that NASA’s Curiosity rover found evidence of in Gale Crater or if Jezero Crater’s was a more powerful river system.

When stitched together, the images come together like a patchwork quilt with evidence of a more raging river because of the coarse sediment grains and cobbles. 

An isolated hill nicknamed “Pinestand.” Scientists think sedimentary layers stacked on top of one another here could have been formed by a deep, fast-moving rive
NASA’s Perseverance Mars rover captured this mosaic of an isolated hill nicknamed “Pinestand.” Scientists think sedimentary layers stacked on top of one another here could have been formed by a deep, fast-moving river. CREDIT: NASA/JPL-Caltech/ASU/MSSS.

“Those indicate a high-energy river that’s truckin’ and carrying a lot of debris. The more powerful the flow of water, the more easily it’s able to move larger pieces of material,” postdoctoral researcher at NASA’s Jet Propulsion Laboratory Libby Ives, said in a statement.

Ives has a background in studying Earth’s rivers, and spent the last six months analyzing images of Mars’ surface. “It’s been a delight to look at rocks on another planet and see processes that are so familiar,” Ives said.

Both of these discoveries will help Perseverance’s astrobiology mission that includes the search for signs of ancient microbial life. The rover will continue to characterize and study Mars’ geology and past climate, while paving the way for human exploration of the Red Planet, and will also be the first mission to collect and cache Martian rock and regolith.

The post Mars rover snaps pics of dusty craters that may have once roared with water appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How hundreds of college students are helping solve a centuries-old mystery about the sun https://www.popsci.com/science/solar-flare-coronal-heating-college-study/ Wed, 17 May 2023 10:00:00 +0000 https://www.popsci.com/?p=541468
Magnetic arches and solar flares emerging from the upper half of the sun's corona
Coronal loops on the sun are captured in ultraviolet light using the Atmospheric Imaging Assembly (AIA) instrument on NASA’s Solar Dynamics Observatory. NASA/SDO

Astronomers-in-training spent thousands of hours peering at tiny solar flares that space telescopes missed.

The post How hundreds of college students are helping solve a centuries-old mystery about the sun appeared first on Popular Science.

]]>
Magnetic arches and solar flares emerging from the upper half of the sun's corona
Coronal loops on the sun are captured in ultraviolet light using the Atmospheric Imaging Assembly (AIA) instrument on NASA’s Solar Dynamics Observatory. NASA/SDO

A team of more than 1,000 astronomers and college students just took a step closer to solving one of the long-lasting mysteries of astronomy: Why is the sun’s outer layer, known as the corona, so ridiculously hot? The solar surface is 10,000°F, but a thousand miles up, the sun’s corona flares hundreds of times hotter. It’s like walking across the room to escape an overzealous space heater, but you feel warmer far away from the source instead of cooler, totally contrary to expectations.

The research team used hundreds of observations of solar flares—huge ejections of hot plasma from our star’s surface—to determine what’s heating up the sun’s corona, in results published May 9 in The Astrophysical Journal. What’s really striking about this result, though, is how they did it: with the help of hundreds of undergrads taking physics classes at the University of Colorado, totaling a whopping 56,000 hours of work over multiple years.

Lead author James Paul Mason, research scientist and engineer at the Johns Hopkins Applied Physics Laboratory, calls this a “win-win-win scenario.” He adds, “We were able to harness a ton of brainpower and apply it to a real scientific challenge, the students got to learn firsthand what the scientific process looks like.”

[Related: Volunteer astronomers bring wonders of the universe into prisons]

The classroom project began in 2020, when University of Colorado physics professor Heather Lewandowski found herself teaching a class on experimental physics, which suddenly had to pivot online due to the COVID-19 pandemic—quite the challenge, especially for a hands-on science course. Luckily, Mason had an idea for a solar flare project that needed a lot of hands, and Lewandowski, who usually researches a totally different topic in quantum mechanics, saw that as an opportunity for her students. 

“The question of why the sun’s corona is so much hotter than the ‘surface’ of the sun is one of the main outstanding questions in solar physics,” says Lewandowski. There are two leading explanations for this dilemma, known as the coronal heating problem. One theory suggests that waves in the sun’s mega-sized magnetic field push heat into the corona. The other claims that small, unseen solar flares called nanoflares heat it up, like using a thousand matches instead of one big blow torch. 

Nanoflares are too small for our telescopes to spot, but by studying the sizes of other larger flares, scientists can estimate the prevalence of these little radiation bursts. And, although artificial intelligence is improving every day, automated programs can’t yet do the kind of analysis that Mason and Lewandowski needed. Groups of students in Lewandowski’s class each used data on a different solar flare, getting into nitty-gritty detail to measure how much energy each one dumped into the corona. Together, their results suggest nanoflares might not be powerful enough to heat up the corona to the wild temperatures we see.

[Related: Small ‘sparks’ on the sun could be key to forecasting dramatic solar weather]

The scientific result is only half of the news, though. Lewandowski and Mason pioneered a new way to bring real research into the classroom, giving students a way to not only learn about science, but do it themselves. This type of large-scale student research effort is more common in biology and chemistry, but was pretty much unheard of in physics—until now. “The students participated in all aspects of the research from literature review, meetings with the principal investigator, a proposal phase, data analysis, and peer review of their analysis,” says Lewandowski. The involvement of many students, and their work in groups, is also a reminder that “science is inherently a collaborative endeavor,” she adds.

“I hope that we inspire some professors out there to try this with their classes,” says Mason. “I’m excited to see what kinds of results they’re able to achieve.”

The post How hundreds of college students are helping solve a centuries-old mystery about the sun appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Saturn’s icy rings may be a relatively new addition to the gas giant’s signature look https://www.popsci.com/science/saturn-ring-age/ Fri, 12 May 2023 19:00:00 +0000 https://www.popsci.com/?p=540836
A closeup of Saturn's colorful rings. The image was taken on June 30, 2004 using the Cassini spacecraft’s Ultraviolet Imaging Spectrograph as it entered the planet’s orbit.
This colorful cosmic rainbow portrays a section of Saturn’s beautiful rings. The image was taken on June 30, 2004 using the Cassini spacecraft’s Ultraviolet Imaging Spectrograph as it entered the planet’s orbit. NASA/JPL/University of Colorado

Space dust may be able to tell scientists the age of the awe-inspiring phenomenon.

The post Saturn’s icy rings may be a relatively new addition to the gas giant’s signature look appeared first on Popular Science.

]]>
A closeup of Saturn's colorful rings. The image was taken on June 30, 2004 using the Cassini spacecraft’s Ultraviolet Imaging Spectrograph as it entered the planet’s orbit.
This colorful cosmic rainbow portrays a section of Saturn’s beautiful rings. The image was taken on June 30, 2004 using the Cassini spacecraft’s Ultraviolet Imaging Spectrograph as it entered the planet’s orbit. NASA/JPL/University of Colorado

It turns out that Saturn’s signature rings are a relatively new accessory. A study published May 12 in the journal Science Advances found that the planet’s colorful rings are no more than 400 million years old, while Saturn itself is about 4.5 billion years old.

[Related: Hubble telescope spies Saturn’s rings in ‘spoke season.’]

Saturn’s rings have captivated astronomers for over four centuries. In 1610, famed Italian astronomer Galileo Galilei first observed the rings using a telescope, but he did not know what they were. By the 19th century, a Scottish scientist named James Clerk Maxwell concluded that the rings couldn’t be solid, but were actually made up of many individual pieces. 

Throughout the 20th century, it was assumed that the rings came about at the same time as Saturn. This raised some questions, particularly why the rings were sparkling clean. To figure out why, the team on this study looked closely at an object that annoys allergy sufferers and neatniks alike–dust. Tiny grains of rocky material constantly wash through the solar system and this flux of material can leave behind a thin layer of dust on planetary bodies– including Saturn’s icy rings. Like running your finger along the dusty surface of an old house, the team used these dust layers to see how quickly the layer builds on Saturn’s rings.

“Think about the rings like the carpet in your house,” study co-author and physicist at the University of Colorado Boulder Sascha Kempfsaid Kempf said in a statement. “If you have a clean carpet laid out, you just have to wait. Dust will settle on your carpet. The same is true for the rings.”

From 2004 to 2017, the team used an instrument aboard NASA’s late Cassini spacecraft called the Cosmic Dust Analyzer. The bucket-shaped Cosmic Dust Analyzer scooped up small particles as they whizzed by. 

The team collected 163 grains over 13 years that had all originated from beyond Saturn’s close neighborhood. Using the grains, they calculated that Saturn’s rings have likely been gathering dust in space for only a few hundred million years–making them relatively new in space terms. 

[Related: NASA hopes its snake robot can search for alien life on Saturn’s moon Enceladus.]

“We know approximately how old the rings are, but it doesn’t solve any of our other problems,” Kempf said. “We still don’t know how these rings formed in the first place.”

The team estimated that this interplanetary grime would add far less than a single gram of dust to each square foot on Saturn’s rings every year. This is not a lot of dust, but would still add up over millions of years. 

Scientists now know that the seven rings are made of countless ice chunks, most of which are about the size of a boulder. The ice of the rings weighs about half as much as Saturn’s moon Mimas and stretches close to 175,000 miles from the planet’s surface. 


Future studies into the space dust could reveal more about planetary age, thanks to a more sophisticated dust analyzer that will be aboard NASA’s upcoming Europa Clipper mission. This mission is scheduled to launch in October 2024 and will explore Jupiter’s moon Europa and if this icy moon could harbor conditions suitable for life.

The post Saturn’s icy rings may be a relatively new addition to the gas giant’s signature look appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
NASA hopes its snake robot can search for alien life on Saturn’s moon Enceladus https://www.popsci.com/technology/eels-robot-saturn-enceladus-moon/ Mon, 08 May 2023 19:00:00 +0000 https://www.popsci.com/?p=539793
Concept art of NASA EELS snake robot on icy surface of Saturn's moon, Enceladus
The 200-pound robot is designed to maneuver both across ice and underwater. NASA/JPL-CalTech

EELS could one day wriggle its way into Enceladus' hidden oceans in search of extraterrestrial life.

The post NASA hopes its snake robot can search for alien life on Saturn’s moon Enceladus appeared first on Popular Science.

]]>
Concept art of NASA EELS snake robot on icy surface of Saturn's moon, Enceladus
The 200-pound robot is designed to maneuver both across ice and underwater. NASA/JPL-CalTech

At least 83 moons orbit Saturn, and experts believe its most reflective one could harbor life underneath its icy surface. To find out, NASA scientists hope to send a massive serpentine robot to scour Enceladus, both atop its frozen ground—and maybe even within a hidden ocean underneath.

As CBS News highlighted on Monday, researchers and engineers are nearing completion of their Exobiology Extant Life Surveyor (EELS) prototype. The 16-foot-long, 200-pound snakelike bot is capable of traversing both ground and watery environments via “first-of-a-kind rotating propulsion units,” according to NASA’s Jet Propulsion Laboratory. These repeating units could act as tracks, gripping mechanisms, and underwater propellers, depending on the surrounding environment’s need. The “head” of EELS also includes 3D mapping technology alongside real-time video recording and transmission capabilities to document its extraplanetary adventure.

[Related: Saturn’s rings have been slowly heating up its atmosphere.]

In theory, EELS would traverse the surface of Enceladus towards one of the moon’s many “plume vents,” which it could then enter to use as a passageway towards its oceanic source. Over 100 of these vents were discovered at Enceladus’ southern pole by the Cassini space probe during its tenure around Saturn. Scientists have since determined the fissures emitted water vapor into space that contained amino acids, which are considered pivotal in the creation of lifeforms.

NASA EELS snake robot in ice skating rink next to researchers.
EELS goes ice-skating. CREDIT: NASA/JPL-CalTech.

To assess its maneuverability, NASA researchers have already taken EELS out for test drives in environments such as an ice skating rink in Pasadena, CA, and even an excursion to Athabasca Glacier in Canada’s Jasper National Park. Should all go as planned, the team hopes to present a finalized concept by fall 2024. But be prepared to wait a while to see it in action on Enceladus—EELS’ journey to the mysterious moon would reportedly take roughly 12 years. Even if it never makes it there, however, the robotic prototype could prove extremely useful closer to Earth, and even on it. According to the Jet Propulsion Lab, EELS could show promise exploring the polar caps of Mars, or even ice sheet crevasses here on Earth.

[Related: Saturn has a slushy core and rings that wiggle.]

Enceladus’ fascinating environment was first unveiled thanks to NASA’s historic Cassini space probe. Launched in 1997, the satellite began transmitting data and images of the planet and its moons back to Earth after arriving following a 7 year voyage. After 13 years of service, a decommissioned Cassini descended towards Saturn, where it was vaporized within the upper atmosphere’s high pressure and temperature. Although NASA could have left Cassini to cruise sans trajectory once its fuel ran out, they opted for the controlled demolition due to the slim possibility of crashing into Enceladus or Titan, which might have disrupted the potential life ecosystems scientists hope to one day discover. 

The post NASA hopes its snake robot can search for alien life on Saturn’s moon Enceladus appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Hidden oceans could be lurking deep within Uranus’ moons https://www.popsci.com/science/uranus-moon-oceans/ Mon, 08 May 2023 14:00:00 +0000 https://www.popsci.com/?p=539624
A NASA image of the planet Uranus with six of its 27 known moons, Ariel, Puck, Miranda, Umbriel, Titania, and Oberon, labeled.
This wider view of the Uranian system released on April 06, 2023 was taken with the James Webb Space Telescope’s NIRCam instrument features the planet Uranus as well as six of its 27 known moons (most of which are too small and faint to be seen in this short exposure). A handful of background objects, including many galaxies, are also seen. SCIENCE: NASA, ESA, CSA, STScI. IMAGE PROCESSING: Joseph DePasquale (STScI)

Oceans may be dwelling in some of our solar system’s unlikely spots.

The post Hidden oceans could be lurking deep within Uranus’ moons appeared first on Popular Science.

]]>
A NASA image of the planet Uranus with six of its 27 known moons, Ariel, Puck, Miranda, Umbriel, Titania, and Oberon, labeled.
This wider view of the Uranian system released on April 06, 2023 was taken with the James Webb Space Telescope’s NIRCam instrument features the planet Uranus as well as six of its 27 known moons (most of which are too small and faint to be seen in this short exposure). A handful of background objects, including many galaxies, are also seen. SCIENCE: NASA, ESA, CSA, STScI. IMAGE PROCESSING: Joseph DePasquale (STScI)

Uranus’ four largest moons could very likely be home to an ocean layer dozens of miles deep between their icy crusts and deep cores. A new analysis from NASA published in the Journal of Geophysical Research, could help determine how a future mission to Uranus might investigate the seventh planet from the sun’s moons, but also has implications that go beyond Uranus.

[Related: Expect NASA to probe Uranus within the next 10 years.]

At least 27 moons circle Uranus. The four largest are about two to three times smaller than  Earth’s moon, with Ariel at about 720 miles across and the largest, Titania, at 980 miles across. Titania’s size has long led scientists to believe that it is the most likely satellite to retain internal heat that is caused by radioactive decay. Uranus’ other moons were believed to be too small to retain the head that is necessary to keep an internal ocean from freezing since the heating created by Uranus’ gravitational pull is only a minor source of heat.  

This new analysis uses data from the Voyager 2 spacecraft and some new computer modeling looked at all of the planet’s five large moons: Ariel, Umbriel, Titania, Oberon, and Miranda. Of these large moons, Titania and Oberon orbit the farthest from Uranus, and these possible oceans could be dwelling 30 miles below the surface. Ariel and Umbriel may have oceans 19 miles deep. 

Moons photo
New modeling shows that there likely is an ocean layer in four of Uranus’ major moons: Ariel, Umbriel, Titania, and Oberon. Salty – or briny – oceans lie under the ice and atop layers of water-rich rock and dry rock. Miranda is too small to retain enough heat for an ocean layer. CREDITS: NASA/JPL-Caltech

“When it comes to small bodies – dwarf planets and moons – planetary scientists previously have found evidence of oceans in several unlikely places, including the dwarf planets Ceres and Pluto, and Saturn’s moon Mimas,” co-author and planetary scientist at NASA’s Jet Propulsion Laboratory Julie Castillo-Rogez said in a statement.  “So there are mechanisms at play that we don’t fully understand. This paper investigates what those could be and how they are relevant to the many bodies in the solar system that could be rich in water but have limited internal heat.”

The new study revisited the data from Voyager 2 flybys of Uranus during the 1980s and from more recent ground-based observations. The authors then built computer models using additional findings from NASA’s Galileo, Cassini, Dawn, and New Horizons missions (which all discovered ocean worlds), and insights into the chemistry and the geology of Saturn’s moon Enceladus, Pluto and its moon Charon, and Ceres. These Plutonian and Saturnian moons are all icy bodies about the same size as the Uranian moons.

The team used the modeling to gauge how porous the surface of the Uranian moons are, and found that they are likely insulated enough to retain that internal heat needed to host an ocean. Additionally, the models found a potential heat source in the moons’ rocky mantles. These sources release hot liquid that would help an ocean maintain a warm environment. This warming scenario is especially likely in the moons Titania and Oberon, where the oceans could  even be warm enough to support some sort of lifeforms. 

[Related: Ice giant Uranus shows off its many rings in new JWST image.]

Investigating the composition of these oceans can help scientists learn about the materials that may be found on the icy surfaces of the moons as well, depending on whether or not the substances underneath were pushed up from below by internal geological activity. Evidence from telescopes shows that at least one of the moons (Ariel) has material on it that flowed onto its surface relatively recently, possibly from icy volcanoes. 

Miranda, the innermost and fifth largest Uranian moon, also hosts surface features that may be of recent origin, which suggests it may have held enough heat to maintain an ocean at some points. However, recent thermal modeling found that Miranda likely didn’t host that water for very long, since the moon loses heat too quickly and the ocean is probably frozen now.

Another key finding in the new study suggests that chlorides and ammonia are likely abundant in the oceans. Ammonia can act as an antifreeze, and the author’s modeling suggests that the salts that are likely present in the water would be another source of temperature regulation  that maintains the bodies’ internal oceans.

Digging down into the inner workings of a moon’s surface could help scientists and engineers choose the best instruments to survey them in future missions, but there are still many questions about Uranus’ large moons and work to be done.

“We need to develop new models for different assumptions on the origin of the moons in order to guide planning for future observations,” Castillo-Rogez said.

The post Hidden oceans could be lurking deep within Uranus’ moons appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
NASA’s newest office is all about putting humans on Mars https://www.popsci.com/science/nasa-moon-mars-office/ Sun, 07 May 2023 17:00:00 +0000 https://www.popsci.com/?p=539335
A NASA illustration linking the moon and Mars.
Humanity's top two destinations in the solar system: first the moon, then Mars, as seen in a composite image. NASA

The agency's Moon to Mars Office officially aligns lunar missions with its Red Planet goals.

The post NASA’s newest office is all about putting humans on Mars appeared first on Popular Science.

]]>
A NASA illustration linking the moon and Mars.
Humanity's top two destinations in the solar system: first the moon, then Mars, as seen in a composite image. NASA

NASA officials have talked for years about using the moon as a stepping stone to explore Mars. But now the space agency is finally reorganizing its administration to crystallize that aim in its bureaucratic structure. At the end of March, NASA established the new Moon to Mars Program Office at its Washington, D.C., headquarters. 

This office will unify an array of programs already under way: This includes the goals of NASA’s Artemis Moon mission, such as creating spacesuits for lunar astronauts as well as the Orion spacecraft and Space Launch System (SLS) rocket, which successfully flew the uncrewed Artemis I test flight in November. These projects will be more formally linked to developing technologies and operations for future human journeys to Mars. 

“This new office will help ensure that NASA successfully establishes a long-term lunar presence needed to prepare for humanity’s next giant leap to the Red Planet,” NASA Administrator Bill Nelson said in a statement

In the 2022 NASA Authorization Act, Congress mandated that NASA create the Moon to Mars Program Office to ensure that each Artemis lunar mission “demonstrates or advances a technology or operational concept that will enable human missions to Mars.” Following the successful Artemis I test flight, NASA aims to launch four astronauts on a lunar flyby mission for Artemis II in late 2024, and return humans to the moon’s surface in 2025 with Artemis III. Subsequent Artemis missions, at a pace of every other year, should allow astronauts to build a lunar habitat on the moon’s South Pole—with plans to stay for a while

[Related: NASA finally got comfier spacesuits, but astronauts still have to poop in them]

“We are going to the moon, we are demonstrating and executing a more sustained presence than we did back on Apollo, historically,” Lakiesha Hawkins, deputy manager of the new office, tells Popular Science. “The demonstrations that we’re doing are setting us up so that we can stay for a long duration; we can, in essence, live off the land.”

NASA astronauts will run experiments to obtain water from ice in lunar craters and to melt lunar regolith, or rocky material, to extract oxygen. They’ll also practice operations and procedures as if they are on Mars, with intentionally prolonged delays in communications to Earth and help all but unavailable. On the moon, these explorers will test the reliability of life support and other systems with an eye toward the Red Planet. “The further we go, the less and less we’ll be able to look back to any capabilities of the home planet in order to help us,” Hawkins says. 

At the moment, the Moon to Mars Program Office is still getting set up and hiring for key roles, according to Hawkins, but some changes have already begun. 

[Related: Meet the first 4 astronauts of the ‘Artemis Generation’]

“One of the things that I think is an obvious change is, we used to have three different divisions,” she says, one division for SLS, Orion, and ground systems; another for a planned lunar space station called Gateway, a lunar lander spacecraft, spacesuits, and lunar surface technologies; and then a third division focused on Mars technologies and capabilities. Those are now merged under the Moon to Mars Program Office. Aligning these offices is “going to help set us up for future success,” Hawkins says.

And while the changes so far are largely administrative, Hawkins sees the Congressional mandate as vindication of NASA’s approach to our nearest extraterrestrial neighbors. “We seem to have a clear strategy that has survived and works. It worked its way through now multiple presidential administrations,” she says. “We are no kidding, returning to the moon.” And after that, eventually, on to Mars. 

The post NASA’s newest office is all about putting humans on Mars appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Robot plants could be used to grow infrastructure in space from scratch https://www.popsci.com/science/plant-inspired-robots-colonize-mars/ Thu, 04 May 2023 01:00:00 +0000 https://www.popsci.com/?p=538662
A variable-stiffness tendril-like soft robot (polyethylene terephthalate (PET) tube) based on reversible osmotic actuation. An osmosis-driven system that controls its turgidity and performs sophisticated tasks.
A variable-stiffness tendril-like soft robot (polyethylene terephthalate (PET) tube) based on reversible osmotic actuation. An osmosis-driven system that controls its turgidity and performs sophisticated tasks. IIT-Istituto Italiano di Tecnologia

Barbara Mazzolai’s roboplants could analyze and enrich soil, search for water and other chemicals, and more.

The post Robot plants could be used to grow infrastructure in space from scratch appeared first on Popular Science.

]]>
A variable-stiffness tendril-like soft robot (polyethylene terephthalate (PET) tube) based on reversible osmotic actuation. An osmosis-driven system that controls its turgidity and performs sophisticated tasks.
A variable-stiffness tendril-like soft robot (polyethylene terephthalate (PET) tube) based on reversible osmotic actuation. An osmosis-driven system that controls its turgidity and performs sophisticated tasks. IIT-Istituto Italiano di Tecnologia

This article was original featured on MIT Press.This article is excerpted from Dario Floreano and Nicola Nosengo’s book “Tales From a Robotic World.”

In the early 2010s, a new trend in robotics began to emerge. Engineers started creating robotic versions of salamanders, dragonflies, octopuses, geckos, and clams — an ecosystem of biomimicry so diverse the Economist portrayed it as “Zoobotics.” And yet Italian biologist-turned-engineer Barbara Mazzolai raised eyebrows when she proposed looking beyond animals and building a robot inspired by a totally different biological kingdom: plants. As fluid as the definition of the word robot can be, most people would agree that a robot is a machine that moves. But movement is not what plants are famous for, and so a robotic plant might at first sound, well, boring.

But plants, it turns out, are not static and boring at all; you just have to look for action in the right place and at the right timescale. When looking at the lush vegetation of a tropical forest or marveling at the colors of an English garden, it’s easy to forget that you are actually looking at only half of the plants in front of you. The best-looking parts, maybe, but not necessarily the smartest ones. What we normally see are the reproductive and digestive systems of a plant: the flowers and fruits that spread pollen and seeds and the leaves that extract energy from sunlight. But the nervous system, so to speak, that explores the environment and makes decisions is in fact underground, in the roots.

Roots may be ugly and condemned to live in darkness, but they firmly anchor the plant and constantly collect information from the soil to decide in which direction to grow to find nutrients, avoid salty soil, and prevent interference with the roots of other plants. They may not be the fastest diggers, but they’re the most efficient ones, and they can pierce the ground using only a fraction of the energy that worms, moles, or manufactured drills require. Plant roots are, in other words, a fantastic system for underground exploration — which is what inspired Mazzolai to create a robotic version of them.

“It forced us to rethink everything, from materials to sensing and control of robots.”

Mazzolai’s intellectual path is a case study in interdisciplinarity. Born and raised in Tuscany, in the Pisa area that is one of Italy’s robotic hot spots, she was fascinated early on by the study of all things living, graduating in biology from the University of Pisa and focusing on marine biology. She then became interested in monitoring the health of ecosystems, an interest that led her to get her doctorate in microengineering and eventually to be offered by Paolo Dario, a biorobotics pioneer at Pisa’s Scuola Superiore Sant’Anna, the possibility of opening a new research line on robotic technologies for environmental sensing.

It was there, in Paolo Dario’s group, that the first seeds of her plant-inspired robots were planted. Mazzolai got in touch with a group at the European Space Agency (ESA) in charge of exploring innovative technologies that looked interesting but were still far away from applications, she recalls. While brainstorming with them, she realized space engineers were struggling with a problem that plants brilliantly solved several hundred million years ago.

“In real plants, roots have two functions,” says Mazzolai. “They explore the soil in search of water and nutrients, but even more important, they anchor the plant, which would otherwise collapse and die.” Anchoring happens to be an unsolved problem when designing systems that have to sample and study distant planets or asteroids. In most cases, from the moon to Mars and distant comets and asteroids, the force of gravity is weak. Unlike on Earth, the weight of the spacecraft or rover is not always enough to keep it firmly on the ground, and the only available option is to endow the spacecraft with harpoons, extruding nails, and drills. But these systems become unreliable over time if the soil creeps, provided they work in the first place. They didn’t work for Philae, for example, the robotic lander that arrived at the 67P/Churyumov–Gerasimenko comet in 2014 after a 10-year trip only to fail to anchor at the end of its descent, bouncing away from the ground and collecting just a portion of the planned measurements.

In a brief feasibility study carried out between 2007 and 2008 for ESA, Mazzolai and her team let their imagination run free and described an anchoring system for spacecrafts inspired by plant roots. The research group also included Stefano Mancuso, a Florence-based botanist who would later gain fame for his idea that plants display “intelligent” behavior, although of a completely different sort from that of animals. Mazzolai and her team described an ideal system that would reproduce, and transfer to other planets, the ability of Earth plants to dig through the soil and anchor to it.

In the ESA study, Mazzolai imagined a spacecraft descending on a planet with a really hard landing: The impact would dig a small hole in the planetary surface, inserting a “seed” just deep enough in the soil, not too different from what happens to real seeds. From there, a robotic root would start to grow by pumping water into a series of modular small chambers that would expand and apply pressure on the soil. Even in the best-case scenario, such a system could only dig through loose and fine dust or soil. The root would have to be able to sense the underground environment and turn away from hard bedrock. Mazzolai suggested Mars as the most suitable place in the solar system to experiment with such a system — better than the moon or asteroids because of the Red Planet’s low gravity and atmospheric pressure at surface level (respectively, 1/3 and 1/10 of those found on Earth). Together with a mostly sandy soil, these conditions would make digging easier because the forces that keep soil particles together and compact them are weaker than on Earth.

At the time, ESA did not push forward with the idea of a plant-like planetary explorer. “It was too futuristic,” Mazzolai admits. “It required technology that was not yet there, and in fact still isn’t.” But she thought that others beyond the space sector would find the idea intriguing. After transitioning to the Italian Institute of Technology, in 2012, Mazzolai convinced the European Commission to fund a three-year study that would result in a plant-inspired robot, code-named Plantoid. “It was uncharted territory,” says Mazzolai. “It meant creating a robot without a predefined shape that could grow and move through soil — a robot made of independent units that would self-organize and make decisions collectively. It forced us to rethink everything, from materials to sensing and control of robots.”

The project had two big challenges: on the hardware side, how to create a growing robot, and on the software side, how to enable roots to collect and share information and use it to make collective decisions. Mazzolai and her team tackled hardware first and designed the robot’s roots as flexible, articulated, cylindrical structures with an actuation mechanism that can move their tip in different directions. Instead of the elongation mechanism devised for that initial ESA study, Mazzolai ended up designing an actual growth mechanism, essentially a miniature 3D printer that can continuously add material behind the root’s tip, thus pushing it into the soil.

It works like this. A plastic wire is wrapped around a reel stored in the robot’s central stem and is pulled toward the tip by an electric motor. Inside the tip, another motor forces the wire into a hole heated by a resistor, then pushes it out, heated and sticky, behind the tip, “the only part of the root that always remains itself,” Mazzolai explains. The tip, mounted on a ball bearing, rotates and tilts independent of the rest of the structure, and the filament is forced by metallic plates to coil around it, like the winding of a guitar string. At any given time, the new plastic layer pushes the older layer away from the tip and sticks to it. As it cools down, the plastic becomes solid and creates a rigid tubular structure that stays in place even when further depositions push it above the metallic plates. Imagine winding a rope around a stick and the rope becomes rigid a few seconds after you’ve wound it. You could then push the stick a bit further, wind more rope around it, and build a longer and longer tube with the same short stick as a temporary support. The tip is the only moving part of the robot; the rest of the root only extends downward, gently but relentlessly pushing the tip against the soil.

The upper trunk and branches of the plantoid robot are populated by soft, folding leaves that gently move toward light and humidity. Plantoid leaves cannot yet transform light into energy, but Michael Graetzel, a chemistry professor at EPFL in Lausanne, Switzerland, and one of the world’s most cited scientists, has developed transparent and foldable films filled with synthetic chlorophyll capable of converting and storing electricity from light that one day could be formed into artificial leaves powering plantoid robots. “The fact that the root only applies pressure to the soil from the tip is what makes it fundamentally different from traditional drills, which are very destructive. Roots, on the contrary, look for existing soil fractures to grow into, and only if they find none, they apply just enough pressure to create a fracture themselves,” Mazzolai explains.

This new project may one day result in robot explorators that can work in dark environments with a lot of empty space, such as caves or wells.

The plantoid project has attracted a lot of attention in the robotics community because of the intriguing challenges that it combines — growth, shape shifting, collective intelligence — and because of possible new applications. Environmental monitoring is the most obvious one: The robotic roots could measure changing concentrations of chemicals in the soil, especially toxic ones, or they could prospect for water in arid soils, as well as for oil and gas — even though, by the time this technology is mature, we’d better have lost our dependence on them as energy sources on planet Earth. They could also inspire new medical devices, such as safer endoscopes that move in the body without damaging tissue. But space applications remain on Mazzolai’s radar.

Meanwhile, Mazzolai has started another plant-inspired project, called Growbot. This time the focus is on what happens over the ground, and the inspiration comes from climbing trees. “The invasiveness of climbing plants shows how successful they are from an evolutionary point of view,” she notes. “Instead of building a solid trunk, they use the extra energy for growing and moving faster than other plants. They are very efficient at using clues from the environment to find a place to anchor. They use light, chemical signals, tactile perception. They can sense if their anchoring in the soil is strong enough to support the part of the plant that is above the ground.” Here the idea is to build another growing robot, similar to the plantoid roots, that can overcome void spaces and attach to existing structures. “Whereas plantoids must face friction, grow-bots work against gravity,” she notes. This new project may one day result in robot explorators that can work in dark environments with a lot of empty space, such as caves or wells.

But for all her robots, Mazzolai is still keeping an eye on the visionary idea that started it all: planting and letting them grow on other planets. “It was too early when we first proposed it; we barely knew how to study the problem. Now I hope to start working with space agencies again.” Plant-inspired robots, she says, could not only sample the soil but also release chemicals to make it more fertile — whether on Earth or a terraformed Mars. And in addition to anchoring, she envisions a future where roboplants could be used to grow entire infrastructure from scratch. “As they grow, the roots of plantoids and the branches of a growbot would build a hollow structure that can be filled with cables or liquids,” she explains. This ability to autonomously grow the infrastructure for a functioning site would make a difference when colonizing hostile environments such as Mars, where a forest of plant-inspired robots could analyze the soil and search for water and other chemicals, creating a stable structure complete with water pipes, electrical wiring, and communication cables: the kind of structure astronauts would like to find after a year-long trip to Mars.


Dario Floreano is Director of the Laboratory of Intelligent Systems at the Swiss Federal Institute of Technology Lausanne (EPFL). He is the co-author, with Nicola Nosengo, of “Tales From a Robotic World: How Intelligent Machines Will Shape Our Future,” from which this article is excerpted.

Nicola Nosengo is a science writer and science communicator at EPFL. His work has appeared in Nature, the Economist, Wired, and other publications. He is the Chief Editor of Nature Italy

The post Robot plants could be used to grow infrastructure in space from scratch appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Meteors, flower moons, and more will light up the cosmos in May https://www.popsci.com/science/stargazing-guide-may-2023/ Fri, 28 Apr 2023 13:00:00 +0000 https://www.popsci.com/?p=537252
The Milky Way rises in a night sky with a pink hue.
May's night sky will be anything but boring. Deposit Photos

The Eta Aquarids are expected to peak May 6.

The post Meteors, flower moons, and more will light up the cosmos in May appeared first on Popular Science.

]]>
The Milky Way rises in a night sky with a pink hue.
May's night sky will be anything but boring. Deposit Photos

Date Event

May 4 and 5Full Flower Moon
May 5 and 6Penumbral Lunar Eclipse
May 5 and 6Eta Aquarids Meteor Shower
May 27-30Lāhaina Noon
May 29Mercury at Greatest Western Elongation

April showers may bring May flowers, but this spring has several meteor showers in store. Between April’s Lyrid meteor shower, the official announcement of NASA’s Artemis II astronauts, and a particularly strange “hybrid” eclipse, it’s a pretty exciting time to be a space cadet. The celestial excitement continues this month–especially around May 5–as the weather warms up and skygazing at night becomes a bit more comfortable. Here are some events to look out for and if you happen to get any stellar sky photos, tag us and include #PopSkyGazers.

[Related: We finally have a detailed map of water on the moon.]

May 4 and 5- Full Flower Moon

The Full Flower moon reaches peak illumination at 1:36 p.m. EDT on Friday, May 5. The moon will be  below the horizon and in daylight at this time, so the best bet is to take a look on the nights of May 4 and 5. The name Flower Moon is in reference to May’s blooms when flowers are typically most abundant in the Northern Hemisphere. 

May’s full moon is also called the Budding Moon or Zaagibagaa-giizis in Anishinaabemowin/Ojibwe, the Summer Moon or Upinagaaq in Inupiat, and the Dancing Moon or Tahch’ahipu in Tunica, the language of the Tunica-Biloxi Tribe of Louisiana.

May 5 and 6- Penumbral Lunar Eclipse

Following April’s total solar eclipse, May will see a penumbral lunar eclipse. Here, the moon will pass deep into the counterpart of planet Earth’s shadow, known as a penumbra. It will be the deepest penumbral eclipse until September 2042. This kind of eclipse is very subtle and those in the regions that can see it will most likely notice that the moon appears a little bit darker, as long as the night skies are clear. 

People living in Asia, Australia, Europe, and Africa will have the best chance of seeing this event.  

[Related: Hubble just captured a lunar eclipse for the first time ever.]

May 5 and 6- Eta Aquarids Meteor Shower

We were not kidding when we said that May 5 is a big day for celestial events! The Eta Aquarids Meteor Shower is expected to peak on May 5 and 6, where roughly 10 to 30 meteors per hour can be seen. Eta Aquarid meteors are known to be speed demons, with some traveling at about 148,000 mph into the Earth’s atmosphere. These fast meteors can leave behind little incandescent bits of debris in their wake called trains. 

This meteor shower is usually active between April 19 and May 28 every year, peaking in early May. It’s radiant, or the point in the sky where the meteors appear to come from, is in the direction of the constellation Aquarius and the shower is named for the constellation’s brightest star, Eta Aquarii. It is also one of two meteor showers created by the debris from Comet Halley.

The Eta Aquarids are visible in the Northern and Southern Hemispheres just before dawn, but the Southern Hemisphere has a better chance of seeing more of the Eta Aquarids.

May 27-30- Lāhaina Noon

This twice a year event in the Earth’s tropical region is when the sun is directly overhead around solar noon. At this point, upright objects do not cast shadows. It happens in May and then again in July.

According to the Bishop Museum, in English, the word “lāhainā” can be translated as “cruel sun,” and is a reference to severe droughts experienced in that part of the island of Maui in Hawaii. An older term in ʻŌlelo Hawaiʻi is “kau ka lā i ka lolo,” which means “the sun rests upon the brain” and references both the physical and cultural significance of the event

May 29- Mercury at Greatest Western Elongation

The planet Mercury will reach its greatest separation from the sun in late May and into June. It may be difficult to see from the United States, but is expected to reach this point in pre-dawn hours beginning on May 29. 

The same skygazing rules that apply to pretty much all space-watching activities are key this month: Go to a dark spot away from the lights of a city or town and let the eyes adjust to the darkness for about a half an hour. 

The post Meteors, flower moons, and more will light up the cosmos in May appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Name a better duo than NASA’s hard-working Mars rover and helicopter https://www.popsci.com/science/nasa-mars-rover-helicopter-duo/ Fri, 28 Apr 2023 12:30:00 +0000 https://www.popsci.com/?p=537408
NASA Ingenuity helicopter lost in a Mars crater in a photo taken by Perseverance rover
Perseverance snapped Ingenuity on its 50th flight on Mars with this "Where's Waldo"-style pic. Hint: Look for the helicopter at center left. NASA/JPL-Caltech/ASU/MSSS

In uncharted Martian territory, Ingenuity has proven to be a trusty sidekick to Perseverance and engineers at home.

The post Name a better duo than NASA’s hard-working Mars rover and helicopter appeared first on Popular Science.

]]>
NASA Ingenuity helicopter lost in a Mars crater in a photo taken by Perseverance rover
Perseverance snapped Ingenuity on its 50th flight on Mars with this "Where's Waldo"-style pic. Hint: Look for the helicopter at center left. NASA/JPL-Caltech/ASU/MSSS

On April 19, 2021, a little more than a century after the Wright Brothers’ first test flight on Earth, humans managed to zoom a helicopter around on another planet. The four-pound aircraft, known as Ingenuity, is part of NASA’s Mars2020 exploration program, along with the Perseverance rover.

The dynamic duo made history again this month, as Ingenuity celebrated its landmark 50th flight. The small aircraft was built to fly only five times—as a demonstration of avionics customized for the thin Mars air, not a key part of the science mission—but it has surpassed that goal 10 times over with no signs of slowing down.

[Related: InSight says goodbye with what may be its last wistful image of Mars]

“Ingenuity has changed the way that we think about Mars exploration,” says Håvard Grip, NASA engineer and former chief pilot of Ingenuity. Although the helicopter started as a tech demo, proving that humans could make an aircraft capable of navigating the thin Martian atmosphere, it has become a useful partner to Percy. Ingenuity can zip up to 39 feet into the sky, scout the landscape, and inform the rover’s next moves through the Red Planet’s rocky terrain.

In the past months, Perseverance has been wrapping up its main science mission in Jezero Crater, a dried-up delta that could give astronomers insight on Mars’ possibly watery past and ancient microbial life. Ingenuity has been leap-frogging along with the rover, taking aerial shots of its robotic bestie and getting glimpses into the path ahead. This recon helps scientists determine their priorities for exploration, and helps NASA’s planning team prepare for unexpected hazards and terrain.

Aerial map showing Perseverance and Ingenuity route across Jezero Crater during NASA Mars 2020 mission
This animation shows the progress of NASA’s Perseverance Mars rover and its Ingenuity Mars Helicopter as they make the climb up Jezero Crater’s delta toward ancient river deposits. NASA/JPL-Caltech

Unfortunately, the narrow channels in the delta are causing difficulties for the helicopter’s communications with the rover, forcing them to stay close together for fear of being irreparably separated. Ingenuity also can’t fall behind the rover, because its limited stamina (up to 3-minute-long flights at time) means it might not be able to catch up. Over the past month, the team shepherded the pair through a particularly treacherous stretch of the drive, though, and they’re still going strong—even setting flight speed and frequency records at the same time. Meanwhile, Percy has been investigating some crater walls and funky-colored rocks, of which scientists are trying to figure out the origins.

Ingenuity has certainly proven the value of helicopters in planetary exploration, and each flight adds to the pile of data engineers have at their disposal for planning the next generation of aerial robots. “When we look ahead to potential future missions, helicopters are an inevitable part of the equation,” says Grip.

What exactly comes next for Ingenuity itself, though, is anyone’s guess. “Every sol [Martian day] that Ingenuity survives on Mars is one step further into uncharted territory,” Grip adds. And while the team will certainly feel a loss when the helicopter finally goes out, they’ve already completed their main mission of demonstrating that the avionics can work. All the extra scouting and data collection is a reward for building something so sturdy

[Related: Two NASA missions combined forces to analyze a new kind of marsquake]

They’re now continuing to push the craft to its limits, testing out how far they can take this technology. For those at home who want to follow along, the mission actually provides flight previews on Ingenuity’s status updates page

“It may all be over tomorrow,” says Grip. “But one thing we’ve learned over the last two years is not to underestimate Ingenuity’s ability to hang on.” 

The post Name a better duo than NASA’s hard-working Mars rover and helicopter appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Get ready to watch the Lyrid meteor shower peak this weekend https://www.popsci.com/science/watch-lyrid-meteor-shower/ Wed, 19 Apr 2023 15:00:00 +0000 https://www.popsci.com/?p=535167
Meteorites fall during a meteor shower.
The annual Lyrid meteor shower is set to peak over Earth Day weekend. NASA

This annual event should bring 10 to 20 meteors per hour, but you could see an outburst of up to 100.

The post Get ready to watch the Lyrid meteor shower peak this weekend appeared first on Popular Science.

]]>
Meteorites fall during a meteor shower.
The annual Lyrid meteor shower is set to peak over Earth Day weekend. NASA

Of all the celestial events lighting up the sky this month, the Lyrid meteor shower has the potential to be one of the most spectacular. The annual event began on April 16 and will peak this weekend before wrapping up on April 25. You won’t need any special equipment to catch a glimpse—just your eyes and a clear night sky—but it helps to know when and where to look.

When to watch the meteor shower

In the northern hemisphere, you can look skyward beginning around 10 p.m. local time on Friday, April 21 and Saturday, April 22 into the early morning hours of the 23rd. The predicted peak is for Sunday, April 23 at 9 p.m. Eastern Time (1:06 Universal Time). This year, the Lyrids’ peak is quite narrow, but moonlight will not interfere with the meteor shower like it did in 2021 and 2022.

[Related: How to photograph a meteor shower]

“Serious observers should watch for at least an hour, as numerous peaks and valleys of activity will occur,” the American Meteor Society recommends.  “If you only view for a short time it may coincide with a lull of activity. Watching for at least an hour guarantees you will get to see the best this display has to offer.”

Where to look for the Lyrids

The Lyrids are named after the constellation Lyra, which is the constellation closest to their radiant—where the meteors appear to originate. Look toward a blue-white star named Vega, the brightest glimmer in the constellation. In the northern hemisphere this time of year, Lyra appears almost directly overhead around midnight. In southern latitudes, Lyra appears lower in the northern part of the sky. 

Once you’ve spotted Vega or Lyra, start to look for streaks of light in the night sky. It is best to watch from a location away from city lights and to let your eyes adjust to the darkness for at least 30 minutes beforehand. The International Dark Sky Association has an online tool to help locate designated dark sky parks that protect nocturnal environments.

What you may see… including fireballs

In a dark sky with no moon, you may be able to glimpse 10 to 20 meteors per hour. The Lyrids can have uncommon surges in activity that bring rates up to 100 meteors per hour. The Lyrid meteor shower appears to outburst, or produce an unexpectedly large number of meteors, about every 60 years, with the next outburst expected in 2042

During the last half of April in recent years, irregular numbers of very bright meteors have been observed coming from the southern part of the sky during the Lyrids. Sometimes, these fireballs drop as meteorites, and could be the remnants of a broken-up asteroid instead of a comet. An asteroid is a small, rocky object that appears as a point of light in a telescope. Comets are also planetary objects that orbit the sun, but they’re composed of ice and dust that vaporize when they get closer to the sun. This makes comets appear more fuzzy or with a tail in a telescope.

[Related: Scientists finally solve the mystery of why comets glow green.]

This year, a “window of opportunity” for a possible fireball sighting may be between 5 p.m. ET on April 23 and 7 p.m. ET on April 25, according to Space.com.

Most meteor showers are the result of debris from a passing comet, and the Lyrids are no different. The source of these space rocks is Comet Thatcher, which astronomers first noticed in 1861. At that time, the comet was at its most recent perihelion—its closest point to the sun. It will reach its farthest point from the sun close to 2070 and will hit perihelion again around 2283.

The post Get ready to watch the Lyrid meteor shower peak this weekend appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
An Einstein-backed method could help us find smaller exoplanets than ever before https://www.popsci.com/science/exoplanets-gravitational-microlensing/ Tue, 18 Apr 2023 16:34:47 +0000 https://www.popsci.com/?p=534889
Exoplanet KMT-2021-BLG-1898L b is a gas giant that looks like Jupiter but orbits a separate star. Illustration.
KMTNet astronomers identified exoplanet KMT-2021-BLG-1898L b in 2022. An artist's concept of the gas giant shows it completing a 3.8-year-long orbit around its star in a solar system far from ours. NASA/KMTNet

Astronomy is entering the golden age of exoplanet discoveries.

The post An Einstein-backed method could help us find smaller exoplanets than ever before appeared first on Popular Science.

]]>
Exoplanet KMT-2021-BLG-1898L b is a gas giant that looks like Jupiter but orbits a separate star. Illustration.
KMTNet astronomers identified exoplanet KMT-2021-BLG-1898L b in 2022. An artist's concept of the gas giant shows it completing a 3.8-year-long orbit around its star in a solar system far from ours. NASA/KMTNet

Since 1995 scientists have found more than 5,000 exoplanets—other worlds beyond our solar system. But while space researchers have gotten very good at discovering big planets, smaller ones have evaded detection.

However, a novel astronomy detection technique known as microlensing is starting to fill in the gaps. Experts who are a part of the Korea Microlensing Telescope Network (KMTNet) recently used this method to locate three new exoplanets about the same sizes as Jupiter and Saturn. They announced these findings in the journal Astronomy & Astrophysics on April 11. 

How does microlensing work?

Most exoplanets have been found through the transit method. This is when scientists use observatories like the Kepler Space Telescope and the James Webb Space Telescope to look at dips in the amount of light coming from a star. 

Meanwhile, gravitational microlensing (usually just called microlensing) involves searching for increases in brightness in deep space. These brilliant flashes are from a planet and its star bending the light of a more distant star, magnifying it according to Einstein’s rules for relativity. You may have heard of gravitational lensing for galaxies, which pretty much relies on the same physics, but on a much bigger scale.

Credit: NASA Scientific Visualization Studio

The new discoveries were particularly unique because they were found in partial data, where astronomers only observed half the event.

“Microlensing events are sort of like supernovae in that we only get one chance to observe them,” says Samson Johnson, an astronomer at the NASA Jet Propulsion Lab who was not affiliated with the study. 

Because astronomers only have one chance and don’t always know when events will happen, they sometimes miss parts of the show. “This is sort of like making a cake with only half of the recipe,” adds Johnson.

[Related: Sorry, Star Trek fans, the real planet Vulcan doesn’t exist]

The three new planets have long serial-number-like strings of letters and numbers for names: KMT-2021-BLG-2010Lb, KMT-2022-BLG-0371Lb, and KMT-2022-BLG-1013Lb. Each of these worlds revolves around a different star. They weigh as much as Jupiter, Saturn, and a little less than Saturn, respectively. 

Even though the researchers only observed part of the microlensing events for each of these planets, they were able to rule out other scenarios that could confidently explain the signals. This work “does show that even with incomplete data, we can learn interesting things about these planets,” says Scott Gaudi, an Ohio State University astronomer who was not involved in the published paper.

The exoplanet search continues

Microlensing is “highly complementary” to other exoplanet-hunting techniques, says Jennifer Yee, a co-author of the new study and researcher at The Center for Astrophysics | Harvard & Smithsonian. It can scope out planets that current technologies can’t, including worlds as small as Jupiter’s moon Ganymede or even a few times the mass of Earth’s moon, according to Gaudi.

The strength of microlensing is that “it’s a demographics machine, so you can detect lots of planets,” says Gaudi. This ability to detect planets of all sizes is crucial for astronomers as they complete their sweeping exoplanet census to determine the most common type of planet and the uniqueness of our own solar system. 

Credit: NASA Scientific Visualization Studio

Astronomers are honing their microlensing skills with new exoplanet discoveries like those from KTMNet, ensuring that they know how to handle this kind of data before new space telescopes come online in the next few years. For example, microlensing will be a large part of the Roman Space Telescope’s planned mission when it launches mid-decade

“We’ll increase the number of planets we know by several thousand with Roman, maybe even more,” says Gaudi. “We went from Kepler being the star of the show to TESS [NASA’s Transiting Exoplanet Survey Satellite] being the star of the show … For its time period, Roman [and microlensing] will be the star of the show.”

The post An Einstein-backed method could help us find smaller exoplanets than ever before appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Watch this week’s rare solar eclipse from anywhere in the world https://www.popsci.com/science/solar-eclipse-april-2023/ Mon, 17 Apr 2023 19:04:12 +0000 https://www.popsci.com/?p=534725
A group of people outside their cars along a closed road, wearing eclipse glasses to watch a solar eclipse.
Never look directly at the sun unless you're wearing eclipse glasses. Adam Smith / Unsplash

Thanks to livestreams, you don't have to wait for an eclipse to come to you.

The post Watch this week’s rare solar eclipse from anywhere in the world appeared first on Popular Science.

]]>
A group of people outside their cars along a closed road, wearing eclipse glasses to watch a solar eclipse.
Never look directly at the sun unless you're wearing eclipse glasses. Adam Smith / Unsplash

On Wednesday and Thursday, a particularly strange “hybrid” eclipse is coming to Australia, Indonesia, and some other parts of Southeast Asia, but you don’t have to be there to watch. Don’t miss it—the next one won’t happen for nearly another decade.

An astonishing one in 10 people on Earth will be in the path of this celestial event—and thanks to the internet, even more can watch the moon pass in front of the sun on April 20, between 1:30 and 7 a.m. universal time (UTC). In the US, that’s 9:30 p.m. Eastern Time on Wednesday, April 19 and 3 a.m. on Thursday, April 20.

As a hybrid eclipse, the moon will either cover the full sun or appear haloed by a “ring of fire,” depending on where it is along the eclipse’s path. In-person viewers will only be able to see one of these sights and will have to track down video to see the other. The next hybrid eclipse won’t occur again until November 31, 2031.

How to see the April 20 solar eclipse in person

The exact time of the eclipse will vary depending on your location, so you’ll need to check when it will be visible for you. Timeanddate.com has a particularly handy tool for figuring this out. To use it, click Path Map at the top of the page and see if you’re going to be under any part of the eclipse’s path. If so, zoom in to pinpoint where you are and click on the map to bring up an information box that shows when the event will be visible in local time.

Even if you’re in the partial eclipse zone, it’s worth stepping outside to take a peek at this celestial happening. “We are going to get coffee and freak out about the sky. It’s going to be fun,” says University of Melbourne astronomer Benji Metha about his eclipse plans. The moon will cover only about 10 percent of the sun where he is in southeastern Australia.

[Related: April 2023 stargazing guide]

If you’re in the eclipse’s path, be sure to come prepared. Never look directly at the sun. Eclipse glasses are readily available online, but make sure the ones you’re buying aren’t fake. Too late to buy? You can make your own eclipse projector instead. Unlike almost every other astronomical event, solar eclipses happen in the daytime, so you won’t really be able to spot other stars or deep sky objects at the same time. The sun and moon will be the only ones on stage.

How to view the April 20 hybrid eclipse online

Just because you’re in the United States or anywhere else outside of the eclipse’s path doesn’t mean you have to miss out on all the action. The Gravity and Discovery Centre and Observatory will be livestreaming from Exmouth, Australia, where every bit of the sun will be covered for 58 seconds at 11:30 a.m. local time (11:30 p.m. ET on April 19). For viewers on the US East Coast, the full show will run from roughly 10 p.m. on April 19 to 1 a.m. on April 20. 

Timeanddate is also hosting an eclipse livestream in collaboration with Perth Observatory in western Australia, where roughly 70 percent of the sun will be covered. Like Exmouth, Perth is 12 hours ahead of New York City, so live video will start at 10 p.m. ET on April 19 and continue until the partial eclipse ends around 12:46 a.m. ET on April 20.

Tune in, and you’ll be joining solar scientists around the world who are particularly interested in this event and the data they can gather from it. “I look forward to this eclipse, because it is a long-anticipated party,” says Berkeley heliophysicist Jia Huang. “A hybrid eclipse is very rare.”

When is the next eclipse?

If you miss the show, there are sure to be some incredible photos posted from the event, and you will be able to watch recordings online afterward. But if you want to see an eclipse in person, a few are coming to the States soon enough.

First, an annular solar eclipse will travel from Oregon to Texas on October 14, 2023, followed several months later by the next North American total solar eclipse from Texas up through Maine on April 8, 2024.

What to know about the four types of solar eclipses

On the left, a total solar eclipse with the moon blocking out the sun, in black and white. Center: an annular solar eclipse, with the sun forming an orange "ring of fire" around the moon. Right: a partial solar eclipse at sunset with the sun in a crescent shape.
From left to right: a total, annular, and partial solar eclipse. A hybrid eclipse may appear as either a total or annular one, depending on where you are. Total eclipse (left): NASA/MSFC/Joseph Matus; annular eclipse (center): NASA/Bill Dunford; partial eclipse (right): NASA/Bill Ingalls

Solar eclipses happen whenever Earth’s moon gets between us and the sun, aligning to block out the sunlight and cause an eerie daytime darkness. Eclipses are predictable, thanks to centuries of observational astronomy across many cultures, and “we can now forecast these events with incredible accuracy,” Metha says. It’s a good thing we know when they’re coming so we’re not surprised. “Imagine how many car accidents a sudden solar eclipse would cause if people were not expecting it,” he adds.

These celestial events come in a few flavors: total, partial, annular, and hybrid. In a total eclipse, the moon fully blocks out the sun. For a partial eclipse, the sun and moon aren’t quite lined up, so only a chunk of the sun is covered. Similarly, for an annular eclipse, some of the sun remains exposed—but this type happens when the moon is at its farthest point from Earth and appears smaller, creating a ring of light when it lines up with the sun. Hybrid eclipses, like the one happening this week, shift between total and annular due to the curvature of Earth.

Solar eclipses trace paths along Earth’s surface, with a path of totality—where you can see a total eclipse—in the center, surrounded by various shades of partial eclipse. The upcoming April 20 eclipse path of totality clips the northwestern corner of Australia and passes through the islands of Timor, Indonesia, and Papua New Guinea. The entirety of Australia, the Philippines, Malaysia, and parts of other Southeast Asian countries will experience at least a partial eclipse.

[Related: How worried should we be about solar flares and space weather?]

This is such a large and populous region that nearly 10 percent of the world’s population will be able to experience the upcoming eclipse, though only 0.004 percent (about 375,000 people) will be able to see the full total or annular view.

Whether you catch this one or not, make sure you write down the upcoming eclipses we mentioned above—maybe you’ll be one of the lucky few right underneath the next time around.

The post Watch this week’s rare solar eclipse from anywhere in the world appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Jupiter’s icy ocean worlds could be cool travel destinations in the future https://www.popsci.com/science/jupiter-moons-water-nasa-juice/ Sat, 15 Apr 2023 16:15:13 +0000 https://www.popsci.com/?p=534247
Callisto Jupiter moon in colorized NASA Galileo image
The picture, taken in May 2001, is the only complete global color image of Callisto obtained by Galileo. Callisto's surface is uniformly cratered but is not uniform in color or brightness. Scientists believe the brighter areas are mainly ice and the darker areas are highly eroded, ice-poor material. NASA/JPL/DLR

Callisto and Ganymede are among the biggest moons in the solar system. NASA’s JUICE mission will reveal some of their secrets.

The post Jupiter’s icy ocean worlds could be cool travel destinations in the future appeared first on Popular Science.

]]>
Callisto Jupiter moon in colorized NASA Galileo image
The picture, taken in May 2001, is the only complete global color image of Callisto obtained by Galileo. Callisto's surface is uniformly cratered but is not uniform in color or brightness. Scientists believe the brighter areas are mainly ice and the darker areas are highly eroded, ice-poor material. NASA/JPL/DLR

It’s time for JUICE to get to work. The European Space Agency’s JUpiter ICy moons Explorer blasted off on an Ariane 5 rocket yesterday to begin its eight-year journey to the Jovian system to study Europa, Ganymede, and Callisto, three of the largest moons in the entire solar system.

Together with NASA’s Europa Clipper, which will launch in October 2024 but arrive at its destination a year earlier than JUICE, the missions will get the first close-ups of Jupiter’s icy moons since NASA’s Galileo probe visited the gas giant from 1995 and 2003.

“We learned about Europa having a subsurface ocean as a result of the Galileo mission,” says Emily Martin, a research geologist in the Center for Earth and Planetary Studies at the Smithsonian’s National Air And Space Museum. The Galileo finding ignited interest in so-called  “ocean worlds” that have liquid water under their thick surface ice and might be the best place to look for alien life in our solar system. Ganymede and Callisto are likely ocean worlds too.

[Related: Astronomers find 12 more moons orbiting Jupiter]

While Galileo captured some images of the lesser-known siblings, it couldn’t analyze their surfaces as well as originally plannedspacecraft was hamstrung from the beginning, when its high-gain antenna, necessary for sending back large amounts of data, failed to fully deploy. Consequently, when JUICE arrives at Jupiter in 2031, it will begin providing the first truly high-resolution studies of Ganymede and Callisto, and add to the data on Europa collected by the Europa Clipper. JUICE will use its laser altimeter to build detailed topographic maps of all three moons and use measurements of their magnetic and gravitational fields, along with radar, to probe their internal structures.

“Galileo did the reconnaissance,” Martin says, “and now JUICE gets to go back and really dig deep.”

Is there water on Jupiter’s moons?

If people know one Jovian moon, it’s likely Europa: The icy moon’s subsurface ocean has been the focus of science fiction books and movies. But Martin is particularly excited about what JUICE might find at Callisto. Jupiter’s second largest moon, it orbits farther out than Europa or Ganymede. It appears to be geologically inactive and may not be differentiated, meaning Callisto’s insides haven’t separated into the crust-mantle-core layers seen in other planets and moons.

Despite the low-key profile, data from the Galileo mission suggests Callisto could contain a liquid ocean like Europa and Ganymede. Understanding just how that could be possible, and getting a look at what Callisto’s interior really looks like, could help space researchers better understand how all of Jupiter’s moons evolved.

“In some ways, Callisto is a proto-Ganymede,” Martin says.

What comes after Mars?

It’s not just Callisto’s interior that is interesting, according to Scott Sheppard, an astronomer at the Carnegie Institution for Science. It’s the only large moon that orbits outside the belts of intense radiation trapped in Jupiter’s colossal magnetic field—radiation that can fry spacecraft electrics and human explorers alike. “If humanity is to build a base on one of the Jupiter moons, Callisto would be by far the first choice,” Sheppard says. “It could be the gateway moon to the outer solar system.”      

JUICE will fly by Europa, then Callisto, and then enter orbit around Ganymede, the largest moon in the solar system. With a diameter of around 3,270 miles, it’s larger than the planet Mercury, which comes in at 2,578 miles in diameter.

Jupiter moon Ganymede closeup
This image of the Jovian moon Ganymede was obtained by the JunoCam imager aboard NASA’s Juno spacecraft during its June 7, 2021, flyby of the icy moon. At the time of closest approach, Juno was within 645 miles of its surface, closer to Jupiter’s largest moon than any other spacecraft has come in more than two decades. NASA/JPL-Caltech/SwRI/MSSS

Geoffrey Collins, a professor of geology, physics and astronomy at Wheaton College, says he’s most excited about the Ganymede leg of the mission. “It will be the first time we’ve orbited a world like this, and I know we will be surprised by what we find.” 

If Ganymede hosts a liquid water ocean beneath its frozen shell how deep its crust is, and whether its suspected subsurface ocean is one vast cistern or consists of liquid layered with an icy or rocky mantle. JUICE will be the first mission to give scientists some real answers about to those questions.

“Even if JUICE just lets us reach a level of understanding of Ganymede like we had for Mars 20 or 30 years ago, it would be a massive leap forward from what we know now,” Collins says. “This will be the kind of thing that rewrites textbooks.”

[Related: A mysterious magma ocean could fuel our solar system’s most volcanic world]

Any clues that JUICE gathers from Ganymede and Callisto could apply to more than just Jupiter and its icy moons. They can tell us more about what to expect when we look further out from our own solar system, according to Martin.

“It contextualizes different kinds of ocean world systems and that has even broader implications to exoplanet systems,” she says. “The more we can understand the differences and the similarities between the ocean world systems that we have here in our solar system, the more prepared we’re going to be for understanding the planetary systems that we’re continuing to discover in other solar systems.”

The post Jupiter’s icy ocean worlds could be cool travel destinations in the future appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Why is the sun’s corona 200 times hotter than its surface? https://www.popsci.com/science/how-hot-is-the-suns-surface-corona/ Wed, 12 Apr 2023 10:00:00 +0000 https://www.popsci.com/?p=533392
Magnetic field around sun's corona with NASA's Parker Solar Probe touching the edge. Illustrated.
In 2021, NASA’s Parker Solar Probe flew through the sun’s corona and sampled particles and magnetic fields there. NASA's Goddard Space Flight Center/Joy Ng

The paradox has astronomers scratching their heads over magnetic waves, nanoflares, and the now-debunked element coronium.

The post Why is the sun’s corona 200 times hotter than its surface? appeared first on Popular Science.

]]>
Magnetic field around sun's corona with NASA's Parker Solar Probe touching the edge. Illustrated.
In 2021, NASA’s Parker Solar Probe flew through the sun’s corona and sampled particles and magnetic fields there. NASA's Goddard Space Flight Center/Joy Ng

Few places in the solar system get hotter than the surface of the sun. But contrary to expectations, the tenuous tendrils of plasma in the outermost layer of its atmosphere—known as the corona—are way more searing than its surface.

“It is very confusing why the solar corona is farther away from the sun’s core, but is so much hotter,” says University of California, Berkeley space sciences researcher Jia Huang

The solar surface lingers around 10,000 degrees Fahrenheit, while the thin corona can get as hot as 2 million degrees. This conundrum is known as the coronal heating problem, and astronomers have been working on solving it since the mid-1800s.

“Simply speaking, solving this problem could help us understand our sun better,” says Huang. A better understanding of solar physics is also “crucial for predicting space weather to protect humans,” he adds. Plus, the sun is the only star we can send probes to—the others are simply too far away. “Thus, knowing our sun could help understand other stars in the universe.”

Sun's plasma boiling in a closeup by NASA and JAXA
A closeup of the sun’s convective, or boiling, motion, with a small sunspot forming on the right, from Hinode, a collaboration between NASA and the Japan Aerospace Exploration Agency. The outer layers of the sun are constantly boiling and roil with mechanical energy. This fluid motion generates complex magnetic fields that extend far up into the corona. NASA/JAXA/Hinode

A brief history of the coronal heating problem

During the 1869 total solar eclipse—an alignment of the sun, moon, and Earth that blocks out the bulk of the sun’s light—scientists were able to observe the faint corona. Their observations revealed a feature in the corona that they took as evidence of presence of a new element: coronium. Improved theories of quantum mechanics over 60 years later revealed the “new element” to be plain old iron, but heated to a temperature that was higher than the sun’s surface.

[Related: We still don’t really know what’s inside the sun—but that could change very soon]

This new explanation for the puzzling 1869 measurement was the first evidence of the corona’s extreme temperature, and kicked off decades of study to understand just how the plasma got so hot. Another way of phrasing this question is, where is the energy in the corona coming from, and how is it getting there? 

“We know for sure that this problem hasn’t yet been resolved, though we have many theories, and the whole [astronomy] community is still enthusiastically working on it,” says Huang. There are currently two main hypotheses for how energy from the sun heats the corona: the motion of waves and an explosive phenomenon called nanoflares.

Theory 1: Alfvén waves

The surface of the sun roils and bubbles like a pot of boiling water. As the plasma convects—with hotter material rising and cooler material sinking down—it generates the sun’s immense magnetic field. This magnetic field can move and wiggle in a specific kind of wave, known as Alfvén waves, which then push around protons and electrons above the sun’s surface. Alfvén waves are a known phenomenon—plasma physicists have even seen them in experiments on Earth. Astronomers think the charged particles stirred up by the phenomenon might carry energy into the corona, heating it up to shocking temperatures.

Nanoflares rising off the sun's convection zone in four looped frames
In 2020, space physics researcher Shah Bahauddin zoomed in on satellite images of the sun’s corona and convection zone to reveal the first complete sequence of a nanoflare. NASA/SDO/IRIS/Shah Bahauddin

Theory 2: Nanoflares

The other possible explanation is a bit more dramatic, and is kind of like the sun snapping a giant rubber-band. As the sun’s plasma tumbles and circulates in its upper layer, it twists the star’s magnetic field lines into knotted, messy shapes. Eventually, the lines can’t take that stress anymore; once they’ve been twisted too far, they snap in an explosive event called magnetic reconnection. This sends charged particles flying around and heats them up, a happening referred to as a nanoflare, carrying energy to the corona. Astronomers have observed a few examples of nanoflares with modern space telescopes and satellites.

Coronal streamers from the sun captured by NASA's Parker Solar Probe in black and white
As the Parker Solar Probe passed through the corona on its ninth flyby, it recorded structures called coronal streamers. These structures can be seen as bright features moving upward in the upper images and angled downward in the lower row. They are visible from Earth during total solar eclipses. NASA/Johns Hopkins APL/Naval Research Laboratory

The coronal heating mystery continues

As is usually the case with nature, it seems that the sun isn’t simply launching Alfvén waves or creating nanoflares—it’s more than likely doing both. Astronomers just don’t know how often either of these events happen.

[Related: Hold onto your satellites: The sun is about to get a lot stormier]

But they might get some straightforward answers soon. The Parker Solar Probe, launched in 2018, is on a mission to touch the sun, dipping closer to our star than ever before. It’s currently flying through some outer parts of the corona, providing the first up-close look at the movements of particles that may be responsible for the extreme temperatures. The mission has already passed through the solar atmosphere once, and will keep swinging around for a few more years—providing key information to help scientists settle the coronal heating problem once and for all.

“I would be very confident that we could make big progress in the upcoming decade,” says Huang.

The post Why is the sun’s corona 200 times hotter than its surface? appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Follow the JUICE mission as it launches to Jupiter and its many mysterious moons https://www.popsci.com/science/juice-spacecraft-jupiter-moons-launch/ Tue, 11 Apr 2023 20:00:00 +0000 https://www.popsci.com/?p=533262
Artist's concept of JUICE spacecraft at Jupiter
Artist's concept of JUICE spacecraft at Jupiter. European Space Agency (ESA)

The voyage is set to quench researchers’ thirst for knowledge about the biggest planet in our solar system.

The post Follow the JUICE mission as it launches to Jupiter and its many mysterious moons appeared first on Popular Science.

]]>
Artist's concept of JUICE spacecraft at Jupiter
Artist's concept of JUICE spacecraft at Jupiter. European Space Agency (ESA)

Update (April 14, 2023): After rescheduling the launch from April 13 to April 14 due to weather conditions, the European Space Agency successfully launched JUICE at 8:14 a.m. EDT and received its first transmission from the spacecraft around 10:30 a.m.

Space enthusiasts will get to have some JUICE for breakfast on Friday morning. The European Space Agency (ESA) is set to launch the Jupiter Icy Moons Explorer mission (JUICE) on April 14 from Europe’s Spaceport in Kourou, French Guiana at 9:14 a.m. local time (8:14 a.m. EDT). Curious viewers can watch the live broadcast beginning at 7:45 a.m. EDT on the ESA’s webpage.

The spacecraft is safe inside its Ariane 5 rocket, the same rocket that launched the James Webb Space Telescope (JWST) in December 2021. JUICE is Europe’s first-ever mission to the Jupiter system, and the spacecraft should be in our solar system’s largest planet’s orbit by July 2031.

[Related: Astronomers find 12 more moons orbiting Jupiter.]

According to the ESA, If the mission is delayed, the team can try again to launch JUICE once each day for the rest of April. If the spacecraft fails to launch this month, the next available slot is August 2023.

Once JUICE is launched, it will deploy its antennas, solar arrays, and other instruments. The explorer has two monitoring cameras that will capture parts of the solar array deployment following launch, according to the ESA. The 52 feet-long radar antenna will deploy a few days later. 

JUICE mission science questions diagram
The mysteries the JUICE mission aims to solve. CREDIT: ESA (acknowledgement: work performed by ATG under contract to ESA), CC BY-SA 3.0 IGO.

Over the eight years that it will take to reach Jupiter, the spacecraft will conduct three Earth flybys and one flyby of Venus. The flybys will give JUICE the spacecraft the necessary gravity assists so it can launch itself towards Jupiter, around 559 million miles away from Earth.

After it reaches Jupiter’s orbit in July 2031, JUICE will make detailed observations of Jupiter and three of its biggest moons, Ganymede, Callisto, and Europa. In 2034, JUICE is slated to go into orbit around Ganymede and will become the first human spacecraft to enter orbit around another planet’s moon. Ganymede is also the only moon in the solar system that has its own magnetic field. JUICE will study how this field interacts with the even larger magnetic field on Jupiter.

[Related: Dark matter, Jupiter’s moons, and more: What to expect from space exploration in 2023.]

NASA will provide the Ultraviolet Spectrograph (UVS) and subsystems and components for two additional JUICE instruments: the Particle Environment Package (PEP) and the Radar for Icy Moon Exploration (RIME) experiment. 

Studying Jupiter and its moons more closely will help astrobiologists understand how habitable worlds might emerge around gas giant planets, according to NASA. Jupiter’s moons are primary targets for astrobiology research, since moons like Europa are thought to have oceans of liquid water beneath their icy surfaces. Astrobiologists believe that these oceans could possibly be habitable for life.

The post Follow the JUICE mission as it launches to Jupiter and its many mysterious moons appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Lunar laws could protect the moon from humanity https://www.popsci.com/science/space-law-moon-protections/ Mon, 10 Apr 2023 10:00:00 +0000 https://www.popsci.com/?p=532629
Astronaut Buzz Aldrin photographed on the moon during Apollo 11 by Neil Armstrong
Buzz Aldrin and Neil Armstrong's famous first moon walk could be preserved as a heritage site. NASA

Some space law experts want to treat the moon like a national park. Here's why.

The post Lunar laws could protect the moon from humanity appeared first on Popular Science.

]]>
Astronaut Buzz Aldrin photographed on the moon during Apollo 11 by Neil Armstrong
Buzz Aldrin and Neil Armstrong's famous first moon walk could be preserved as a heritage site. NASA

On Earth, we’ve decided that some places are worth saving. Whether it’s the pyramids of Giza or the battlefield lands at Gettsyburg, sites that epitomize our cultural heritage are safeguarded by legal frameworks. 

But human history extends beyond our planet. In 1969, astronaut Neil Armstrong became the first human to walk on the moon and left behind that first footprint. Some view it as comparable to any archeological site on Earth—without the same protections. Undisturbed, the footprint could last for a million years. But a revived interest in the moon means the lunar surface is about to be busier than ever. No law specifically defends the footprint or sites like it from being run over by a lunar rover or astronauts on a joyride

“Just in this year alone, we have four or five missions planned,” says Michelle Hanlon, a space lawyer and co-founder of the nonprofit For All Moonkind. “Not just from nations, but from private companies.” While some upcoming lunar expeditions will be flybys, others will actually land on the moon. 

In some ways, it’s a race against the clock—and Hanlon is making moves. On March 27, while attending a meeting of the legal subcommittee of the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS), she announced the creation of the For All Moonkind Institute on Space Law and Ethics. This new nonprofit organization will go beyond advocating for protecting off-world heritage sites and contemplate the ethics around some activities in space that are not fully covered in existing international law.  

Buzz Aldrin Apollo 11 bootprint on the moon
The moon is also home to the bootprint of astronaut Buzz Aldrin. NASA

There is some precedent to lunar law. The Outer Space Treaty of 1967 governs activities in outer space and sets important boundaries: Anything but peaceful use of the moon is prohibited, and nations are not allowed to claim territory on the satellite or any celestial body.

The Outer Space treaty is also quite vague, according to Christopher Johnson, a space lawyer with the Secure World Foundation, a nonprofit dedicated to space sustainability. You can use resources in space but not appropriate them. In addition, you must give other nations and companies “due regard” and avoid “harmful contamination” of the extraterrestrial environment. 

However, these general principles have never been applied to solving practical problems. “We are realizing that we just have a couple of broad dictums,” Johnson says. “You know, be nice to your neighbor, observe the golden rule, show people a little bit of respect.”

[Related: Say hello to the Commerce Department’s new space traffic-cop program]

Because these rules have not really been tested, Johnson says we can’t be sure people will follow them. The experiment is about to begin: India and Russia plan to launch their unscrewed Chandrayaan 3 and Luna 25 missions to the lunar surface this summer, for instance, while Japanese company iSpace hopes to place a lander on the lunar surface in late April. SpaceX aims to ferry a billionaire customer around the moon in a Starship vehicle by year’s end.

It was with an eye on increasing human activity on and around the moon that Hanlon co-founded For All Moonkind in 2017, an all-volunteer organization dedicated to lobbying for legal protections for areas of cultural heritage on the moon and elsewhere in space. That includes the Apollo program landing sites and the lunar landers left behind by the Soviet Union. These protections could eventually extend to natural wonders like Olympus Mons, the largest volcano on Mars and in the solar system.

Together with For All Moonkind, the Secure World Foundation produced a Lunar Policy Handbook, which they distributed at the United Nations in Vienna during the For All Moonkind Institute announcement at the end of March. Both For All Moonkind and the Secure World Foundation are official observer organizations at COPUOS and are allowed to sit in on meetings. 

Apollo 15 astronauts driving lunar rover across moon crater
During the Apollo 15 mission, astronauts drove around the moon on a lunar rover. NASA

The new institute and the handbook represent a modern interest among policymakers, space lawyers, and private companies to create clearer rules of the road for how humans will actually behave on the moon when there are multiple parties present around the same time. These are issues Johnson says policymakers need to be wary of and that they should think through the precedents that could be set by actions that are not necessarily against international law but might not be a good idea.

“This is why we created the Institute on Space Law and Ethics because there are people who want to know what it means to be responsible,” Hanlon says. “The problem is we don’t have a blueprint for that.”

Johnson points to the 2019 crash landing of the Israeli Beresheet lunar lander as an example, where unknown to the other parties of the mission, the nonprofit Arch Mission Foundation had included freeze-dried tardigrades, also known as water bears, in the payload. Tardigrades are hardy and known to be able to survive in the vacuum of space, so their spilling onto the lunar surface could present a form of biological contamination, although some follow-up research suggests the microscopic creatures did not survive the violent impact. 

“Smuggling tardigrades to the moon doesn’t seem to clearly violate any international law that I can point to,” Johnson says. “The ethical component steps in to fill a gap about the law to say, ‘Well, is it a good idea?’” 

[Related: Want to learn about something in space? Crash into it.]

Protecting cultural heritage sites like the Apollo landing sites, on the other hand, could actually be interpreted as violating the probation on claiming territory in space, according to Hanlon. That’s why For All Mankind is involved in discussions around the ethics of lunar activity generally, she says.  The hope is that—if the world’s nations can agree that there’s significant, shared cultural heritage on the moon—the aftereffect could be better relations between major players in the current space race. 

“The ultimate goal is a new treaty, not an amendment to the Outer Space Treaty, that recognizes cultural heritage beyond Earth,” Hanlon explains. “It’s going to be a long time, especially now with the Russian invasion of Ukraine, for us to all agree on something here at the UN. But we think it can start with that heritage, that kinship that way.”

Or as US President Lyndon Johnson put it when signing the Outer Space Treaty, we “will meet someday on the surface of the moon as brothers and not as warriors.”

The post Lunar laws could protect the moon from humanity appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Ice giant Uranus shows off its many rings in new JWST image https://www.popsci.com/science/jwst-uranus-rings-moons/ Fri, 07 Apr 2023 17:00:00 +0000 https://www.popsci.com/?p=532551
Pale blue Uranus with clearly detailed rings captured by NASA's James Webb Space Telescope
This zoomed-in image of Uranus, captured by Webb’s Near-Infrared Camera (NIRCam) reveals stunning views of the planet’s rings. SCIENCE: NASA, ESA, CSA, STScI. IMAGE PROCESSING: Joseph DePasquale (STScI)

The seventh planet boasts 13 known rings and a unique polar cap.

The post Ice giant Uranus shows off its many rings in new JWST image appeared first on Popular Science.

]]>
Pale blue Uranus with clearly detailed rings captured by NASA's James Webb Space Telescope
This zoomed-in image of Uranus, captured by Webb’s Near-Infrared Camera (NIRCam) reveals stunning views of the planet’s rings. SCIENCE: NASA, ESA, CSA, STScI. IMAGE PROCESSING: Joseph DePasquale (STScI)

In a sequel to its image of the planet Neptune’s rings in September 2022, the James Webb Space Telescope (JWST) has taken a new image of the ice giant Uranus. The new view of the seventh planet from the sun was taken on February 6 and released to the public on April 6. It shows off Uranus’ rings and some of the bright features in its atmosphere.

[Related: Expect NASA to probe Uranus within the next 10 years.]

The image was taken with NIRCam as a short 12-minute exposure and combines data from two filters, one shown in blue and one in orange. Uranus typically displays a blue hue naturally

Of the planet’s 13 known rings, 11 are visible in the image. According to NASA, some of these rings are so bright that they appear to merge into a larger ring when close together while observed with JWST. Nine are classed as the main rings of the planet, and two are the fainter dusty rings. These dusty rings have only ever been imaged by the Voyager 2 spacecraft as it flew past the planet in 1986 and with the Keck Observatory’s advanced adaptive optics in the early 2000s. Scientists expect that future images will also reveal the two even more faint outer rings that the Hubble Space Telescope discovered in 2007.

A wide view of the Uranian system with JWST's NIRCam instrument features the planet Uranus as well as six of its 27 known moons (most of which are too small and faint to be seen in this short exposure). A handful of background objects, including many galaxies, are also seen.
This wider view of the Uranian system with JWST’s NIRCam instrument features the planet Uranus as well as six of its 27 known moons (most of which are too small and faint to be seen in this short exposure). A handful of background objects, including many galaxies, are also seen. CREDITS:  SCIENCE: NASA, ESA, CSA, STScI IMAGE PROCESSING: Joseph DePasquale (STScI).

The new image also captured many of Uranus’ 27 known moons. Many of the moons are too small and faint to be seen in this image, but six can be seen in the wide-view. Uranus is categorized as an ice giant due to the chemical make-up of its interior. The majority of Uranus’ mass is believed to be a hot, dense, fluid of water, methane, and ammonia above a small and rocky core.

Among the planets in our solar system, Uranus has a unique rotation. It rotates on its side at a roughly 90-degree angle, which causes extreme seasons. The planet’s poles experience multiple years of constant sunlight, and then an equal number of years in total darkness. It takes the planet 84 years to orbit the sun and its northern pole is currently in its late spring. Uranus’ next northern summer isn’t until 2028

[Related: Uranus’s quirks and hidden features have astronomers jazzed about a direct mission.]

Uranus also has a unique polar cap on the right side of the planet. It’s visible as a brightening at the pole facing the sun, and seems to appear when the pole enters direct sunlight during the summer and vanishes in the autumn. JWST’s data is expected to help scientists understand what’s behind this mechanism and has already noticed a subtle brightening at the cap’s center. NASA believes that JWST’s Near-Infrared Camera NIRCam’s sensitivity to longer wavelengths may be why they can see this enhanced Uranus polar feature, since it has not been seen as clearly with other powerful telescopes.

Additionally, a bright cloud lies at the edge of the polar cap and another can be seen on the planet’s left limb. The JWST team believes that these clouds are likely connected to storm activity

More imaging and additional studies of the planet are currently in the works by multiple space agencies, after the National Academies of Sciences, Engineering, and Medicine identified Uranus science as a priority in its 2023-2033 Planetary Science and Astrobiology decadal survey. This 10 year-long study will likely include a study of Saturn’s moons and sending a probe to Uranus. 

“Sending a flagship to Uranus makes a lot of sense,” because Uranus and Neptune “are fairly unexplored worlds,” Mark Marley, a planetary scientist at the University of Arizona and director of the Lunar and Planetary Laboratory, told PopSci last year. Marley also called the future study it “clear-eyed,” and said that learning more about Uranus will help scientists understand both the formation of our solar system and even some exoplanets. 

The post Ice giant Uranus shows off its many rings in new JWST image appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Before the Artemis II crew can go to the moon, they need to master flying high above Earth https://www.popsci.com/science/artemis-2-lunar-mission-goals/ Thu, 06 Apr 2023 10:00:00 +0000 https://www.popsci.com/?p=532098
Orion space capsule capturing surface of moon during NASA Artemis I mission
On Dec. 5, 2022 during the Artemis I uncrewed mission, Orion captured the moon on the day of return powered flyby, the final major engine maneuver of the flight test. NASA

The flight commander on NASA's next lunar mission explains what will actually happen onboard.

The post Before the Artemis II crew can go to the moon, they need to master flying high above Earth appeared first on Popular Science.

]]>
Orion space capsule capturing surface of moon during NASA Artemis I mission
On Dec. 5, 2022 during the Artemis I uncrewed mission, Orion captured the moon on the day of return powered flyby, the final major engine maneuver of the flight test. NASA

After more than 50 years, NASA is going back to the moon. If all goes as planned, the Artemis III mission will see two astronauts stepping foot on the lunar surface sometime in 2025. Subsequent Artemis missions involving the construction of a lunar space station and a permanent base on the lunar south pole could follow every one to two years, funding permitting.

But before the 21st-century moon landing, NASA wants to ensure its astronauts’ ride, the Orion spacecraft, is up to the task. The successful, uncrewed Artemis I put the new Orion space capsule and Space Launch System (SLS) rocket’s propulsion and navigation systems to the test. The recently announced crew of four astronauts for Artemis II, scheduled for November 2024, will take the next leap by giving Orion a full shakedown of its manual flight and life support systems.

“We’ll be the first humans to fly on the spacecraft,” says Artemis II Commander Reid Wiseman. “We need to make sure our vehicle can keep us alive when we go into deep space.”

That makes the Artemis II mission unique, in that its primary focus is not exploration nor science experiments, but technical preparation for the astronauts on subsequent Artemis exploits. “Our focus is on what we can do to enable our co-workers to operate in the lunar environment, whether it’s on the Gateway outpost [a space station NASA plans to build in lunar orbit beginning in 2024] or the lunar surface,” Wiseman says.

To achieve that goal, Wiseman and his crewmates, NASA astronauts Christina Koch and Victor Glover, as well as Canadian astronaut Jeremy Hansen, will kick off their 10-day flight with a series of highly elliptical orbits around the Earth. These rounds are designed to give them about 24 hours to test out their spacecraft and allow for an easy mission abort path to return home if any problems arise.

“That first 24 hours is really going to be intense. Looking at the crew timeline, you can barely fit everything in,” Wisemans says of all the spacecraft testing his team will conduct. “And then when we get finished with all of that, our reward is translunar injection,” the engine firing maneuver that will set the spacecraft on a course out of Earth’s orbit and toward the moon.

[Related: NASA’s uncrewed Orion spacecraft will get a hand from a Star Trek-inspired comms system]

About 40 minutes after launching from the Kennedy Space Center, the upper stage of the SLS rocket known as the Interim Cryogenic Propulsion Stage (ICPS) will boost Orion into an ellipse that will carry the crew about 1,800 miles above the Earth at its highest point, and about 115 miles at its lowest.

After initial checks during that roughly 90-minute first orbit, the ICPS will fire again to boost the spacecraft into a much higher ellipse around the planet, this time reaching as high as 46,000 miles above it—far outstripping the 250-mile altitude where the International Space Station usually flies. This second orbit will take nearly 24 hours and is where the crew will do the most serious assessments on Orion’s systems.

“We’re gonna try to test out every manual capability that we have on Orion: manual maneuvering, manual targeting, manual communications set up,” Wiseman says. In effect, they’ll be simulating what it takes to prepare the capsule for a lunar landing—but in the Earth’s orbit, not the moon’s.

A crucial part of the testing will involve what NASA calls a ”proximity operations demonstration.” Orion and the European-built service module, which carries life support, power, and propulsion systems, will detach from the ICPS as the crew practices manual maneuvering to align their spacecraft with the discarded upper stage of the rocket. While they will not actually dock with the ICPS, they will run the systems that future Artemis crews need to dock with a lunar lander or the Lunar Gateway before journeying to the moon’s surface.  

Inside the Orion spacecraft cabin. A little Snoopy stuffed animal in an orange spacesuit is floating around.
Inside the Orion cabin during the Artemis I mission. Snoopy, the zero-gravity indicator for the flight test, floats around while attached to his tether. NASA

Next, the crew will conduct support and communications checks to ensure the Orion spacecraft is ready to head into deep space. If given the go-ahead by mission control, they will use the Orion spacecraft’s main engines to conduct a translunar injection burn designed to carry the spacecraft on a looping path around the moon, reaching a peak distance of about 230,000 miles from Earth. It will take about four days just to travel to and from the moon.

Artemis II stands out from the other missions in its series in that the Orion main engine will carry out the translunar injection burn, rather than the ICPS, which will have used up its fuel boosting the capsule into the high elliptical orbit around the Earth for testing. And because Artemis II will not involve landing on the moon, the crew doesn’t have to perform an orbital insertion burn, and will instead simply loop around the moon, ultimately passing around the far side of the satellite at about 6,400 miles altitude, relying on Earth’s gravity to pull the spacecraft home without the need for another engine burn.      

The crew will have plenty of other tests during the long lunar tour to keep them occupied, according to Wiseman. While the exact science packages for the mission have yet to be announced, the astronauts’ bodies will serve as mini laboratories over the course of the flight—and after.

[Related: Artemis I’s solar panels harvested a lot more energy than expected]

“As a human explorer, there’s going to be a load of science on us, like radiation and how we handle the deep space environment,” Wiseman says. “We know a lot about humans operating in space on the International Space Station; we don’t know as much about humans operating in deep space.”

The crew leader says he is honored to be commanding Artemis II, even if that means he may not fly on Artemis III or subsequent missions. “Personally, what I really want to do is I want to go fly Artemis II, I want to come back, and I want to help my crewmates train for their missions,” he explains. “Then I want to be the largest voice in the crowd cheering for them when they get assigned to Artemis III or IV.”

The post Before the Artemis II crew can go to the moon, they need to master flying high above Earth appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Meet the first 4 astronauts of the ‘Artemis Generation’ https://www.popsci.com/science/artemis-2-astronauts/ Mon, 03 Apr 2023 17:14:45 +0000 https://www.popsci.com/?p=525007
Artemis II astronauts in orange NASA and Canadian Space Agency spacesuits
Official crew portrait for Artemis II. Clockwise from left: NASA Astronauts Christina Koch and Victor Glover, Canadian Space Agency Astronaut Jeremy Hansen, and NASA astronaut and Artemis II commander Reid Wiseman. Josh Valcarcel/NASA

Scheduled to launch in November 2024, these American and Canadian astronauts will be the first humans to visit the moon in more than 50 years.

The post Meet the first 4 astronauts of the ‘Artemis Generation’ appeared first on Popular Science.

]]>
Artemis II astronauts in orange NASA and Canadian Space Agency spacesuits
Official crew portrait for Artemis II. Clockwise from left: NASA Astronauts Christina Koch and Victor Glover, Canadian Space Agency Astronaut Jeremy Hansen, and NASA astronaut and Artemis II commander Reid Wiseman. Josh Valcarcel/NASA

Years after Apollo 17 commander Eugene Cernan returned from NASA’s last crewed mission to the moon, he still felt the massive weight of the milestone. “I realize that other people look at me differently than I look at myself, for I am one of only 12 human beings to have stood on the moon,” he wrote in his autobiography. “I have come to accept that and the enormous responsibility it carries, but as for finding a suitable encore, nothing has ever come close.”

Cernan, who died in 2017, and his crewmates will soon be joined in their lonely chapter of history by four new astronauts, bringing the grand total of people who’ve flown to the moon to 28. Today, NASA and the Canadian Space Agency announced the crew for Artemis II, the first mission to take humans beyond low-Earth orbit since Apollo 17 in 1972. The 10-day mission will take the team on a gravity-assisted trip around the moon and back.

The big reveal occurred at Johnson Space Center in Houston, Texas, in front of an audience of NASA partners, politicians, local students, international astronauts, and Apollo alums. NASA Director of Flight Operations Norman Knight, NASA Chief Astronaut Joe Acaba, and Johnson Space Center Director Vanessa White selected the crew. They were joined on stage during the announcement by NASA Administrator Bill Nelson and Canada’s Minister of Innovation, Science, and Industry Francois-Philippe Champagne. 

“You are the Artemis generation,” Knight said after revealing the final lineup. “We are the Artemis generation.” These are the four American and Canadian astronauts representing humanity in the next lunar launch.

Christina Koch – Mission Specialist, NASA

Koch has completed three missions to the International Space Station (ISS) and set the record for the longest spaceflight for a female astronaut in 2020. Before that, the Michigan native conducted research at the South Pole and tinkered on instruments at the Goddard Flight Space Center. She will be the only professional engineer on the Artemis II crew. “I know who mission control will be calling when it’s time to fix something on board,” Knight joked during her introduction.

Koch relayed her anticipation of riding NASA’s Space Launch System (SLS) on a lunar flyby and back to those watching from home: “It will be a four-day journey [around the moon], testing every aspect of Orion, going to the far side of the moon, and splashing down in the Atlantic. So, am I excited? Absolutely. But one thing I’m excited about is that we’re going to be carrying your excitement, your dreams, and your aspirations on your mission.”

[Related: ‘Phantom’ mannequins will help us understand how cosmic radiation affects female bodies in space]

After the Artemis II mission, Koch will officially be the first woman to travel beyond Earth’s orbit. Koch and her team will circle the moon for 6,400 miles before returning home.

Jeremy Hansen – Mission Specialist, Canada

Hansen’s training experience has brought him to the ocean floor off Key Largo, Florida, the rocky caves of Sardinia, Italy, and the frigid atmosphere above the Arctic Circle. The Canadian fighter pilot led ISS communications from mission control in 2011, but this will mark his first time in space. Hansen is also the only Canadian who’s ever flown on a lunar mission.

“It’s not lost on any of us that the US could go back to the moon by themselves. Canada is grateful for that global mindset and leadership,” he said during the press conference. He also highlighted Canada’s can-do attitude in science and technology: “All of those have added up to this step where a Canadian is going to the moon with an international partnership. Let’s go.”

Victor Glover – Pilot, NASA

Glover is a seasoned pilot both on and off Earth. Hailing from California, he’s steered or ridden more than 40 different types of craft, including the SpaceX Crew Dragon Capsule in 2020 during the first commercial space flight ever to the ISS. His outsized leadership presence in his astronaut class was mentioned multiple times during the event. “In the last few years, he has become a mentor to me,” Artemis II commander Reid Wiseman said.

[Related on PopSci+: Victor J. Glover on the cosmic ‘relay race’ of the new lunar missions]

In his speech, Glover looked into the lofty future of human spaceflight. “Artemis II is more than a mission to the moon and back,” he said. “It’s the next step on the journey that gets humanity to Mars. We have a lot of work to do to get there, and we understand that.” Glover will be the first Black astronaut to travel to the moon.

G. Reid Wiseman – Commander, NASA

Wiseman got a lot done in his single foray into space. During a 2014 ISS expedition, he contributed to upwards of 300 scientific experiments and conducted two lengthy spacewalks. The Maryland native served as NASA’s chief astronaut from 2020 to 2022 and led diplomatic efforts with Roscosmos, Russia’s space agency. 

“This was always you,” Knight said while talking about Wiseman’s decorated military background. “It’s what you were meant to be.”

Flight commanders are largely responsible for safety during space missions. As the first astronauts to travel on the SLS rocket and Orion spacecraft, the Artemis II crew will test the longevity and stability of NASA and SpaceX’s new flight technology as they exit Earth’s atmosphere, slingshot into the moon’s gravitational field, circumnavigate it, and attempt a safe reentry. Wiseman will be in charge of all that with the support of his three fellow astronauts and guidance from mission control.

The post Meet the first 4 astronauts of the ‘Artemis Generation’ appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Scientists are finally getting into the rhythm of sea creatures’ lunar cycle https://www.popsci.com/science/lunar-cycles-corals-worms-spawn/ Mon, 03 Apr 2023 01:00:00 +0000 https://www.popsci.com/?p=524479
Moons photo
CREDIT: TOM SHLESINGER

Many sea creatures release eggs and sperm into the water on just the right nights of the month.

The post Scientists are finally getting into the rhythm of sea creatures’ lunar cycle appeared first on Popular Science.

]]>
Moons photo
CREDIT: TOM SHLESINGER

This article originally appeared in Knowable Magazine.

It’s evening at the northern tip of the Red Sea, in the Gulf of Aqaba, and Tom Shlesinger readies to take a dive. During the day, the seafloor is full of life and color; at night it looks much more alien. Shlesinger is waiting for a phenomenon that occurs once a year for a plethora of coral species, often several nights after the full moon.

Guided by a flashlight, he spots it: coral releasing a colorful bundle of eggs and sperm, tightly packed together. “You’re looking at it and it starts to flow to the surface,” Shlesinger says. “Then you raise your head, and you turn around, and you realize: All the colonies from the same species are doing it just now.”

Some coral species release bundles of a pinkish- purplish color, others release ones that are yellow, green, white or various other hues. “It’s quite a nice, aesthetic sensation,” says Shlesinger, a marine ecologist at Tel Aviv University and the Interuniversity Institute for Marine Sciences in Eilat, Israel, who has witnessed the show during many years of diving. Corals usually spawn in the evening and night within a tight time window of 10 minutes to half an hour. “The timing is so precise, you can set your clock by the time it happens,” Shlesinger says.

Moon-controlled rhythms in marine critters have been observed for centuries. There is calculated guesswork, for example, that in 1492 Christopher Columbus encountered a kind of glowing marine worm engaged in a lunar-timed mating dance, like the “flame of a small candle alternately raised and lowered.” Diverse animals such as sea mussels, corals, polychaete worms and certain fishes are thought to synchronize their reproductive behavior by the moon. The crucial reason is that such animals — for example, over a hundred coral species at the Great Barrier Reef — release their eggs before fertilization takes place, and synchronization maximizes the probability of an encounter between eggs and sperm.

How does it work? That has long been a mystery, but researchers are getting closer to understanding. They have known for at least 15 years that corals, like many other species, contain light-sensitive proteins called cryptochromes, and have recently reported that in the stony coral, Dipsastraea speciosa, a period of darkness between sunset and moonrise appears key for triggering spawning some days later.

Now, with the help of the marine bristle worm Platynereis dumerilii, researchers have begun to tease out the molecular mechanism by which myriad sea species may pay attention to the cycle of the moon.

This video describes the spectacular synchronized spawning of corals in the Red Sea as well as worrying observations of a breakdown in spawning synchrony. Such a breakdown could reduce fertilization rates and the production of new coral. Researchers are studying the causes; artificial light at night could play a role by interfering with important moonlight cues.
CREDIT: TOM SHLESINGER

The bristle worm originally comes from the Bay of Naples but has been reared in laboratories since the 1950s. It is particularly well-suited for such studies, says Kristin Tessmar-Raible, a chronobiologist at the University of Vienna. During its reproductive season, it spawns for a few days after the full moon: The adult worms rise en masse to the water surface at a dark hour, engage in a nuptial dance and release their gametes. After reproduction, the worms burst and die.

The tools the creatures need for such precision timing — down to days of the month, and then down to hours of the day — are akin to what we’d need to arrange a meeting, says Tessmar-Raible. “We integrate different types of timing systems: a watch, a calendar,” she says. In the worm’s case, the requisite timing systems are a daily — or circadian — clock along with another, circalunar clock for its monthly reckoning.

To explore the worm’s timing, Tessmar-Raible’s group began experiments on genes in the worm that carry instructions for making cryptochromes. The group focused specifically on a cryptochrome in bristle worms called L-Cry. To figure out its involvement in synchronized spawning, they used genetic tricks to inactivate the l-cry gene and observe what happened to the worm’s lunar clock. They also carried out experiments to analyze the L-Cry protein.

Though the story is far from complete, the scientists have evidence that the protein plays a key role in something very important: distinguishing sunlight from moonlight. L-Cry is, in effect, “a natural light interpreter,” Tessmar-Raible and coauthors write in a 2023 overview of rhythms in marine creatures in the Annual Review of Marine Science.

Moons photo
The marine bristle worm Platynereis dumerilii lives in shallow waters in a broad range of seas. It has also been lab-bred for more than 70 years, from specimens thought to have been collected near Naples, Italy. The worm integrates both lunar and solar cues into its life cycle and is a model system for studies of chronobiology.
CREDIT: MAEL GROSSE

The role is a crucial one, because in order to synchronize and spawn on the same night, the creatures need to be able to stay in step with the patterns of the moon on its roughly 29.5-day cycle — from full moon, when the moonlight is bright and lasts all night long, to the dimmer, shorter-duration illuminations as the moon waxes and wanes.

When L-Cry was absent, the scientists found, the worms didn’t discriminate appropriately. The animals synchronized tightly to artificial lunar cycles of light and dark inside the lab — ones in which the “sunlight” was dimmer than the real sun and the “moonlight” was brighter than the real moon. In other words, worms without L-Cry latched onto unrealistic light cycles. In contrast, the normal worms that still made L-Cry protein were more discerning and did a better job of synchronizing their lunar clocks correctly when the nighttime lighting more closely matched that of the bristle worm’s natural environment.

The researchers accrued other evidence, too, that L-Cry is an important player in lunar timekeeping, helping to discern sunlight from moonlight. They purified the L-Cry protein and found that it consists of two protein strands bound together, with each half holding a light-absorbing structure known as a flavin. The sensitivity of each flavin to light is very different. Because of this, the L-Cry can respond to both strong light akin to sunlight and dim light equivalent to moonlight — light over five orders of magnitude of intensity — but with very different consequences.

“I find it very exciting that we could describe a protein that can measure moon phases.”

Eva Wolf

After four hours of dim “moonlight” exposure, for example, light-induced chemical reactions in the protein — photoreduction — occurred, reaching a maximum after six hours of continuous “moonlight” exposure. Six hours is significant, the scientists note, because the worm would only encounter six hours’ worth of moonlight at times when the moon was full. This therefore would allow the creature to synchronize with monthly lunar cycles and pick the right night on which to spawn. “I find it very exciting that we could describe a protein that can measure moon phases,” says Eva Wolf, a structural biologist at IMB Mainz and Johannes Gutenberg University Mainz, and a collaborator with Tessmar-Raible on the work.

How does the worm know that it’s sensing moonlight, though, and not sunlight? Under moonlight conditions, only one of the two flavins was photoreduced, the scientists found. In bright light, by contrast, both flavin molecules were photoreduced, and very quickly. Furthermore, these two types of L-Cry ended up in different parts of the worm’s cells: the fully photoreduced protein in the cytoplasm, where it was quickly destroyed, and the partly photoreduced L-Cry proteins in the nucleus.

All in all, the situation is akin to having “a highly sensitive ‘low light sensor’ for moonlight detection with a much less sensitive ‘high light sensor’ for sunlight detection,” the authors conclude in a report published in 2022.

Many puzzles remain, of course. For example, though presumably the two distinct fates of the L-Cry molecules transmit different biological signals inside the worm, researchers don’t yet know what they are. And though the L-Cry protein is key for discriminating sunlight from moonlight, other light-sensing molecules must be involved, the scientists say.

Researchers studying the lunar clocks of marine bristle worms rear the worms in the laboratory inside plastic containers filled with seawater. The worms are subjected to cycles of dark and light aimed at mimicking lunar cycles. In their natural environment, when these worms are ready to reproduce, they swarm to the surface and release sperm and eggs into the water. Worms that are ready to swarm start to swim frenetically, as shown in this video. Mating is highly synchronized to certain times of the month and night.
CREDIT: M. ZURL ET AL / PNAS 2022

In a separate study, the researchers used cameras in the lab to record the burst of swimming activity (the worm’s “nuptial dance”) that occurs when a worm sets out to spawn, and followed it up with genetic experiments. And they confirmed that another molecule is key for the worm to spawn during the right one- to two-hour window — the dark portion of that night between sunset and moonrise — on the designated spawning nights.

Called r-Opsin, the molecule is extremely sensitive to light, the scientists found — about a hundred times more than the melanopsin found in the average human eye. It modifies the worm’s daily clock by acting as a moonrise sensor, the researchers propose (the moon rises successively later each night). The notion is that combining the signal from the r-Opsin sensor with the information from the L-Cry on what kind of light it is allows the worm to pick just the right time on the spawning night to rise to the surface and release its gametes.

Resident timekeepers

As biologists tease apart the timekeepers needed to synchronize activities in so many marine creatures, the questions bubble up. Where, exactly, do these timekeepers reside? In species in which biological clocks have been well studied — such as Drosophila and mice — that central timekeeper is housed in the brain. In the marine bristleworm, clocks exist in its forebrain and peripheral tissues of its trunk. But other creatures, such as corals and sea anemones, don’t even have brains. “Is there a population of neurons that acts as a central clock, or is it much more diffuse? We don’t really know,” says Ann Tarrant, a marine biologist at the Woods Hole Oceanographic Institution who is studying chronobiology of the sea anemone Nematostella vectensis.

Scientists are also interested in knowing what roles are played by microbes that might live with marine creatures. Corals like Acropora, for example, often have algae living symbiotically within their cells. “We know that algae like that also have circadian rhythms,” Tarrant says. “So when you have a coral and an alga together, it’s complicated to know how that works.”

Researchers are worried, too, about the fate of spectacular synchronized events like coral spawning in a light-polluted world. If coral clock mechanisms are similar to the bristle worm’s, how would creatures be able to properly detect the natural full moon? In 2021, researchers reported lab studies demonstrating that light pollution can desynchronize spawning in two coral species — Acropora millepora and Acropora digitifera — found in the Indo-Pacific Ocean.

Shlesinger and his colleague Yossi Loya have seen just this in natural populations, in several coral species in the Red Sea. Reporting in 2019, the scientists compared four years’ worth of spawning observations with data from the same site 30 years earlier. Three of the five species they studied showed spawning asynchrony, leading to fewer — or no — instances of new, small corals on the reef.

Along with artificial light, Shlesinger believes there could be other culprits involved, such as endocrine-disrupting chemical pollutants. He’s working to understand that — and to learn why some species remain unaffected.

Based on his underwater observations to date, Shlesinger believes that about 10 of the 50-odd species he has looked at may be asynchronizing in the Red Sea, the northern portion of which is considered a climate-change refuge for corals and has not experienced mass bleaching events. “I suspect,” he says, “that we will hear of more issues like that in other places in the world, and in more species.”

This article originally appeared in Knowable Magazine, an independent journalistic endeavor from Annual Reviews. Sign up for the newsletter.

The post Scientists are finally getting into the rhythm of sea creatures’ lunar cycle appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Saturn’s rings have been slowly heating up its atmosphere https://www.popsci.com/science/why-saturns-atmosphere-is-heating-up/ Fri, 31 Mar 2023 15:00:00 +0000 https://www.popsci.com/?p=524505
A blue UV image of the planet Saturn.
This composite image shows the Saturn Lyman-alpha bulge, an emission from hydrogen which is a persistent and unexpected excess detected by three distinct NASA missions, namely Voyager 1, Cassini, and the Hubble Space Telescope between 1980 and 2017. NASA, ESA, Lotfi Ben-Jaffel (IAP & LPL)

A new study brings together 40 years of planet-warming data.

The post Saturn’s rings have been slowly heating up its atmosphere appeared first on Popular Science.

]]>
A blue UV image of the planet Saturn.
This composite image shows the Saturn Lyman-alpha bulge, an emission from hydrogen which is a persistent and unexpected excess detected by three distinct NASA missions, namely Voyager 1, Cassini, and the Hubble Space Telescope between 1980 and 2017. NASA, ESA, Lotfi Ben-Jaffel (IAP & LPL)

Nothing can really stay a secret forever, and this otherworldly mystery has evaded astronomers for four decades. Saturn’s signature ring system is heating the planet’s upper atmosphere. According to NASA, this phenomenon has never been seen in the solar system, and the unexpected interaction between Saturn and its vast rings could provide a tool for predicting if the planets around other stars have ring systems like Saturn’s.

The findings were published March 30 in the Planetary Science Journal.

The evidence that caused Saturn to spill its secrets is an excess of ultraviolet radiation that is seen as a spectral line of hot hydrogen in Saturn’s atmosphere. This bump in radiation indicates that something is heating and contaminating the planet’s upper atmosphere from the outside. 

[Related: Hubble telescope spies Saturn’s rings in ‘spoke season.’]

According to the paper, the most feasible explanation is that icy ring particles raining down onto Saturn’s atmosphere cause this heating. A few things could be driving this shower of particles, including the impact of micrometeorites, bombardments with particles from solar wind, solar ultraviolet radiation, or electromagnetic forces picking up electrically charged dust. Additionally, Saturn’s gravitational field is pulling particles into the planet while this is all occurring.

In 2017, NASA’s Cassini probe plunged into Saturn’s atmosphere and measured the atmospheric constituents, confirming that many particles are indeed falling in from the rings. This new discovery used that Cassini data in addition to observations from NASA’s Hubble Space Telescope, the Voyager 1 and 2 spacecraft, and the retired International Ultraviolet Explorer mission.

“Though the slow disintegration of the rings is well known, its influence on the atomic hydrogen of the planet is a surprise. From the Cassini probe, we already knew about the rings’ influence. However, we knew nothing about the atomic hydrogen content,” astronomer and co-author Lotfi Ben-Jaffel of the Institute of Astrophysics in Paris and the Lunar & Planetary Laboratory, said in a statement

“Everything is driven by ring particles cascading into the atmosphere at specific latitudes. They modify the upper atmosphere, changing the composition,” said Ben-Jaffel. “And then you also have collisional processes with atmospheric gasses that are probably heating the atmosphere at a specific altitude.”

To come to this conclusion, Ben-Jaffel pulled together archival ultraviolet-light (UV) observations from four different space missions that studied the ringed planet. During these missions spaced out over 40 years, astronomers dismissed the measurements as noise in the detectors. By 2004, when the Cassini mission arrived on Saturn, it also collected UV data on the atmosphere over a period of several years. Some of the additional secret-cracking data came from Hubble and the International Ultraviolet Explorer, an international collaboration between NASA, the European Space Agency, and the United Kingdom’s Science and Engineering Research Council that launched in 1978.

[Related: The origin of Saturn’s slanted rings may link back to a lost, ancient moon.]

The lingering question among decades of data was whether all of it could be illusory or actually reflect a true phenomenon on Saturn.

The key turned out to be Ben-Jaffel’s decision to use measurements taken by the Hubble’s Space Telescope Imaging Spectrograph (STIS). These precision observations of Saturn helped calibrate the archival UV data from all four of the other space missions that have observed Saturn. He compared the STIS UV observations of Saturn to the distribution of light from multiple space missions and instruments.

“When everything was calibrated, we saw clearly that the spectra are consistent across all the missions. This was possible because we have the same reference point, from Hubble, on the rate of transfer of energy from the atmosphere as measured over decades,” said Ben-Jaffel. “It was really a surprise for me. I just plotted the different light distribution data together, and then I realized, wow—it’s the same.”

Forty years of UV data covers multiple solar cycles and helps astronomers study the sun’s seasonal effects on Saturn. Bringing this data together and calibrating it helped Ben-Jaffel find that there was no difference in the level of UV radiation. The UV level of radiation can be followed at “at any time, any position on the planet,” which points to the steady ice rain coming from Saturn’s rings as the best explanation.

Some of the next goals for this research include seeing how it can be applied to planets that orbit other stars

The post Saturn’s rings have been slowly heating up its atmosphere appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
April’s skies boast the full pink moon, Lyrid meteor shower, and a total solar eclipse https://www.popsci.com/science/stargazing-guide-april-2023/ Fri, 31 Mar 2023 12:00:00 +0000 https://www.popsci.com/?p=524257
A total solar eclipse, a bright ring of sunlight around a dark moon on July 2, 2019.
A total solar eclipse from July 2, 2019 showing when the moon passes directly in front of the sun from the Earth’s perspective. ESA/CESAR/Wouter van Reeven, CC BY-SA 3.0 IGO

We're about to experience some epic sky events, just in time for Global Astronomy Month.

The post April’s skies boast the full pink moon, Lyrid meteor shower, and a total solar eclipse appeared first on Popular Science.

]]>
A total solar eclipse, a bright ring of sunlight around a dark moon on July 2, 2019.
A total solar eclipse from July 2, 2019 showing when the moon passes directly in front of the sun from the Earth’s perspective. ESA/CESAR/Wouter van Reeven, CC BY-SA 3.0 IGO
April 5 and 6Full Pink Moon
April 734P/PANSTARRS comet at closest flyby
April 20Total solar eclipse
April 21, 22, and 23Lyrid meteor shower

April is officially Global Astronomy Month, a month-long celebration of all things celestial by Astronomers Without Borders, a US-based club that connects global skywatchers. The event features a Global Star Party and Sun Day and online lessons to highlight the conjunction of art and astronomy. April also happens to be an exciting month for space happenings in general. If you happen to get any stellar sky photos, tag us and include #PopSkyGazers.

[Related: Your guide to the types of stars, from their dusty births to violent deaths.]

April 5 and 6 – Full Pink Moon

The first full moon of spring in the Northern Hemisphere will reach peak illumination at 12:37 AM EDT on April 6. First glimpses of the full Pink Moon will be on April 5, but because it reaches peak illumination so early in Eastern Time, Western time zones will see it peak on the night of April 5.

April’s full moon also goes by many names. The “pink” references early springtime blooms of the wildflower Phlox subulata found in eastern North America. This month’s moon is also the Paschal Full Moon, which determines when the Christian holiday Easter is celebrated. Easter is always celebrated on the first Sunday after the first full moon of spring, so this year Easter will be on Sunday, April 9.

Every year, the April full moon is also called the Frog Moon or Omakakiiwi-giizis in Anishinaabemowin/Ojibwe, the It’s Thundering Moon or Wasakayutese in Oneida, and the Planting Moon or Tahch’atapa in Tunica, the language of the Tunica-Biloxi Tribe of Louisiana.

April 7 – 34P/PANSTARRS comet at its closest point in flyby

The Jupiter-family comet 364P/PANSTARRS will pass within 11 million miles (0.12 AU) of the Earth in early April. The comet will be in the “foxy” constellation Vulpecula and is expected to have a high brightness magnitude of about 12.3. It will be visible in the Northern and Southern hemispheres, but those in Northern latitudes will be able to see it better. 

[Related: A total solar eclipse bathed Antarctica in darkness.]

April 20 – Total solar eclipse

Eclipses are always an exciting event, but this one comes with a twist. A total solar eclipse occurs during a rare cosmic alignment of the Earth, moon, and sun. The next solar eclipse will be the first of its kind since 2013 and the last until 2031.

On April 20, a new moon will eclipse the sun, but it will falter a bit. Since it is slightly too far away from the Earth in its elliptical orbit to fully cover all of the sun, the moon will actually fail to cause a total solar eclipse for a brief moment. A ring of fire will be visible for a few seconds over the Indian Ocean, but the moonshadow will completely cover the sun and cause a total solar eclipse by the time it reaches Western Australia. Eclipse chasers in the town of Exmouth and on ships in the Indian Ocean will likely experience about one minute of darkness during the day.

A long display of Baily’s beads around the New Moon and a view of the sun’s pink chromosphere could also appear around the moon during totality on eclipse day. While this eclipse won’t really be visible in the US, we’re only a few months away from the 2023 annular solar eclipse, which will reach totality in the western part of the country this October. 

April 21, 22, and 23 – Lyrid meteor shower

The Lyrids are predicted to start late in the evening of April 21 or April 22 and last until dawn on April 23. The predicted peak is 9:06 EDT on April 23. While the peak of the Lyrids is narrow, the new moon falls on April 19, so it will not interfere with skygazing

Ten to 15 meteors per hour can be seen in a dark sky with no moon. The Lyrids are even known for some rare surges in activity that can sometimes bring them up to 100 per hour. The meteor shower will be visible from both the Northern and Southern hemispheres, but is much more active in the north.

The same skygazing rules that apply to pretty much all space-watching activities are key this month: Go to a dark spot away from the lights of a city or town and let the eyes adjust to the darkness for about a half an hour. 

The post April’s skies boast the full pink moon, Lyrid meteor shower, and a total solar eclipse appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Catch 5 planets (including Uranus) in an ultra-rare planetary alignment https://www.popsci.com/science/planetary-alignment-march-2023/ Sun, 26 Mar 2023 13:23:23 +0000 https://www.popsci.com/?p=522921
Two people, silhouetted, looking up at a clear night sky.
Are any of those planets? Maybe you'll know after reading this story. Ryan Jacobson / Unsplash

On Tuesday, March 28, you'll be able to see something that won't happen again for 17 years.

The post Catch 5 planets (including Uranus) in an ultra-rare planetary alignment appeared first on Popular Science.

]]>
Two people, silhouetted, looking up at a clear night sky.
Are any of those planets? Maybe you'll know after reading this story. Ryan Jacobson / Unsplash

I’ve always loved learning about the planets and stars, but it sure takes a lot to get me outside on a cold, dark night to see them with my own eyes. This week, though, there’s a celestial lineup I don’t want to miss—and you shouldn’t either!

On Tuesday, five of the solar system’s eight planets (Jupiter, Mercury, Venus, Uranus, and Mars) will be visible together, lined up in the night sky. 

This is known as a planetary alignment, where the planets involved appear to parade across the sky in an orderly fashion. And I really mean you don’t want to miss this one—the next alignment featuring this many planets won’t be until 2040.

What’s the big deal here?

Although there have been some wild theories about strange happenings during planetary alignments—like an increase in natural disasters—those have generally been debunked. Instead, the reason a planetary alignment is a big deal is that it’s simply cool to see. “You get to see pretty much the whole solar system in one night,” says Rory Bentley, UCLA astronomer and avid stargazer.

Usually, the planets are spread across the sky, visible at different times of the night (even into the early morning). They’re technically always in some version of a line—all our solar system’s planets appear on the ecliptic, an invisible arc across the sky tracing the plane where everything orbits the sun. If the planets are close enough together, though, they appear to be in an almost straight line. 

[Related: Astronomers just mapped the ‘bubble’ that envelopes our planet]

That’s precisely what’s happening on March 28. The five planets will come within 50 degrees of each other, a tight bunch compared to their usual spread, giving stargazers of all ages an opportunity to meet our planetary neighbors.

How to see the March 28 alignment

A horizon at sunset, with Venus high up in the sky and Jupiter and Mercury down low, as they'll appear in the Tuesday, March 28, 2023 planetary alignment.
A simulation of what you might see looking west from Los Angeles at approximately 7:30 p.m. PDT on March 28, 2023. Venus is up high, while Jupiter and Mercury are down low. Briley Lewis; Stellarium

The time to spot this planetary parade is right after sunset on the March 28—no more than about 45 minutes after sundown, since Jupiter and Mercury will both disappear below the horizon fairly quickly. You’ll want to make sure you have a clear view of the western horizon, where the sun sets and Jupiter and Mercury will follow close behind. 

Jupiter will be closest to the horizon, easy to spot even in the lingering sunlight of dusk since it’s so bright. Mercury will be nearby—possibly visible to the naked eye, and definitely visible with binoculars. A bit higher up in the sky you’ll find Venus, shining intensely from its ultra-reflective thick clouds. It’s accompanied by Uranus, just a bit above—and for this one, you’ll definitely need those binoculars. Bringing up the tail end of the parade is Mars, up even higher in the sky near the crescent moon. (Bonus: you can see the moon, too, while you’re at it.)

A horizon at night, with Venus high up in the sky and Uranus just above it, as they'll appear in the Tuesday, March 28, 2023 planetary alignment.
A simulation of what you might see looking west from Los Angeles at approximately 8:30 p.m. PDT on March 28, 2023. Venus should still be easy to spot, but finding Uranus will be a little more difficult. Briley Lewis; Stellarium

If you’re not completely sure how to tell what’s a planet, know that the planets you see with your naked eye will generally be brighter than everything around them, and if you look really closely they won’t twinkle quite like stars.

You should be able to spot at least three of the parade participants (Jupiter, Venus, and Mars)—possibly even a fourth (Mercury)—with just your eyes if you’ve got good eyesight and/or a clear sky. Grab some binoculars or a telescope, and you can collect all five planets. Venus and Uranus will be visible until they dip below the horizon about three hours after sunset, and Mars stays out past midnight.

A horizon at night, with Mars and the moon high up in the sky, and the star Betelgeuse off to the left, as they'll appear in the Tuesday, March 28, 2023 planetary alignment.
A simulation of what you might see looking west from Los Angeles at approximately 11 p.m. PDT on March 28, 2023. Mars will be hanging out with the moon. Briley Lewis; Stellarium

Another benefit to using a decently sized pair of binoculars or a telescope is that you’ll get to see a slew of neat planetary features as the alignment glides by. You should be able to spot Saturn’s famous rings, and possibly even some of the colorful cloud bands of Jupiter. Although you won’t notice any surface features on Venus, you will be able to determine what phase it’s in, since Venus has phases (crescent, full, etc.) similar to our moon. Keep in mind that it’s easier to see details when you have clear, still skies, and are looking overhead. The closer your target gets to the horizon, the more of Earth’s atmosphere you end up looking through, making viewing more difficult.

What else to look for on Tuesday night

For extra credit, take a look at some of the other celestial wonders between the planets. Earth’s moon will be a beautiful waxing crescent, and a pair of binoculars will let you investigate its many craters in more detail. 

The Pleiades, a star cluster known across many cultures as the seven sisters, also shines between Venus and Mars. You may recognize this particular arrangement of stars from the logo on Subaru automobiles—it’s no coincidence, because Subaru is actually the Japanese name for this cluster. You’ll likely be able to see this one with just your eyes, even in a big city like Los Angeles.

[Related: Why we turn stars into constellations]

Another large open cluster of stars shines near Mars, known as Messier 35 (M35). This one is a bit more sparse than the Pleiades, but still neat to see. Binoculars are a must for this one, unless you’re in a particularly remote dark sky location. “Even then, it’d still be better with binoculars,” Bentley explains. Both M35 and the Pleiades are examples of stars all born around the same time from the same initial cloud of gas.

The big takeaway here is: go outside at sunset on Tuesday, March 28. It’ll be a nice moment to marvel at the cosmos, and appreciate our small blue planet as we look for other worlds. Happy stargazing!

Correction March 27, 2023: A previous version of this story said the moon would be in its waning crescent phase. It will be waxing.

The post Catch 5 planets (including Uranus) in an ultra-rare planetary alignment appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A ‘city-killer’ asteroid will cruise past Earth tonight https://www.popsci.com/science/city-killer-asteroid-march-24-2023/ Fri, 24 Mar 2023 16:00:00 +0000 https://www.popsci.com/?p=522663
An asteroid comes apart in the night sky.
This 2019 Hubble Space Telescope image reveals the gradual self-destruction of asteroid (6478) Gault, whose ejected dusty material has formed two long, thin, comet-like tails. NASA, ESA, K. Meech and J. Kleyna (University of Hawaii), and O. Hainaut (European Southern Observatory)

Don’t panic, just grab your binoculars.

The post A ‘city-killer’ asteroid will cruise past Earth tonight appeared first on Popular Science.

]]>
An asteroid comes apart in the night sky.
This 2019 Hubble Space Telescope image reveals the gradual self-destruction of asteroid (6478) Gault, whose ejected dusty material has formed two long, thin, comet-like tails. NASA, ESA, K. Meech and J. Kleyna (University of Hawaii), and O. Hainaut (European Southern Observatory)

An asteroid roughly the size of a 20-story building—that’s  big enough to wipe out a whole city full of skyscrapers—is expected to fly between the Earth and the moon on March 24th and March 25.

Discovered only a month ago, the asteroid known as 2023 DZ2 will pass within 320,000 miles of the moon on Saturday and then zip by the Indian Ocean at roughly 17,500 miles per hour. It will be closest to Earth on March 25 at about 3:50 PM EDT. 

[Related: DART left an asteroid crime scene. This mission is on deck to investigate it.]

This close encounter—by planetary standards—will give astronomers a chance to study this space rock from a bit over 100,000 miles away. This distance is only half the distance from the Earth to the moon, which means the newly discovered asteroid is visible through binoculars and telescopes in the right locations. Those in the Northern Hemisphere will have the best chance to spot it through telescopes during the evening on March 24.

“There is no chance of this ‘city killer’ striking Earth, but its close approach offers a great opportunity for observations,” the European Space Agency’s planetary defense chief Richard Moissl said in a statement, according to the Associated Press.

NASA further confirmed this message of calm on Twitter earlier this week, adding that 2023 DZ2’s close approach will help astronomers to learn more about asteroids. “Astronomers with the International Asteroid Warning Network are using this close approach to learn as much as possible about 2023 DZ2 in a short time period – good practice for #PlanetaryDefense in the future if a potential asteroid threat were ever discovered,” NASA wrote in Tweet.

For a little while, 2023 DZ2 posed a very slight risk of impacting Earth on March 27, 2026. Lucky for Earthlings, it was removed from the Sentry Risk Table as of March 21, 2023.

The Virtual Telescope Project will also provide a live webcast of 2023 DZ2’s close approach.

A group of astronomers at the Roque de los Muchachos Observatory in Spain discovered the asteroid in late February and have been studying the space rock’s size, orbit, and anticipated trajectory. It’s estimated to be between 140 and 310 feet in diameter. 

A different asteroid that was also discovered in February named 2023 DW possibly carries a larger risk to Earth down the road. The European Space Agency put it on the top of its Risk List and predicts a 1 in 607 chance that it could impact Earth. Estimates say a collision could occur around February 14, 2046, but it could also occur on subsequent Valentine’s Days between the years 2047 and 2051. 

[Related: NASA’s first attempt to smack an asteroid was picture perfect.]

In the meantime, scientists are learning more about asteroids following NASA’s successful DART mission in September, which smashed a car-sized spacecraft into an asteroid named Dimorphos in an attempt to knock it off its orbit. In September 2022, NASA’s planetary defense officer Lindley Johnson told PopSci that DART is a “significant milestone” in humanity’s capabilities to protect the planet from such a dark outcome.

“This is the first time that humankind acquired the knowledge and the technology to start to rearrange things a little bit in the solar system, if you will, and make it a more hospitable place for life,” Johnson said.


The European Space Agency’s Hera will soon follow DART’s trail to study its aftermath in more detail. That mission is scheduled for an October 2024 departure from Cape Canaveral in Florida, on the wings of a SpaceX Falcon 9 rocket. Its itinerary as of March 2023 has it arriving at Didymos and its small moonlet Dimorphos and in late 2026 for about six months of sightseeing. If the conditions allow, Hera will try to make a full landing on Didymos.

The post A ‘city-killer’ asteroid will cruise past Earth tonight appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>