Deep Space | Popular Science https://www.popsci.com/category/deep-space/ Awe-inspiring science reporting, technology news, and DIY projects. Skunks to space robots, primates to climates. That's Popular Science, 145 years strong. Tue, 28 Nov 2023 16:00:00 +0000 en-US hourly 1 https://wordpress.org/?v=6.2.2 https://www.popsci.com/uploads/2021/04/28/cropped-PSC3.png?auto=webp&width=32&height=32 Deep Space | Popular Science https://www.popsci.com/category/deep-space/ 32 32 Scientists want to use the sun’s gravity to communicate between stars https://www.popsci.com/science/solar-gravitational-lensing/ Tue, 28 Nov 2023 16:00:00 +0000 https://www.popsci.com/?p=591700
The sun
“By harnessing the gravitational lensing effect of our star, astronomy would experience a revolutionary leap in observing capability". NASA/Goddard/SDO

Solar gravitational lensing may help us search for life on other planets.

The post Scientists want to use the sun’s gravity to communicate between stars appeared first on Popular Science.

]]>
The sun
“By harnessing the gravitational lensing effect of our star, astronomy would experience a revolutionary leap in observing capability". NASA/Goddard/SDO

Gravitational lensing occurs when things with mass create ripples and dents in the fabric of spacetime, and light has to follow along those lines, which sometimes create a magnifying glass effect. This both sounds and looks like something wild from science fiction, but it’s actually a very important tool in astronomy. The James Webb Space Telescope has been in the news a lot recently for just this: watching how light bends around massive galaxy clusters in space, revealing fainter, further away old galaxies behind them. 

Now, Slava Turyshev, a scientist at NASA’s Jet Propulsion Lab, is trying to harness one of these gravitational lenses closer to home, using our sun. In a new paper posted to the pre-print server arXiv, Turyshev computes all the detailed math and physics needed to show that it is actually possible to harness our sun’s gravity in this way, with some pretty neat uses. A so-called “solar gravitational lens” (SGL) could help us beam light messages into the stars for interstellar communication or investigate the surfaces of distant exoplanets.

“By harnessing the gravitational lensing effect of our star, astronomy would experience a revolutionary leap in observing capability,” says Nick Tusay, a Penn State astronomer not involved in the new work. “Light works both ways, so it could also boost our transmitting capability as well, if we had anyone out there to communicate with.”

When it comes to telescopes here on Earth, bigger is definitely better. To collect enough light to spot really faint far away objects, you need a huge mirror or lens to focus the light—but we can really only build them so big. This is where the SGL comes in, as an alternative to building bigger telescopes, instead relying on spacetime bent by the sun’s gravity to do the focusing for us. 

“Using the SGL removes the need to build larger telescopes and instead raises the problem of how to get a telescope out to the focal distance of the Sun (and how to keep it there),” explains Macy Huston, a Berkeley astronomer not involved in the new research. “And there’s a lot of work ongoing to try to solve this,” they add.

Turyshev is actively working on a mission design to send a one-meter telescope (less than half the size of the famous Hubble) out to the focus of the sun’s gravitational well. It’s quite a trek—this focal point is located about 650 AU out from our star, almost five times out from humanity’s current distance record holder, Voyager 1. To get out to such a huge distance in less than a lifetime, the team is relying on cutting-edge solar sail technology to move faster than ever before.

Plans are underway at NASA’s Jet Propulsion Laboratory to send solar sails to the solar gravitational lens focus to make the first ever image of an exoplanet’s surface.

Currently, the James Webb Space Telescope is investigating the atmospheres of planets around other stars, and the future Habitable Worlds Observatory in the 2040s will hopefully be able to see enough detail in exoplanetary atmospheres to find hints of life. Turyshev’s mission would be the next big step towards confirming life on other worlds, hopefully launching around 2035. Once JWST and HWO identify possibly interesting worlds, the SGL telescope will then actually map the surface of an exoplanet in detail. Turyshev claims it would be able to see a planet blown up to 700 by 700 pixels—a huge improvement on direct imaging’s current 2 or 3 pixels. “If there is a swamp on that exoplanet, emitting methane, we’ll know that’s what is positioned on this continent on this island, for example,” he explains.

Looking further into the sci-fi future, this same SGL technology could be used not only “as a telescope we could use from the solar system to view other planetary systems in great detail” but also as an “interstellar communication network (for intentional communications),” says Huston. A laser positioned at the sun’s gravitational focus could send messages to other stars without losing as much signal as our current Earth-bound beacon tech.

“If we were to ever become an interstellar civilization, this [SGL] could potentially be the most effective means of communication between star systems,” says Tusay. Our radio transmissions, leaking out of Earth’s atmosphere since the early 1900s, rapidly become fainter the further away from our planet. Turyshev’s mathematical calculations show that signals sent from the SGL could be easily noticed at the distances of nearby stars, even when accounting for the noisy background of the real world. Transmission via the SGL is “not prohibited, it’s really encouraged by physics,” says Turyshev.

This tech wouldn’t solve all our interstellar roadblocks, though. We might be able to send messages, but we still don’t have a way of sending ourselves out amongst the stars to travel. There’d also be a huge delay in our galactic calls—more like sending a cross-country letter by horseback than FaceTiming with your friends. “Light still has a maximum speed,” reminds Tusay. As a result, sending a message to a star four light-years away would take four years to get there, and another four for the response to reach us. Still, the solar gravitational lens is one big step towards making our science fiction futures a reality.

The post Scientists want to use the sun’s gravity to communicate between stars appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Chaotic region shines bright with 500,000 stars in new JWST image https://www.popsci.com/science/500000-stars-jwst/ Tue, 21 Nov 2023 15:20:00 +0000 https://www.popsci.com/?p=590917
The full view of the James Webb Space Telescope’s NIRCam (Near-Infrared Camera) instrument reveals a 50 light-years-wide portion of the Milky Way’s dense center. An estimated 500,000 stars shine in this image of the Sagittarius C region, along with some as-yet unidentified features. A vast region of ionized hydrogen, shown in cyan, wraps around an infrared-dark cloud, which is so dense that it blocks the light from distant stars behind it. Intriguing needle-like structures in the ionized hydrogen emission lack any uniform orientation. Researchers note the surprising extent of the ionized region, covering about 25 light-years.
The full view of the James Webb Space Telescope’s NIRCam (Near-Infrared Camera) instrument reveals a 50 light-years-wide portion of the Milky Way’s dense center. An estimated 500,000 stars shine in this image of the Sagittarius C region, along with some as-yet unidentified features. A vast region of ionized hydrogen, shown in cyan, wraps around an infrared-dark cloud, which is so dense that it blocks the light from distant stars behind it. Intriguing needle-like structures in the ionized hydrogen emission lack any uniform orientation. Researchers note the surprising extent of the ionized region, covering about 25 light-years. NASA, ESA, CSA, STScI, Samuel Crowe (UVA)

Just in time for Sagittarius season, the newly imaged Sagittarius C region includes some star-forming hotspots.

The post Chaotic region shines bright with 500,000 stars in new JWST image appeared first on Popular Science.

]]>
The full view of the James Webb Space Telescope’s NIRCam (Near-Infrared Camera) instrument reveals a 50 light-years-wide portion of the Milky Way’s dense center. An estimated 500,000 stars shine in this image of the Sagittarius C region, along with some as-yet unidentified features. A vast region of ionized hydrogen, shown in cyan, wraps around an infrared-dark cloud, which is so dense that it blocks the light from distant stars behind it. Intriguing needle-like structures in the ionized hydrogen emission lack any uniform orientation. Researchers note the surprising extent of the ionized region, covering about 25 light-years.
The full view of the James Webb Space Telescope’s NIRCam (Near-Infrared Camera) instrument reveals a 50 light-years-wide portion of the Milky Way’s dense center. An estimated 500,000 stars shine in this image of the Sagittarius C region, along with some as-yet unidentified features. A vast region of ionized hydrogen, shown in cyan, wraps around an infrared-dark cloud, which is so dense that it blocks the light from distant stars behind it. Intriguing needle-like structures in the ionized hydrogen emission lack any uniform orientation. Researchers note the surprising extent of the ionized region, covering about 25 light-years. NASA, ESA, CSA, STScI, Samuel Crowe (UVA)

A new image from NASA’s almost two-year-old James Webb Space Telescope features new details of a portion of our galaxy’s dense center for the first time. The image includes some parts of the star-forming hotspot that astronomers are still trying to fully understand. The region is named Sagittarius C and is about 300 light-years away from Sagittarius A*, or the supermassive black hole at the center of our galaxy.

[Related: Gaze upon the supermassive black hole at the center of our galaxy.]


“There’s never been any infrared data on this region with the level of resolution and sensitivity we get with Webb, so we are seeing lots of features here for the first time,” observation team principal investigator Samuel Crowe said in a statement. “Webb reveals an incredible amount of detail, allowing us to study star formation in this sort of environment in a way that wasn’t possible previously.” Crowe is an undergraduate student at the University of Virginia in Charlottesville.

Approximate outlines help to define the features in the Sagittarius C (Sgr C) region. Astronomers are studying data from NASA’s James Webb Space Telescope to understand the relationship between these features, as well as other influences in the chaotic galaxy center. CREDITS: Image- NASA, ESA, CSA, STScI, Samuel Crowe (UVA)
Approximate outlines help to define the features in the Sagittarius C (Sgr C) region. Astronomers are studying data from NASA’s James Webb Space Telescope to understand the relationship between these features, as well as other influences in the chaotic galaxy center. CREDITS: Image- NASA, ESA, CSA, STScI, Samuel Crowe (UVA)

The image features roughly 500,000 stars and a cluster of young stars called protostars. These are stars that are still forming and gaining mass, while generating outflows that glow in the midst of an infrared-dark cloud. A massive previously-discovered protostar that is over 30 times the mass of our sun is located at the heart of this young cluster. 

The protostars are emerging from a cloud that is so dense that the light from stars behind it cannot reach the JWST. This light trick makes the region look deceptively less crowded. According to the team, this is actually one of the most tightly packed areas of the image. Smaller infrared-dark clouds dot the image where future stars are forming. 

“The galactic center is the most extreme environment in our Milky Way galaxy, where current theories of star formation can be put to their most rigorous test,” University of Virginia astronomer Jonathan Tan said in a statement

JWST’s Near-Infrared Camera (NIRCam) also captured large-scale emission from ionized hydrogen that is surrounding the lower side of the dark cloud. According to Crowe, this is the result of energetic photons that are being emitted by young massive stars. The expanse of the region spotted by JWST came as a surprise to the team and needs more investigation. They also plan to further examine the needle-like structures in the ionized hydrogen, which are scattered in multiple directions.

“The galactic center is a crowded, tumultuous place. There are turbulent, magnetized gas clouds that are forming stars, which then impact the surrounding gas with their outflowing winds, jets, and radiation,” Rubén Fedriani, a co-investigator of the project at the Instituto Astrofísica de Andalucía in Spain, said in a statement. “Webb has provided us with a ton of data on this extreme environment, and we are just starting to dig into it.”

[Related: ‘Christmas tree’ galaxy shines in new image from Hubble and JWST.]

At roughly 25,000 light-years from Earth, the galactic center is close enough for the JWST to study individual stars. This allows astronomers to collect data on both how stars form, but also how this process may depend on the cosmic environment when compared to other regions of the galaxy. One question this could help answer is if there are more massive stars in the center of the Milky Way, as opposed to on the edges of the galaxy’s spiral arms.

“The image from Webb is stunning, and the science we will get from it is even better,” Crowe said. “Massive stars are factories that produce heavy elements in their nuclear cores, so understanding them better is like learning the origin story of much of the universe.”

The post Chaotic region shines bright with 500,000 stars in new JWST image appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
NASA’s Psyche wins first deep space laser relay https://www.popsci.com/technology/nasa-psyche-laser-comms/ Fri, 17 Nov 2023 20:00:00 +0000 https://www.popsci.com/?p=590387
NASA Psyche spacecraft surrounded by engineers in lab
NASA’s Psyche spacecraft is shown in a clean room at the Astrotech Space Operations facility near the agency’s Kennedy Space Center in Florida on Dec. 8, 2022. DSOC’s gold-capped flight laser transceiver can be seen, near center, attached to the spacecraft. NASA/Ben Smegelsky

The asteroid-bound spacecraft pulled off a ‘first light’ experiment only a few weeks into its 3.5 year journey.

The post NASA’s Psyche wins first deep space laser relay appeared first on Popular Science.

]]>
NASA Psyche spacecraft surrounded by engineers in lab
NASA’s Psyche spacecraft is shown in a clean room at the Astrotech Space Operations facility near the agency’s Kennedy Space Center in Florida on Dec. 8, 2022. DSOC’s gold-capped flight laser transceiver can be seen, near center, attached to the spacecraft. NASA/Ben Smegelsky

Although NASA’s Psyche spacecraft is currently en route to its rendezvous with a unique, metal-heavy asteroid floating between Mars and Jupiter, it still has quite a while before it reaches its destination. But researchers aren’t waiting until the end of its 3.5 year, 280-million-mile journey to make the most of the project. Even after barely a month of spaceflight, Psyche is already achieving some impressive technological feats.

On November 16, NASA announced its Deep Space Optical Communications experiment aboard Psyche successfully achieved “first light” earlier this week, beaming a data-laden, near-infrared laser nearly 10 million miles back to Caltech’s Palomar Observatory. Additionally, DSOC operators were able to “close the link”—the vital process in which test data is simultaneously beamed through both uplink and downlink lasers. Although only the first of numerous test runs to come, it completes a necessary step within NASA’s ongoing plans to develop far more powerful communications tools for future space travel.

[Related: In its visit to Psyche, NASA hopes to glimpse the center of the Earth.]

Astronauts, ground crews, and private companies have all utilized radio wave frequencies for data transfers and communications since the late-1950’s, thanks to a global antenna array known as the Deep Space Network. As organizations like NASA aim to expand humanity’s presence beyond Earth in the coming decades, they’ll need to move away from radio systems to alternatives like infrared lasers. Not only are such lasers more cost efficient, but they are also capable of storing and transmitting far more information within their shorter wavelengths. Further along in DSOC’s development, for example, will hopefully accomplish data transmission rates between 10-to-100 times greater than today’s spacecraft radio systems.

“Achieving first light is one of many critical DSOC milestones in the coming months, paving the way toward higher-data-rate communications capable of sending scientific information, high-definition imagery, and streaming video in support of humanity’s next giant leap: sending humans to Mars,”  Trudy Kortes, NASA’s director of Technology Demonstrations, said in Thursday’s announcement.

NASA also noted that, while similar infrared communications has been successfully achieved in low Earth orbit as well as to-and-from the moon, this week’s DSOC milestone marks the first test through deep space. This is more difficult thanks to the comparatively vast, growing distance between Earth and Psyche. During the November 14 test, data took roughly 50 seconds to travel from the spacecraft to researchers in California. At its farthest distance from home, Psyche’s data-encoded photons will take around 20 minutes to relay. That’s more than enough time for both Earth and Psyche to drift further along their own respective cosmic paths, so laser arrays on the craft and at NASA will need to adjust for the changes. Future testing will ensure the terrestrial and deep space tech is up to the task.

[Related: NASA’s mission to a weird metal asteroid has blasted off.]

Once it becomes the new norm, Jason Mitchell, director of the Advanced Communications and Navigation Technologies Division within NASA’s Space Communications and Navigation (SCaN) program, believes optical lasers will offer a “boon” for researchers’ space missions data collection, and will help enable future deep space exploration.
“More data means more discoveries,” Mitchell said in NASA’s announcement.

The post NASA’s Psyche wins first deep space laser relay appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
JWST spots two of the most distant galaxies astronomers have ever seen https://www.popsci.com/science/jwst-spots-two-of-the-most-distant-galaxies-astronomers-have-ever-seen/ Tue, 14 Nov 2023 18:30:00 +0000 https://www.popsci.com/?p=589589
UNCOVER z-13 and UNCOVER z-12 are the second and fourth most distant galaxy ever observed. The James Webb Space Telescope’s Near-Infrared Camera (NIRCam) helped confirm their existence within Pandora’s Cluster (Abell 2744). They are shown here as near-infrared wavelengths of light that have been translated to visible-light colors.
UNCOVER z-13 and UNCOVER z-12 are the second and fourth most distant galaxy ever observed. The James Webb Space Telescope’s Near-Infrared Camera (NIRCam) helped confirm their existence within Pandora’s Cluster (Abell 2744). They are shown here as near-infrared wavelengths of light that have been translated to visible-light colors. Cluster image: NASA, UNCOVER (Bezanson et al., DIO: 10.48550/arXiv.2212.04026). Insets: Nasa, UNCOVER (Wang et al., 2023). Composition: Dani Zemba/Penn State

The data on UNCOVER z-13 and UNCOVER z-12 helps support the Big Bang theory.

The post JWST spots two of the most distant galaxies astronomers have ever seen appeared first on Popular Science.

]]>
UNCOVER z-13 and UNCOVER z-12 are the second and fourth most distant galaxy ever observed. The James Webb Space Telescope’s Near-Infrared Camera (NIRCam) helped confirm their existence within Pandora’s Cluster (Abell 2744). They are shown here as near-infrared wavelengths of light that have been translated to visible-light colors.
UNCOVER z-13 and UNCOVER z-12 are the second and fourth most distant galaxy ever observed. The James Webb Space Telescope’s Near-Infrared Camera (NIRCam) helped confirm their existence within Pandora’s Cluster (Abell 2744). They are shown here as near-infrared wavelengths of light that have been translated to visible-light colors. Cluster image: NASA, UNCOVER (Bezanson et al., DIO: 10.48550/arXiv.2212.04026). Insets: Nasa, UNCOVER (Wang et al., 2023). Composition: Dani Zemba/Penn State

A team using NASA’s James Webb Space Telescope has observed two of the most distant galaxies astronomers have ever seen. At close to 33 billion light years away from Earth, these distant regions can offer insight into how the universe’s earliest galaxies may have formed. The findings are detailed in a study published November 13 in The Astrophysical Journal Letters.

[Related: ‘Christmas tree’ galaxy shines in new image from Hubble and JWST.]

The galaxies UNCOVER z-13 and UNCOVER z-12 are the second and fourth most distant galaxies ever observed and are located in a region called Pandora’s Cluster (Abell 2744). The two galaxies are among the 60,000 sources of light in Pandora’s Cluster that were captured in some of the first deep field images the JWST took in 2022. This region of space was selected for this kind of imaging due to its location behind several galaxy clusters. The light creates a natural magnification effect called gravitational lensing. This happens when the gravitational pull of the clusters’ combined mass warps the space-time around it. It then magnifies any light that passes nearby and offers a larger view behind the clusters.

Other galaxies confirmed at this distance generally appear in images as red dots. However, these new galaxies are larger and look more like a peanut and a fluffy ball, according to the team.

“Very little is known about the early universe, and the only way to learn about that time and to test our theories of early galaxy formation and growth is with these very distant galaxies,” study co-author and astronomer Bingjie Wang from Penn State University said in a statement. “Prior to our analysis, we knew of only three galaxies confirmed at around this extreme distance. Studying these new galaxies and their properties has revealed the diversity of galaxies in the early universe and how much there is to be learned from them.” 

Wang is also a member of the JWST UNCOVER (Ultradeep NIRSpec and NIRCam ObserVations before the Epoch of Reionization) team that conducted this research. UNCOVER’s early goal is to obtain highly detailed images of the region around Pandora’s Cluster using JWST.

Since the light that is emitted from these galaxies had to travel for so long to reach Earth, it offers a window into the universe’s past. The team estimates that the light JWST detected was emitted by the two galaxies when the universe was about 330 million years old and that it traveled for about 13.4 billion light years to reach the space telescopes. 

However, the galaxies are currently closer to 33 billion light years away from Earth because of the expansion of the universe over this period of time. 

“The light from these galaxies is ancient, about three times older than the Earth,” study co-author, Penn State astronomer, and UNCOVER member Joel Leja said in a statement.  “These early galaxies are like beacons, with light bursting through the very thin hydrogen gas that made up the early universe. It is only by their light that we can begin to understand the exotic physics that governed the galaxy near the cosmic dawn.”

[Related: JWST takes a jab at the mystery of the universe’s expansion rate.]

The two galaxies are also considerably bigger than the three galaxies previously located at these extreme distances. While our Milky Way galaxy is roughly 100,000 light years across, galaxies in the early universe are believed to have been very compressed. A galaxy of 2,000 light years across like one of ones the team imaged came as a surprise.

“Previously discovered galaxies at these distances are point sources—they appear as a dot in our images,” Wang said. “But one of ours appears elongated, almost like a peanut, and the other looks like a fluffy ball. It is unclear if the difference in size is due to how the stars formed or what happened to them after they formed, but the diversity in the galaxy properties is really interesting. These early galaxies are expected to have formed out of similar materials, but already they are showing signs of being very different than one another.”

To make inferences about these early galaxies, the team used detailed models. They believed that in addition to being young (by space standards), the two galaxies also had few metals in their composition, and were growing rapidly and actively forming stars

“The first elements were forged in the cores of early stars through the process of fusion,” Leja said. “It makes sense that these early galaxies don’t have heavy elements like metals because they were some of the first factories to build those heavy elements. And, of course, they would have to be young and star-forming to be the first galaxies, but confirming these properties is an important basic test of our models and helps confirm the whole paradigm of the Big Bang theory.”

Astronomers will continue to use lensing clusters and the instruments aboard the JWST to continue to peel back the timeline of some of the universe’s first galaxies.  

The post JWST spots two of the most distant galaxies astronomers have ever seen appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
‘Christmas tree’ galaxy shines in new image from Hubble and JWST https://www.popsci.com/science/christmas-tree-jwst/ Mon, 13 Nov 2023 16:30:00 +0000 https://www.popsci.com/?p=589447
Space Telescope with visible-light data from NASA’s Hubble Space Telescope. The resulting wavelength coverage, from 0.4 to 5 microns, reveals a vivid landscape of galaxies whose colors give clues to galaxy distances: The bluest galaxies are relatively nearby and often show intense star formation, as best detected by Hubble, while the redder galaxies tend to be more distant, or else contain copious amount of dust, as detected by JWST.
Space Telescope with visible-light data from NASA’s Hubble Space Telescope. The resulting wavelength coverage, from 0.4 to 5 microns, reveals a vivid landscape of galaxies whose colors give clues to galaxy distances: The bluest galaxies are relatively nearby and often show intense star formation, as best detected by Hubble, while the redder galaxies tend to be more distant, or else contain copious amount of dust, as detected by JWST. NASA, ESA, CSA, STScI, J. Diego (Instituto de Física de Cantabria, Spain), J. D’Silva (U. Western Australia), A. Koekemoer (STScI), J. Summers & R. Windhorst (ASU), and H. Yan (U. Missouri).

The colorful galaxy clusters are about 4.3 billion light-years away.

The post ‘Christmas tree’ galaxy shines in new image from Hubble and JWST appeared first on Popular Science.

]]>
Space Telescope with visible-light data from NASA’s Hubble Space Telescope. The resulting wavelength coverage, from 0.4 to 5 microns, reveals a vivid landscape of galaxies whose colors give clues to galaxy distances: The bluest galaxies are relatively nearby and often show intense star formation, as best detected by Hubble, while the redder galaxies tend to be more distant, or else contain copious amount of dust, as detected by JWST.
Space Telescope with visible-light data from NASA’s Hubble Space Telescope. The resulting wavelength coverage, from 0.4 to 5 microns, reveals a vivid landscape of galaxies whose colors give clues to galaxy distances: The bluest galaxies are relatively nearby and often show intense star formation, as best detected by Hubble, while the redder galaxies tend to be more distant, or else contain copious amount of dust, as detected by JWST. NASA, ESA, CSA, STScI, J. Diego (Instituto de Física de Cantabria, Spain), J. D’Silva (U. Western Australia), A. Koekemoer (STScI), J. Summers & R. Windhorst (ASU), and H. Yan (U. Missouri).

Two of the most powerful space telescopes in the universe have joined forces to showcase a panorama of colorful galaxy clusters about 4.3 billion light-years away from Earth. The image of  galaxy cluster MACS0416 is from NASA’s James Webb Space Telescope (JWST) and the Hubble Space Telescope and combines both visible and infrared light. 

[Related: Euclid telescope spies shimmering stars and galaxies in its first look at the ‘dark’ universe.]

According to NASA, MACS0416 is a pair of colliding galaxy clusters that will eventually combine to form an even bigger cluster. It includes numerous galaxies outside of the cluster and some other light sources that vary over time. The variation is likely due to a phenomenon called gravitational lensing, where light is distorted and amplified from distant background sources.

Space Telescope photo
Space Telescope with visible-light data from NASA’s Hubble Space Telescope. The resulting wavelength coverage, from 0.4 to 5 microns, reveals a vivid landscape of galaxies whose colors give clues to galaxy distances: The bluest galaxies are relatively nearby and often show intense star formation, as best detected by Hubble, while the redder galaxies tend to be more distant, or else contain copious amount of dust, as detected by JWST.  CREDIT: NASA, ESA, CSA, STScI, J. Diego (Instituto de Física de Cantabria, Spain), J. D’Silva (U. Western Australia), A. Koekemoer (STScI), J. Summers & R. Windhorst (ASU), and H. Yan (U. Missouri).

Color coding

In the image, different colors represent the varying wavelengths of light. The shortest are blue, the intermediate are green, and the longest are red. The wavelengths range from 0.4 to 5 microns and the variation creates a particularly vivid landscape of galaxies.

The colors also give clues to how far away the galaxies are. The bluest galaxies are relatively close, tend to show intense star formation, and are best detected by Hubble. The more red galaxies tend to be further away and are best spotted by JWST. Some of the galaxies also appear very red because they have a large amount of cosmic dust that tends to absorb bluer colors of starlight.

“The whole picture doesn’t become clear until you combine Webb data with Hubble data,” Rogier Windhorst said in a statement. Windhorst is an astronomer at Arizona State University and principal investigator of the PEARLS program (Prime Extragalactic Areas for Reionization and Lensing Science), which took the JWST observations.

Oh Christmas tree

While the images are pleasant to look like, they were also taken for a specific scientific purpose. The team was using their data to search for objects varying in observed brightness over time, known as transients. All of these colors twinkling together in the galaxy look like shining colorful lights on a Christmas tree. 

“We’re calling MACS0416 the Christmas Tree Galaxy Cluster, both because it’s so colorful and because of these flickering lights we find within it. We can see transients everywhere,” said astronomer Haojing Yan of the University of Missouri in Columbia said in a statement. Yan is a co-author of one paper describing the scientific results published in The Astrophysical Journal.

The team identified 14 transients across the field of view. Twelve of the transients were located in three galaxies that are highly magnified by gravitational lensing. This means that they are likely to be individual stars or multiple-star systems that are very highly magnified for a short period of time. The other two transients are located within more moderately magnified background galaxies, so they are likely to be supernovae.

More observations with JWST could lead to finding numerous additional transients and in other similar galaxy clusters. 

Godzilla and Mothra 

One of the transients stood out in particular. The star system is located in a galaxy that existed roughly three billion years after the big bang and is magnified by a factor of at least 4,000. They nicknamed the star system Mothra in a nod to its “monster nature” of being both very bright and magnified. Mothra joins another lensed star the researchers previously identified that they nicknamed “Godzilla.” In Japanese cinema, Godzilla and Mothra are giant monsters known as kaiju.

In addition to the new JWST images, Mothra is also visible in the Hubble observations that were taken nine years ago. According to the team, this is unusual, because a very specific alignment between the foreground galaxy cluster and the background star is needed to magnify a star this much. The alignment should have been eliminated by the mutual motions of the star and the cluster.

An additional object within the foreground cluster could be adding more magnification. 

“The most likely explanation is a globular star cluster that’s too faint for Webb to see directly,” astronomer Jose Diego of the Instituto de Física de Cantabria in Spain said in a statement. “But we don’t know the true nature of this additional lens yet.” Diego is also a co-author of a paper published in the journal Astronomy & Astrophysics that details this finding. 

The post ‘Christmas tree’ galaxy shines in new image from Hubble and JWST appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Euclid telescope spies shimmering stars and galaxies in its first look at the ‘dark’ universe https://www.popsci.com/science/euclid-first-images/ Tue, 07 Nov 2023 18:30:00 +0000 https://www.popsci.com/?p=587198
This square astronomical image is divided horizontally by a waving line between a white-orange cloudscape forming a nebula along the bottom portion and a comparatively blue-purple-pink upper portion. From the nebula in the bottom half of the image, an orange cloud shaped like a horsehead sticks out. In the bottom left of the image, a white round glow is visible. The clouds from the bottom half of the image shine purple/blue light into the upper half. The top of the image shows the black expanse of space. Speckled across both portions is a starfield, showing stars of varying sizes and colors. Blue stars are younger and red stars are older.
Barnard 33 or the Horsehead Nebula as seen by the ESA’s Euclid space telescope. It sits just to the south of star Alnitak, the easternmost of Orion’s famous three-star belt, and is part of the vast Orion molecular cloud. ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi

The European Space Agency’s six-year mission is off to a dazzling start.

The post Euclid telescope spies shimmering stars and galaxies in its first look at the ‘dark’ universe appeared first on Popular Science.

]]>
This square astronomical image is divided horizontally by a waving line between a white-orange cloudscape forming a nebula along the bottom portion and a comparatively blue-purple-pink upper portion. From the nebula in the bottom half of the image, an orange cloud shaped like a horsehead sticks out. In the bottom left of the image, a white round glow is visible. The clouds from the bottom half of the image shine purple/blue light into the upper half. The top of the image shows the black expanse of space. Speckled across both portions is a starfield, showing stars of varying sizes and colors. Blue stars are younger and red stars are older.
Barnard 33 or the Horsehead Nebula as seen by the ESA’s Euclid space telescope. It sits just to the south of star Alnitak, the easternmost of Orion’s famous three-star belt, and is part of the vast Orion molecular cloud. ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi

On November 7, the European Space Agency (ESA) released the first five images taken with its premier Euclid space telescope. The images show spiral galaxies, star nurseries, and incredible celestial objects in incredibly sharp detail. 

[Related: Euclid space telescope begins its search through billions of galaxies for dark matter and energy.]

Perseus cluster of galaxies

CREDIT:ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi
This group picture of 1,000 galaxies in a cluster 240 million light-years away. It is positioned against a backdrop of over 100,000 galaxies that are billions of light-years away. A light-year is 5.8 trillion miles. Many of the faint galaxies in this image were previously unseen. Mapping out the distribution and shapes of these galaxies can help cosmologists determine more about how dark matter shaped our present universe over time.  CREDIT: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi

IC 342 aka the ‘Hidden Galaxy’

CREDIT: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi
The spiral galaxy IC 342 or Caldwell 5 is nicknamed the “Hidden Galaxy.” It has historically been difficult to observe because it lies in a busy disc in our Milky Way and the dust, gas and stars obscure our view of it. Euclid used its sensitivity and high-tech optics to capture the image, particularly its near-infrared instrument. The instrument allowed it to seek through the space dust and measure the light emitting from many of the cool and low-mass stars that dominate the galaxy’s mass. CREDIT: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi

Irregular galaxy NGC 6822

CREDIT: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi
This first irregular dwarf galaxy is relatively close to use in space terms. It is only 1.6 million light-years from Earth and is a member of the same galaxy cluster as the Milky Way. In 1925, Edwin Hubble was the first to identify NGC 6822 as a ‘remote stellar system’ well beyond the Milky Way. While it has been observed many times with other telescopes, Euclid is the first to capture all of NGC 6822 and surroundings in high resolution in about one hour. CREDIT: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi

[Related: Your guide to the types of stars, from their dusty births to violent deaths.]

Globular cluster NGC 6397

CREDIT: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi
Located about 7800 light-years away, NGC 6397 is the second-closest globular cluster to Earth. A globular cluster is a collection of hundreds of thousands of stars that are held together by gravity. According to the ESA, Euclid is the only telescope that can observe an entire globular cluster in one observation and simultaneously distinguish so many stars in the cluster. These faint stars can tell astronomers more about the history of the Milky Way galaxy and where dark matter is located. CREDIT: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi

The Horsehead Nebula

CREDIT: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi
This nebula is also known as Barnard 33 and is part of the constellation Orion. It is a stellar nursery where scientists hope to find multiple dim and previously unseen planets with a similar mass to the gas giant Jupiter that are in their celestial infancy. It could also be the location of many young brown dwarfs and baby stars. CREDIT: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi

Dark matter and dark energy

In July, Euclid launched from Cape Canaveral Space Force Station in Florida. It’s on a mission of studying the mysterious influence of dark matter and dark energy on the universe and mapping one third of the extragalactic sky. According to the ESA, 95 percent of our cosmos appears to be made of these mysterious ‘dark’ entities. But we don’t understand what they are because their presence causes only very subtle changes in the appearance and motions of the things we can see.

“Dark matter pulls galaxies together and causes them to spin more rapidly than visible matter alone can account for; dark energy is driving the accelerated expansion of the Universe. Euclid will for the first-time allow cosmologists to study these competing dark mysteries together,” Carole Mundell, ESA Director of Science, said in a statement. “Euclid will make a leap in our understanding of the cosmos as a whole, and these exquisite Euclid images show that the mission is ready to help answer one of the greatest mysteries of modern physics.”

Euclid will observe the shapes, distances, and motions of billions of galaxies out to 10 billion light-years over the course of the next six years.

The post Euclid telescope spies shimmering stars and galaxies in its first look at the ‘dark’ universe appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Farthest black hole ever recorded by astronomers is nearly as old as our universe https://www.popsci.com/science/very-far-black-hole/ Tue, 07 Nov 2023 16:15:00 +0000 https://www.popsci.com/?p=587109
Astronomers found the most distant black hole ever detected in X-rays (in a galaxy dubbed UHZ1) using the Chandra X-Ray Observatory and the James Webb Space Telescope. X-ray emission is a telltale signature of a growing supermassive black hole. This result may explain how some of the first supermassive black holes in the universe formed. These images show the galaxy cluster Abell 2744 that UHZ1 is located behind, in X-rays from Chandra and infrared data from JWST, as well as close-ups of the black hole host galaxy UHZ1.
Astronomers found the most distant black hole ever detected in X-rays (in a galaxy dubbed UHZ1) using the Chandra X-Ray Observatory and the James Webb Space Telescope. X-ray emission is a telltale signature of a growing supermassive black hole. This result may explain how some of the first supermassive black holes in the universe formed. These images show the galaxy cluster Abell 2744 that UHZ1 is located behind, in X-rays from Chandra and infrared data from JWST, as well as close-ups of the black hole host galaxy UHZ1. X-ray: NASA/CXC/SAO/Ákos Bogdán; Infrared: NASA/ESA/CSA/STScI; Image Processing: NASA/CXC/SAO/L. Frattare & K. Arcand

The 13.2 billion-year-old supermassive black hole was observed with the help of two telescopes and a 'cosmic magnifying glass.'

The post Farthest black hole ever recorded by astronomers is nearly as old as our universe appeared first on Popular Science.

]]>
Astronomers found the most distant black hole ever detected in X-rays (in a galaxy dubbed UHZ1) using the Chandra X-Ray Observatory and the James Webb Space Telescope. X-ray emission is a telltale signature of a growing supermassive black hole. This result may explain how some of the first supermassive black holes in the universe formed. These images show the galaxy cluster Abell 2744 that UHZ1 is located behind, in X-rays from Chandra and infrared data from JWST, as well as close-ups of the black hole host galaxy UHZ1.
Astronomers found the most distant black hole ever detected in X-rays (in a galaxy dubbed UHZ1) using the Chandra X-Ray Observatory and the James Webb Space Telescope. X-ray emission is a telltale signature of a growing supermassive black hole. This result may explain how some of the first supermassive black holes in the universe formed. These images show the galaxy cluster Abell 2744 that UHZ1 is located behind, in X-rays from Chandra and infrared data from JWST, as well as close-ups of the black hole host galaxy UHZ1. X-ray: NASA/CXC/SAO/Ákos Bogdán; Infrared: NASA/ESA/CSA/STScI; Image Processing: NASA/CXC/SAO/L. Frattare & K. Arcand

Astronomers have discovered the most distant supermassive black hole ever observed. They had the help of a “cosmic magnifying glass,” or gravitational lensing. This happens when a massive celestial body creates a large curvature of spacetime so that the path of light around it can be bent as if by a lens.

The black hole is located in the galaxy UHZ1 in the direction of the galaxy cluster Abell 2744. The galaxy cluster is about 13.2 billion-years-old. The team used NASA’s Chandra X-ray Observatory and the James Webb Space Telescope (JWST) to find the telltale signature of a growing black hole. It started to form only 470 million years after the big bang when the universe was only 3 percent of its current age of about 13.7 billion years-old. The galaxy is much more distant than the cluster itself, at 13.2 billion light-years from Earth. 

[Related: Gravitational wave detector now squeezes light to find more black holes.]

Astronomers can tell that this black hole is so young because it is so giant. Black holes evaporate over time. Most black holes in galactic centers have a mass that is equal to roughly a tenth of the stars in their host galaxy, according to NASA. This early black hole is growing and as a mass that is on par with our entire galaxy. Astronomers have never witnessed a black hole at this stage before and studying it could help explain how some of the first supermassive black holes in the universe formed. The findings are detailed in a study published November 6 in the journal Nature Astronomy.

“We needed Webb to find this remarkably distant galaxy and Chandra to find its supermassive black hole,” study co-author and astronomer Akos Bogdan said in a statement. Bogdan is affiliated with the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts.

“We also took advantage of a cosmic magnifying glass that boosted the amount of light we detected,” Bogman added. This magnifying effect is known as gravitational lensing. The team took X-ray observations with Chandra for two weeks. They saw intense, superheated X-ray emitting gas—a supermassive black hole’s trademark—from the galaxy. The light coming from the galaxy and the X-ray from the gas around the supermassive black hole were magnified by the hot gas and dark matter coming from the galaxy cluster. This effect was like a “cosmic magnifying glass” and it enhanced the infrared light signals that the JWST could detect and allowed Chandra to see the faint X-ray source.

“There are physical limits on how quickly black holes can grow once they’ve formed, but ones that are born more massive have a head start. It’s like planting a sapling, which takes less time to grow into a full-size tree than if you started with only a seed,” study co-author and Princeton University astronomer Andy Goulding said in a statement

[Related: ‘Rogue black holes’ might be neither ‘rogue’ nor ‘black holes.’]

Observing this phenomenon could help astronomers answer how some supermassive black holes can hit enormous masses so soon after the explosion of energy from the big bang. There are two opposed theories for the origin of these supermassive black holes–light seed versus heavy seed. The light seed theory says that a star will collapse into a stellar mass black hole and then grow into a supermassive black hole over time. In the heavy seed theory, a large cloud of gas–not an individual star–collapses and condenses to form the supermassive black hole. This newly discovered black hole could confirm the heavy seed theory. 

“We think that this is the first detection of an ‘Outsize Black Hole’ and the best evidence yet obtained that some black holes form from massive clouds of gas,” study co-author and Yale University theoretical astrophysicist Priyamvada Natarajan said in a statement. “For the first time we are seeing a brief stage where a supermassive black hole weighs about as much as the stars in its galaxy, before it falls behind.”

The team plans to use this and more data coming in from the JWST and other space telescopes to create a better picture of the early universe. 

The post Farthest black hole ever recorded by astronomers is nearly as old as our universe appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This NASA photographer documented the 30-year journey to build the James Webb Space Telescope https://www.popsci.com/technology/chris-gunn-james-webb-space-telescope/ Tue, 31 Oct 2023 22:00:00 +0000 https://www.popsci.com/?p=584872
The gold mirrors of JSWT sit in front of an extremely large, circular door in a vast room with scientists working.
Christopher Gunn / NASA

It took 100 million hours of hard work to make, test, and launch the impressive space observatory. Chris Gunn gives us a window into that.

The post This NASA photographer documented the 30-year journey to build the James Webb Space Telescope appeared first on Popular Science.

]]>
The gold mirrors of JSWT sit in front of an extremely large, circular door in a vast room with scientists working.
Christopher Gunn / NASA

Sometimes, amazing science happens in the background with little to no public attention. All those years of hard efforts and incremental progress are left unseen except by those living and working through it. Now, a new book detailing the making of the James Webb Space Telescope (JWST) aims to change that by sharing photographs, diagrams, and behind-the-scenes information of the science and pioneers behind the project. 

Inside the Star Factory: The Creation of the James Webb Space Telescope, NASA’s Largest and Most Powerful Space Observatory gives us a full-body summary of an astronomical feat that required more than 100 million hours of labor over the course of 30 years. It covers everything from the initial conception of the idea to the Christmas Day launch in 2021, providing a robust picture of what went into designing, engineering, and testing such a masterpiece. Science writer Christopher Wanjek provides an in-depth overview of the history of JWST, but even more, the book serves as an “illustrated guide [that] shows readers the heady world of scientific discovery at the very limits of human knowledge.”

All of the 100-plus images of the telescope’s construction were taken by Chris Gunn, who joined the project 15 years ago and was the only photographer given such extensive access to the development and launch of JWST. Over his long career, he’s focused on creating intricate images and videos related to science and technology, with previous experience capturing the last servicing mission to the Hubble Space Telescope. His work puts faces to NASA’s biggest telescope endeavor, humanizing the entire assignment and showcasing those who dedicated so much of their time to a single goal. 

We had a chance to speak with Gunn about his new book to find out more about his process and experience. Here’s what he revealed. 

The gold mirrors of the JWST hang in a large room at NASA Goddard with groups of scientists working below.
Gunn’s images do a fascinating job of showing the scale of the project. Christopher Gunn / NASA

PopSci: How did you get involved with NASA and JWST? 

Gunn: I worked as a photographer on the last servicing mission to Hubble from 2006 to 2009. When that mission ended, I was asked to join the JWST team. I had never imagined being on such a long-term project. 

PopSci: What was the most challenging part about photographing the project? 

Gunn: The most challenging part about photographing this project was also the most exciting: the constantly evolving subject. Seeing parts of the observatory come together was amazing, but the trick was to keep a consistent look and feel in my photographs throughout the project. I started to pay more attention to the environments that I was shooting and bring elements of these environments into my compositions. When I could light my subjects, I took great care to do it subtly. Eventually, I realized that JWST’s geometry photographed beautifully but any distortion ate away at that beauty. Over time I became a more selective shooter with more restraint. 

A team of scientists in a large room look at a gold mirror for the James Webb Space Telescope.
This was the very first mirror segment to arrive at NASA Goddard. Christopher Gunn / NASA

PopSci: What’s your favorite moment (or moments) from your time with the team? 

Gunn: My favorite moments include the arrival of the first mirrors, the first time I saw the optical system deployed inside of NASA Johnson’s test chamber, and the mating of the optical system to the sunshield and main spacecraft bus. During each of these project milestones the cleanrooms were filled with a sense of awe and wonder. They aren’t particularly noisy in general, but they were super quiet for these moments. I had a sense that I was witnessing something great that humankind was achieving. 

PopSci: What were your go-to cameras and lenses? 

Gunn: One of the most interesting things about being on such a long-term project is seeing the progression in photographic technology as the years passed. I initially shot with Nikon’s D3s and D3X cameras, and finally settled on D4s for several years. Nikon’s 14-24mm 2.8 lens was my favorite lens early on. 

After the observatory was built, I switched to a medium-format Hasselblad-H camera boasting 50 megapixels. The Hassy gave me more resolution, and more importantly, allowed me to shoot with less distortion. Later in the project I acquired a mirrorless Hasselblad, which I used with adapted H lenses. The Hasselblad 50mm was probably my favorite lens as it offered a sharp, undistorted, and wide perspective. The medium format cameras also forced me to slow down and concentrate on composition. 

Two scientists stand in front of the gold JWST mirrors in a large, dimly lit room.
Gunn’s favorite image is also the cover of the new book. Christopher Gunn/ NASA

PopSci: Do you have a no. 1 photograph from the series? 

Gunn: I have quite a few favorites—they’re all in the book. If I had to choose one, it’s the image used for the cover. It was made at the tail end of a long day and depicts the one and only time that the secondary mirror was deployed using the flight motors. That’s the smaller mirror in the center. The center section of the primary mirror reflects the secondary mirror, and you can see the primary mirror in this reflection. Look closely and you also can see me in this reflection. The selfie was unintentional.

Buy Inside the Star Factory: The Creation of the James Webb Space Telescope, NASA’s Largest and Most Powerful Space Observatory here.

The post This NASA photographer documented the 30-year journey to build the James Webb Space Telescope appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Uranus has a weird infrared aurora https://www.popsci.com/science/infrared-aurora-uranus/ Mon, 30 Oct 2023 15:00:00 +0000 https://www.popsci.com/?p=584297
An artist's rendition of the infrared aurora superimposed on a Hubble Space Telescope photograph of Uranus. The planet is blue with a white ring around it and the aurora is shown in red at its poles.
An artist's rendition of the infrared aurora superimposed on a Hubble Space Telescope photograph of Uranus. NASA, ESA, and M. Showalter (SETI Institute) for the background image of Uranus

Confirmed for the first time, Uranus's unique aurora could help astronomers determine if other planets could support life.

The post Uranus has a weird infrared aurora appeared first on Popular Science.

]]>
An artist's rendition of the infrared aurora superimposed on a Hubble Space Telescope photograph of Uranus. The planet is blue with a white ring around it and the aurora is shown in red at its poles.
An artist's rendition of the infrared aurora superimposed on a Hubble Space Telescope photograph of Uranus. NASA, ESA, and M. Showalter (SETI Institute) for the background image of Uranus

For the first time, astronomers using data from the Keck II telescope have detected the presence of an infrared aurora on the planet Uranus. The discovery could shed light on some of the unknown properties of the magnetic fields of our solar system’s planets. It could also help explain why a planet so far from the sun is hotter than it should be. The findings are described in a study published on October 23 in the journal Nature Astronomy

[Related: Uranus got its name from a very serious authority.]

The NIRSPEC instrument (Near InfraRed SPECtrograph) at the Keck Observatory in Hawaii  was used to collect 6 hours of observations of Uranus in 2006. The study’s authors carefully studied 224 images to find signs of a specific particle–ionized triatomic hydrogen or H3+. They found evidence of H3+ in the data after collisions with charged particles. The emission created an infrared auroral glow over Uranus’ northern magnetic pole. The image itself is an artist’s rendition of the infrared aurora, superimposed on a Hubble Space Telescope image of Uranus.

Uranian auroras vs. Earth auroras

Auroras on the planet Uranus are caused when charged particles from the sun interact with the planet’s magnetic field the same way they do on Earth. The particles are funneled along magnetic field lines toward the magnetic poles. When they enter the Uranian atmosphere, the charged particles bump into atmospheric molecules. This causes the molecules to glow. 

The dominant gasses in Uranus’ atmosphere are hydrogen and helium and they are at much lower temperatures than on Earth. The presence of these gasses at these temperatures cause Uranus’ auroras to predominantly glow at ultraviolet and infrared wavelengths. By comparison, auroras on Earth come from oxygen and nitrogen atoms colliding with the charged particles and the colors are mostly blue, green, and red and can generally be seen with the human eye at the right latitudes. 

Uranus and Neptune are unusual planets in our solar system because their magnetic fields are misaligned with the axes in which they spin. Astronomers haven’t found an explanation for this, but clues could lie in Uranus’s aurora. 

Measuring the infrared

In the study, a team of astronomers used the first measurements of the infrared aurora at Uranus since investigations into the planet began in 1992. The ultraviolet aurorae of Uranus was first observed 1986, but the infrared aurora has not been observed until now, according to the team. 

By analyzing specific wavelengths of light emitted from the planet. With this data, they can analyze the light called emission lines from these planets, which is similar to a barcode. In the infrared spectrum, the lines emitted by the H3+ particles will have different levels of brightness depending on how hot or cold the particle is and how dense this layer of the atmosphere is. The lines then act like a thermometer taking the planet’s temperature.

The astronomers found that there were distinct increases in H3+ density in Uranus’s atmosphere with little change in temperature. This is consistent with ionization that is caused by the presence of an infrared aurora. These measurements can help astronomers understand the magnetic fields on the other outer planets in the solar system. They could also scientists identify other planets that are suitable for supporting life.

[Related: Ice giant Uranus shows off its many rings in new JWST image.]

“The temperature of all the gas giant planets, including Uranus, are hundreds of degrees Kelvin/Celsius above what models predict if only warmed by the sun, leaving us with the big question of how these planets are so much hotter than expected? One theory suggests the energetic aurora is the cause of this, which generates and pushes heat from the aurora down towards the magnetic equator,” study co-author and University of Leicester PhD student Emma Thomas said in a statement

Clues to life on exoplanets

According to Thomas, most of the exoplanets astronomers have discovered are in the sub-Neptune category, so they are a similar size as Neptune and Uranus. Similar magnetic and atmospheric characteristics could also exist on these exoplanets. Uranus’s aurora directly connects to the planet’s magnetic field and atmosphere, so studying it can help astronomers make predictions about the atmospheres and magnetic fields and their suitability for supporting life.

These results may also provide insight into a rare phenomenon on Earth called geomagnetic reversal. This occurs when the north and south poles switch hemisphere locations. According to NASA, pole reversals are pretty common in Earth’s geologic history and the last one occurred roughly 780,000 years ago. Paleomagnetic records show that over the last 83 million years, Earth’s magnetic poles have reversed 183 times. They’ve also reversed at least several hundred times in the past 160 million years. The time intervals between these reversals have fluctuated, but average about 300,000 years.

“We don’t have many studies on this phenomena and hence do not know what effects this will have on systems that rely on Earth’s magnetic field such as satellites, communications and navigation,” said Thomas. “However, this process occurs every day at Uranus due to the unique misalignment of the rotational and magnetic axes. Continued study of Uranus’s aurora will provide data on what we can expect when Earth exhibits a future pole reversal and what that will mean for its magnetic field.”

The post Uranus has a weird infrared aurora appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Gravitational wave detector now squeezes light to find more black holes https://www.popsci.com/science/ligo-quantum-squeezing-detections/ Fri, 27 Oct 2023 10:00:00 +0000 https://www.popsci.com/?p=583746
Dark black holes merge together in a brown, star-studded illustration.
Two merging black holes, each roughly 30 times the mass of the sun, in a computer simulation.

The cutting-edge move has boosted the cosmic collisions LIGO can hear by up to 70 percent.

The post Gravitational wave detector now squeezes light to find more black holes appeared first on Popular Science.

]]>
Dark black holes merge together in a brown, star-studded illustration.
Two merging black holes, each roughly 30 times the mass of the sun, in a computer simulation.

Gravitational wave observatories, such as the Laser Interferometer Gravitational-Wave Observatory (LIGO), are exercises in extreme sensitivity. LIGO’s two experimental ears—one in Louisiana, another in Washington state—listen to ripples in space-time left behind by objects that include black holes and neutron stars. To do this, LIGO carefully watches for minute fluctuations in miles-long laser beams. The challenge is that everything from rumbling tractors to the weather to quantum noise can cause disturbances of their own. A huge part of gravitational wave observation is the science of weeding out unwanted noise.

Now, following a round of upgrades, both of LIGO’s ears can hear 60 percent more events than ever before. Much of the credit goes to a system that corrects for barely perceptible quantum noise by very literally squeezing the light.

Physicists and engineers have been tinkering with light-squeezing in the lab for decades, and their work is showing real results. “It’s not a demonstration anymore,” says Lee McCuller, a physicist at Caltech. “We’re actually using it.” McCuller and his colleagues will publish their work in the journal Physical Review X on October 30.

Gravitational waves are an odd curiosity of how gravity works, as predicted by general relativity. As a falling rock casts ripples in water, sufficiently spectacular events—say, two black holes or two neutron stars merging together—cast waves in the fabric of space-time. Listening into those gravitational waves allows astronomers to peek at massive objects like black holes and neutron stars that are otherwise difficult to see clearly. Scientists can only pull this off thanks to devices like LIGO.

LIGO’s ears are shaped like very large Ls, their arms precisely 4 kilometers (2.49 miles) long. A laser beam, split in two, travels each down one of the arms. Those beams bounce off a mirror at the far end, and return back to the vertex, where they can be recombined into a single beam. Tiny shifts in space-time—gravitational waves—can subtly stretch and squeeze either arm, etching patterns in the recombined beam’s light.

The length shifts are extremely subtle, far too slight to even dream of seeing with the naked eye. The task of detecting such a slight shift becomes even trickier when LIGO detectors are prone to earthquakes, weather, and human activity, all of which create noise that rattles the mirrors or shakes up the laser beams.

Physicists have developed ways of cutting out all that noise. They can keep the arms in a vacuum, devoid of all other matter, to prevent sound waves. They can suspend mirrors to isolate them from vibrations. They can measure the noise of the outside world and adjust the instruments accordingly, like a very large noise-cancelling headset. 

Green light shines on a complex device used to reduce quantum noise.
One of LIGO’s quantum squeezers in operation.

But something that these methods cannot filter out is quantum physics. Even in a perfect vacuum, the inherent randomness of the universe at its tiniest scales—particles popping in and out of existence—makes its mark. “You’ve got a natural fluctuation on the level of your measurement that can mask a weak gravitational wave signal,” says Patrick Sutton, an astrophysicist at Cardiff University, a member of the LIGO-Virgo collaboration who wasn’t an author of the new study.

[Related: We’ve recorded a whopping 35 gravitational wave events in just 5 months]

LIGO detected the first-ever confirmed gravitational waves in 2016. Around the same time, its operators were thinking about ways to weed out the quantum disturbances. Physicists can manipulate light by trapping it within a crystal and “squeezing” it. They installed such a crystal on both LIGO detectors in time for the observatory’s third round of detections, which began in 2019.

The upgrade enabled LIGO to work with laser light with higher frequencies. But squeezing light like this came at a cost: making it more difficult to read lower-frequency light. This is problematic, because the gravitational waves from events we can detect—such as black hole mergers—tend to produce a good deal of lower-frequency light in LIGO.

So, after COVID-19 forced LIGO to shut down in mid-2020, its operators added a new chamber to their squeezing setup. This chamber allows a more adaptive approach, manipulating different properties of light at different frequencies. To do this, the chamber must trap light for 3 milliseconds—enough time for light to travel hundreds of miles. The chamber began operation when LIGO’s fourth, current observing run switched on earlier this year.

“It took a lot of engineering and design work and careful thinking to make this an upgrade that does its job and improves squeezing, but doesn’t introduce new noise,” McCuller says.

Both of LIGO’s detectors can now pick up gravitational waves from further into the cosmos and from a wider swath of space. LIGO now hears about 60 to 70 percent more events, according to Sutton. Better sensitivity also allows astronomers to measure gravitational waves with greatly increased precision, which lets them test the theory of general relativity. “It’s a significant jump,” Sutton says.

[Related: Astronomers now know how supermassive black holes blast us with energy]

LIGO’s fellow detector in Europe, Virgo, is implementing the same frequency-dependent squeezing based on its scientists’ own research. “We don’t currently know of any other technique that can improve upon this one,” McCuller says. “In terms of new techniques, this is the best one we actually know how to use at the moment.”

All the gravitational wave events we’ve seen so far came from two black holes or two neutron stars emerging: loud, violent events that leave equally violent splashes. But gravitational wave listeners would like to use gravitational waves to listen to other events, too, such as supernovas, gamma ray bursts, and pulsars. We aren’t quite there yet, but squeezing may get us closer by letting us take full advantage of the hardware we have.

“The key there is just to make the detectors ever more sensitive—bring that noise down and down and down—until, eventually we start seeing some,” Sutton says. “I think those will be very exciting days.”

The post Gravitational wave detector now squeezes light to find more black holes appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Voyager probes get virtual tune-up to keep decades-long missions going and going https://www.popsci.com/technology/voyager-software-thruster-update/ Mon, 23 Oct 2023 18:00:00 +0000 https://www.popsci.com/?p=582451
Artist rendition of Voyager 1 in space
Voyager 1 and 2 have traveled through space for nearly 50 years. NASA/JPL-Caltech

Voyager 1 and 2 received a software update and thruster tweak from 12 to 15 billion miles away.

The post Voyager probes get virtual tune-up to keep decades-long missions going and going appeared first on Popular Science.

]]>
Artist rendition of Voyager 1 in space
Voyager 1 and 2 have traveled through space for nearly 50 years. NASA/JPL-Caltech

Against all odds and expectations, both Voyager 1 and Voyager 2 are still going strong after nearly half a century of hurtling through—and far past—the solar system. To help boost the potential for the probes’ continued operations, engineers at NASA’s Jet Propulsion Laboratory have beamed out two software updates across the billions of miles separating them from the historic spacecraft. If successful, the pair of interstellar travelers could gain at least another five years’ worth of life, if not more.

On October 20, NASA announced plans to transmit a software patch to protect Voyager 1 and 2 against a glitch that occurred within the former’s system last year. In May 2022, NASA started noticing inaccurate readings coming from Voyager 1’s attitude articulation and control system (AACS). A few months later, engineers determined the AACS was accidentally writing commands into memory instead of actually performing them.

Although engineers successfully resolved an original data issue within Voyager 1 in 2022, the new patch will hopefully ensure such a problem won’t arise again in either probe. Receiving the patch will take over 18 hours to reach transmitters; Voyager 2 will get the patch first to serve as a “testbed for its twin” in case of unintended consequences like accidentally overwriting essential code. Given Voyager 1 and Voyager 2 are respectively 15 billion and 12 billion miles from Earth, engineers consider the farther craft’s data more valuable, as it still remains the farthest traveling human-made object. The NASA-JPL team will issue a command on October 28 to test the patch’s efficacy.

[Related: The secret to Voyagers’ spectacular space odyssey.]

The second planned tune-up for Voyager 1 and 2 involves the small thrusters responsible for controlling the probes’ communication antennas. According to NASA, spacecraft can generally rotate in three directions—left and right, up and down, as well as wheellike around a central axis. During these movements, propellant automatically flows through incredibly narrow “inlet tubes” to maintain the antennas’ contact with Earth.

But each time the propellant is used, miniscule residue can stick within the inlet tubings—while not much at first, that buildup is becoming problematic after the Voyager probes’ (many) decades’ of life. To slow the speed of buildup, engineers have edited the probes’ operational commands to allow both craft the ability to rotate nearly 1 degree farther in each available direction. This will reduce how often their thrusters need to fire. When engineers do need to enable thrusters, they now plan to fire them for longer periods of time, thus reducing the overall number of usages. 

[Related: How is Voyager’s vintage technology still flying?]

“This far into the mission, the engineering team is being faced with a lot of challenges for which we just don’t have a playbook,” Linda Spilker, Voyager mission project scientist, said via NASA’s update. “But they continue to come up with creative solutions.”

Experts estimate both the fuel lines and software adjustments could extend the Voyager program’s lifespan by another five years. According to NASA, however, “additional steps in the coming years to extend the lifetime of the thrusters even more.”

The post Voyager probes get virtual tune-up to keep decades-long missions going and going appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Oldest radio burst ever found could tell us what exists between galaxies https://www.popsci.com/science/oldest-fast-radio-burst-8-billion-years/ Thu, 19 Oct 2023 18:00:00 +0000 https://www.popsci.com/?p=581152
A radio telescope in Australia beneath the Milky Way.
The Australian Square Kilometre Array Pathfinder sensed the remarkable FRB. CSIRO

These signals emit as much energy in milliseconds as the sun does in three days.

The post Oldest radio burst ever found could tell us what exists between galaxies appeared first on Popular Science.

]]>
A radio telescope in Australia beneath the Milky Way.
The Australian Square Kilometre Array Pathfinder sensed the remarkable FRB. CSIRO

Of all the pyrotechnics that blast through the cosmos, fast radio bursts (FRBs) are among the most powerful—and mysterious. While our radio telescopes have picked up hundreds of known FRBs, radio astronomers recently detected one of the most fascinating bursts yet. Not only does it come from a greater distance than any FRB observed before, it’s the most energetic, too.

A superlative FRB like this defies our already murky understanding of the bursts’ origins. FRBs are sudden surges of radio waves that typically last less than a second, if not mere milliseconds. And they are very, very high-energy: They can deliver as much energy in milliseconds as the sun emits in three days. Despite all that, we don’t know for certain how they form.

The new event, what astronomers lovingly call FRB 20220610A, first appeared as a blip in the Australian Square Kilometre Array Pathfinder, an arrangement of antennae in the desert about 360 miles north of Perth. When astronomers measured the burst’s redshift, they calculated that it left its source about 8 billion years ago, as they described in a paper published today in Science

After pinpointing the burst’s origin in the sky and following up with visible light and infrared telescopes, the authors managed to develop a blurry image of merging galaxies.

[Related: Two bizarre stars might have beamed a unique radio signal to Earth]

“The further you go out in the universe, of course, the fainter the galaxies are, because they’re farther away. It’s quite difficult to identify the host galaxy, and that’s what they’ve done,” Sarah Burke Spolaor, an astronomer who studies FRBs at West Virginia University, who was not an author of the study.

FRBs aren’t exciting just because they’re loud. To reach us, a burst from outside the Milky Way must traverse millions or billions of light-years of the near-empty space between galaxies. In the process, they’ll encounter an extremely sparse smattering of ionized particles. This is the stuff that prevents the bulk of the cosmos from being completely empty—what astronomers call the intergalactic medium, which might make up as much as half of the universe’s “normal” matter.

“We don’t know much about it, because it’s so tenuous that it’s difficult to detect,” says Daniele Michilli, an astronomer at the Massachusetts Institute of Technology, who also wasn’t a study author.

As an FRB crosses the intergalactic medium on its long voyage, the particles cause its radio waves to scatter, which leaves fingerprints that astronomers can pick apart. In this way, scientists can use FRBs to investigate the intergalactic medium. More faraway bursts like FRB 20220610A could allow astronomers to study the medium across wide swathes of the universe.

[Related: How astronomers traced a puzzling detection to a lunchtime mistake]

“It’s very exciting, definitely one of the great applications of fast radio bursts,” says Ziggy Pleunis, an astronomer who studies FRBs at the University of Toronto, who was also not part of the authors’ group. “Fast radio bursts currently are really the only thing that we know that interacts with the intergalactic medium in a meaningful enough way that we can measure properties.”

An illustrated yellow beam representing a fast radio burst connects merging galaxies to our Milky Way.
A yellow beam representing the FRB traveling between galaxies, in a concept illustration. ESO/M. Kornmesser

In the future, astronomers might even be able to use FRBs to study how the universe expands. To unweave that mystery, however, astronomers will need to detect FRBs from even deeper into the cosmic past than FRB 20220610A. “For a lot of applications, it’s still not quite far away enough,” Pleunis says. “But it certainly bodes well.” 

There’s a balancing act involved: Over a sufficiently long distance, the particles in the intergalactic medium will peel an FRB apart until it disperses into background noise. To survive, an FRB must be brighter and more energetic; in turn, by taking stock of how much a burst has dispersed, astronomers can estimate its original energy. 

By computing the numbers for FRB 20220610A, they found that it was the most energetic burst Earth has seen so far. (Another recently observed burst, FRB 20201124A, comes within the same order of magnitude, but FRB 20220610A is the record-holder.) A burst with this much energy throws something of a wrench into astronomers’ understanding, such as it is, of what creates FRBs in the first place.

We, again, don’t have a definitive answer to that question. Complicating the question, some FRBs are one-off flashes, while others repeat, hinting that the two types of FRBs may have two different origins. (To wit, FRB 20220610A seems to have been a one-off. But that other high-energy FRB, FRB 20201124A, seems to repeat.)

Nevertheless, astronomers have simulated a few scenarios, largely involving neutron stars. Perhaps FRBs burst from near a neutron star’s surface, or perhaps FRBs erupt from shockwaves through the material that neutron stars throw up.

But when this paper’s authors ran the numbers with their new FRB, they found that neither of those two scenarios could easily create an burst with this much energy—suggesting that theoretical astronomers have even more work to do before they can satisfactorily explain these events.

“What always strikes me about fast radio bursts is, every time we observe a new one, it breaks the mold of previous ones,” Spolaor says.

The post Oldest radio burst ever found could tell us what exists between galaxies appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Why a 3,000-mile-long jet stream on Jupiter surprised NASA scientists https://www.popsci.com/science/jwst-jupiter-jet-stream/ Thu, 19 Oct 2023 17:15:00 +0000 https://www.popsci.com/?p=581172
An image of Jupiter taken with the James Webb Space Telescope’s NIR Cam in July 2022. Researchers recently discovered a narrow jet stream traveling 320 miles per hour sitting over Jupiter’s equator above the main cloud decks. The numerous bright white "spots" and "streaks" are likely very high-altitude cloud tops of condensed convective storms. Auroras, appearing in red in this image, extend to higher altitudes above both the northern and southern poles of the planet.
In July 2022, James Webb Space Telescope’s NIR Cam captured this image of Jupiter in infrared light. Researchers recently discovered a narrow jet stream traveling 320 miles per hour sitting over Jupiter’s equator above the main cloud decks. The numerous bright white "spots" and "streaks" are likely very high-altitude cloud tops of condensed convective storms. Auroras, appearing in red in this image, extend to higher altitudes above both the northern and southern poles of the planet. NASA, ESA, CSA, STScI, Ricardo Hueso (UPV), Imke de Pater (UC Berkeley), Thierry Fouchet (Observatory of Paris), Leigh Fletcher (University of Leicester), Michael H. Wong (UC Berkeley), Joseph DePasquale (STScI)

JWST captured a never-before-seen jet stream with winds twice as strong as a Category 5 hurricane.

The post Why a 3,000-mile-long jet stream on Jupiter surprised NASA scientists appeared first on Popular Science.

]]>
An image of Jupiter taken with the James Webb Space Telescope’s NIR Cam in July 2022. Researchers recently discovered a narrow jet stream traveling 320 miles per hour sitting over Jupiter’s equator above the main cloud decks. The numerous bright white "spots" and "streaks" are likely very high-altitude cloud tops of condensed convective storms. Auroras, appearing in red in this image, extend to higher altitudes above both the northern and southern poles of the planet.
In July 2022, James Webb Space Telescope’s NIR Cam captured this image of Jupiter in infrared light. Researchers recently discovered a narrow jet stream traveling 320 miles per hour sitting over Jupiter’s equator above the main cloud decks. The numerous bright white "spots" and "streaks" are likely very high-altitude cloud tops of condensed convective storms. Auroras, appearing in red in this image, extend to higher altitudes above both the northern and southern poles of the planet. NASA, ESA, CSA, STScI, Ricardo Hueso (UPV), Imke de Pater (UC Berkeley), Thierry Fouchet (Observatory of Paris), Leigh Fletcher (University of Leicester), Michael H. Wong (UC Berkeley), Joseph DePasquale (STScI)

Jupiter and its dynamic atmosphere are ready for another closeup in a new image taken with the James Webb Space Telescope (JWST). Using the telescope’s data, scientists have discovered a new and never-before-captured high-speed jet stream. The jet stream sits over Jupiter’s equator above the main cloud decks, barrels at speeds twice as high as a Category 5 hurricane, and spans more than 3,000 miles. The findings were described in a study published October 19 in the journal Nature Astronomy.

[Related: This hot Jupiter exoplanet unexpectedly hangs out with a super-Earth.]

Jupiter is the largest planet in our solar system and its atmosphere has some very visible features, including the infamous Great Red Spot, which is large enough to swallow the Earth. The planet is ever-changing and there are still mysteries in this gas giant that scientists are trying to unravel. According to NASA, the new discovery of the jet stream is helping them decipher how the layers of Jupiter’s famously turbulent atmosphere interact with each other. Now, JWST is helping scientists look further into the planet and see some of the lower and deeper layers of Jupiter’s atmosphere where gigantic storms and ammonia ice clouds reside. 

“This is something that totally surprised us,” study co-author Ricardo Hueso said in a statement.  “What we have always seen as blurred hazes in Jupiter’s atmosphere now appear as crisp features that we can track along with the planet’s fast rotation.” Hueso is an astrophysicist at the University of the Basque Country in Bilbao, Spain.

The research team analyzed data from JWST’s Near-Infrared Camera (NIRCam) that was obtained in July 2022. The Early Release Science program was designed to take images of Jupiter 10 hours apart (one Jupiter day) in four different filters. Each filter detected different types of changes in the small features located at various altitudes of Jupiter’s atmosphere.

Space Telescope photo
At a wavelength of 2.12 microns, which observes between altitudes of about 12-21 miles above Jupiter’s cloud tops, researchers spotted several wind shears, or areas where wind speeds change with height or with distance, which enabled them to track the jet. This image highlights several of the features around Jupiter’s equatorial zone that, between one rotation of the planet (10 hours), are very clearly disturbed by the motion of the jet stream. CREDIT: NASA, ESA, CSA, STScI, Ricardo Hueso (UPV), Imke de Pater (UC Berkeley), Thierry Fouchet (Observatory of Paris), Leigh Fletcher (University of Leicester), Michael H. Wong (UC Berkeley), Joseph DePasquale (STScI)

The resulting image shows Jupiter’s atmosphere in infrared light. The jet stream is located over the equator, or center, of the planet. There are multiple bright white spots and streaks that are likely very high-altitude cloud tops of condensed convective storms. Jupiter’s northern and southern poles are dotted by auroras that appear red and extend to the higher altitudes of the planet. 

“Even though various ground-based telescopes, spacecraft like NASA’s Juno and Cassini, and NASA’s Hubble Space Telescope have observed the Jovian system’s changing weather patterns, Webb has already provided new findings on Jupiter’s rings, satellites, and its atmosphere,” study co-author and University of California, Berkeley astronomer Imke de Pater said in a statement.  

The newly discovered jet stream travels at roughly 320 miles per hour and is located close to 25 miles above the clouds, in Jupiter’s lower stratosphere. The team compared the winds observed by JWST at higher altitudes with the winds observed at deeper layers by the Hubble Space Telescope. This enabled them to measure how fast the winds change with altitude and generate wind shears.

[Related: Jupiter formed dinky little rings, and there’s a convincing explanation why.]

The team hopes to use additional observations of Jupiter to determine if the jet’s speed and altitude change over time. 

“Jupiter has a complicated but repeatable pattern of winds and temperatures in its equatorial stratosphere, high above the winds in the clouds and hazes measured at these wavelengths,” Leigh Fletcher, a study co-author and planetary scientists at the University of Leicester in the United Kingdom, said in a statement. “If the strength of this new jet is connected to this oscillating stratospheric pattern, we might expect the jet to vary considerably over the next 2 to 4 years–it’ll be really exciting to test this theory in the years to come.”

The post Why a 3,000-mile-long jet stream on Jupiter surprised NASA scientists appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
What the ‘Ring of Fire’ eclipse looked like to a satellite nearly 1 million miles from Earth https://www.popsci.com/science/ring-of-fire-eclipse-satellite-view/ Wed, 18 Oct 2023 13:00:00 +0000 https://www.popsci.com/?p=580642
The planet Earth, as seen from the DSCOVR satellite. Earth appears as a bright blue dot against the darkness of space, with the shadow of an annular solar eclipse over much of North America.
An image of the annular solar eclipse on October 14, 2023 taken by NASA's EPIC camera aboard the DSCOVR spacecraft. NASA/DSCOVR EPIC team

The DSCOVR satellite image depicts the moon’s shadow during the October 14 annular eclipse.

The post What the ‘Ring of Fire’ eclipse looked like to a satellite nearly 1 million miles from Earth appeared first on Popular Science.

]]>
The planet Earth, as seen from the DSCOVR satellite. Earth appears as a bright blue dot against the darkness of space, with the shadow of an annular solar eclipse over much of North America.
An image of the annular solar eclipse on October 14, 2023 taken by NASA's EPIC camera aboard the DSCOVR spacecraft. NASA/DSCOVR EPIC team

The recent “ring of fire” solar eclipse looked stunning across portions of North and South America and we now have a new view of the stellar event. The Deep Space Climate Observatory (DSCOVR) satellite created the image of the eclipse on Saturday October 14, depicting the mostly blue Earth against the darkness of space, with one large patch of the planet in the shadow of the moon. 

[Related: Why NASA will launch rockets to study the eclipse.]

Launched in 2015, DSCOVR is a joint NASA, NOAA, and U.S. Air Force satellite. It offers a unique perspective since it is close to 1 million miles away from Earth and sits in a gravitationally stable point between the Earth and the sun called Lagrange Point 1. DSCOVR’s primary job is to monitor the solar wind in an effort to improve space weather forecasts

A special device aboard the satellite called the Earth Polychromatic Imaging Camera (EPIC) imager took this view of the eclipse from space. According to NASA, the sensor gives scientists frequent views of the Earth. The moon’s shadow, or umbra, is falling across the southeastern coast of Texas, near Corpus Christi.

An annular solar eclipse occurs when the moon moves between Earth and the sun. The sun does not vanish completely in this kind of eclipse. Instead, the moon is positioned far enough from Earth to keep the bright edges of the sun visible. This is what causes the “ring of fire,” as if the moon has been outlined with bright paint.

The annular eclipse on October 14, 2023, as seen from Earth. CREDIT: NASA.

While this year’s event could be seen to some degree across the continental United States, the 125-mile-wide path of annularity began in Oregon around 9:13 AM Pacific Daylight Time. The moon’s shadow then moved southeast across Nevada, Utah, Arizona, Colorado, and New Mexico, before passing over Texas and the Gulf of Mexico. It continued south towards Mexico’s Yucatan, Peninsula, Belize, Honduras, Nicaragua, Costa Rica, Panama, Colombia, and Brazil

Unlike the colorful Aurora Borealis, eclipses are much easier to predict. Scientists can say when annular and solar eclipses will happen down to the second centuries in advance. The precise positions of the moon and the sun and how they shift over time is already known, so scientists can see how the moon’s shadow will fall onto Earth’s globe. Advances in computer technology have also enabled scientists to even chart eclipse paths down to a range of a few feet.

[Related: We can predict solar eclipses to the second. Here’s how.]

The next annular solar eclipse will be at least partially visible from South America on October 2,2024. One of these ‘ring of fire’ eclipses will not be visible in the United States until June 21, 2039. However, a total solar eclipse will darken the sky from Maine to Texas on April 8, 2024. There is still plenty of time to get eclipse glasses or make a pinhole camera to safely watch the next big celestial event. 

The post What the ‘Ring of Fire’ eclipse looked like to a satellite nearly 1 million miles from Earth appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Star-making hot spot looks like a glowing raven in new JWST image https://www.popsci.com/science/jwats-ngc-346-stars/ Wed, 11 Oct 2023 16:00:00 +0000 https://www.popsci.com/?p=578669
This new infrared image of NGC 346 from NASA’s James Webb Space Telescope’s Mid-Infrared Instrument (MIRI) traces emission from cool gas and dust. In this image blue represents silicates and sooty chemical molecules known as polycyclic aromatic hydrocarbons, or PAHs. More diffuse red emission shines from warm dust heated by the brightest and most massive stars in the heart of the region. Bright patches and filaments mark areas with abundant numbers of protostars.
This new infrared image of NGC 346 from NASA’s James Webb Space Telescope’s Mid-Infrared Instrument (MIRI) traces emission from cool gas and dust. In this image blue represents silicates and sooty chemical molecules known as polycyclic aromatic hydrocarbons, or PAHs. More diffuse red emission shines from warm dust heated by the brightest and most massive stars in the heart of the region. Bright patches and filaments mark areas with abundant numbers of protostars. Image–NASA, ESA, CSA, STScI, Nolan Habel (NASA-JPL). Image Processing–Patrick Kavanagh (Maynooth University).

This new infrared image of NGC 346 traces emissions from cool gas and dust.

The post Star-making hot spot looks like a glowing raven in new JWST image appeared first on Popular Science.

]]>
This new infrared image of NGC 346 from NASA’s James Webb Space Telescope’s Mid-Infrared Instrument (MIRI) traces emission from cool gas and dust. In this image blue represents silicates and sooty chemical molecules known as polycyclic aromatic hydrocarbons, or PAHs. More diffuse red emission shines from warm dust heated by the brightest and most massive stars in the heart of the region. Bright patches and filaments mark areas with abundant numbers of protostars.
This new infrared image of NGC 346 from NASA’s James Webb Space Telescope’s Mid-Infrared Instrument (MIRI) traces emission from cool gas and dust. In this image blue represents silicates and sooty chemical molecules known as polycyclic aromatic hydrocarbons, or PAHs. More diffuse red emission shines from warm dust heated by the brightest and most massive stars in the heart of the region. Bright patches and filaments mark areas with abundant numbers of protostars. Image–NASA, ESA, CSA, STScI, Nolan Habel (NASA-JPL). Image Processing–Patrick Kavanagh (Maynooth University).

The James Webb Space Telescope (JWST) is showing off its imaging prowess again, this time with a stellar image of NGC 346. This is the brightest and biggest star-making region in a satellite galaxy of the Milky Way called the Small Magellanic Cloud (SMC). The SMC is about 21,000 light-years away in the southern constellation Tucana. 

[Related: JWST takes a jab at the mystery of the universe’s expansion rate.]

The image that looks like Edgar Allan Poe’s ominous raven in some angles was taken using Webb’s Mid-Infrared Instrument (MIRI). The blue wisps of light show emissions from molecules like silicates and polycyclic aromatic hydrocarbons. The red fragments highlight dust that is warmed by the largest and brightest stars in the center.

An arc at the center left might be a reflection of light from the star near the center of the arc, and similar curves appear to be associated with strats at the lower left and upper right. The bright patches and filaments denote areas with large numbers of protostars. While looking for the reddest stars, the research team found 1,001 pinpoint sources of light. Most of these are young stars still snuggled up in their dusty cocoons.

This new infrared image of NGC 346 from NASA’s James Webb Space Telescope’s Mid-Infrared Instrument (MIRI) traces emission from cool gas and dust. In this image blue represents silicates and sooty chemical molecules known as polycyclic aromatic hydrocarbons, or PAHs. More diffuse red emission shines from warm dust heated by the brightest and most massive stars in the heart of the region. Bright patches and filaments mark areas with abundant numbers of protostars.
This new infrared image of NGC 346 from NASA’s James Webb Space Telescope’s Mid-Infrared Instrument (MIRI) traces emission from cool gas and dust. In this image blue represents silicates and sooty chemical molecules known as polycyclic aromatic hydrocarbons, or PAHs. More diffuse red emission shines from warm dust heated by the brightest and most massive stars in the heart of the region. Bright patches and filaments mark areas with abundant numbers of protostars. CREDITS: Image–NASA, ESA, CSA, STScI, Nolan Habel (NASA-JPL). Image Processing–Patrick Kavanagh (Maynooth University).

This SMC is more primeval than the Milky Way since it possesses fewer heavy elements. According to NASA, these elements are forged in stars through nuclear fusion and supernova explosions, compared to our own galaxy.

“Since cosmic dust is formed from heavy elements like silicon and oxygen, scientists expected the SMC to lack significant amounts of dust,” NASA wrote in a press release. “However the new MIRI image, as well as a previous image of NGC 346 from Webb’s Near-Infrared Camera released in January, show ample dust within this region.”

Astronomers can combine JWST’s data in both the near-infrared and mid-infrared data to take a fuller census of the stars and protostars within this very dynamic region of space. This could help us better understand the galaxies that have existed billions of years ago, during an era known as Cosmic Noon. During Cosmic Noon, star formation was at its peak. Heavy element concentrations were lower, which we can see when we study the SMC.

[Related: The Whirlpool Galaxy’s buff, spiral arms grab JWST’s attention.]

This raven-like image is not the first JWST image that is picture perfect for spooky season. In September 2022, it released chilling new images of 30 Doradus aka the Tarantula Nebula. The nebula’s arachnid inspired nickname comes from its similar appearance to a burrowing tarantula’s silk-lined home. The Tarantula Nebula is about 161,000 light-years away from Earth in the Large Magellanic Cloud galaxy, which is home to some of the hottest and biggest stars known to astronomers.

JWST has also imaged the “bones” of  IC 5332, a spiral galaxy over 29 million light years away from the Earth in the constellation Sculptor. The uniquely shaped galaxy has a diameter of roughly 66,000 light years, making it slightly larger than our Milky Way galaxy. The MIRI aboard the new telescope observes the furthest reaches of the universe and can see infrared light, so it’s able to peer through the galaxy’s clouds of dust and into the “skeleton” of stars and gas underneath its signature arms. MIRI basically was able to take an x-ray of a galaxy, revealing IC 5332’s bones and a world that looks different, yet somewhat the same.

The post Star-making hot spot looks like a glowing raven in new JWST image appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
JWST takes a jab at the mystery of the universe’s expansion rate https://www.popsci.com/science/universe-expansion-jwst-hubble-constant/ Tue, 03 Oct 2023 16:00:00 +0000 https://www.popsci.com/?p=576745
A purplish spiral galaxy with red and yellow space objects.
Spiral galaxy NGC 5584, which resides 72 million light-years away, contains pulsating stars called Cepheid variables. NASA, ESA, CSA, Adam G. Riess (JHU, STScI)

The powerful space telescope's precise measurements confirm we have a problem.

The post JWST takes a jab at the mystery of the universe’s expansion rate appeared first on Popular Science.

]]>
A purplish spiral galaxy with red and yellow space objects.
Spiral galaxy NGC 5584, which resides 72 million light-years away, contains pulsating stars called Cepheid variables. NASA, ESA, CSA, Adam G. Riess (JHU, STScI)

The universe is expanding—but astronomers can’t agree how fast. And NASA’s superstar observatory, the James Webb Space Telescope, just confirmed there’s a problem in our understanding of the stretching cosmos. JWST’s new measurements are the most precise of their kind, but they don’t clear up a baffling mismatch in the two methods scientists track this growth. 

In 1929, astronomer Edwin Hubble discovered that all the galaxies we can see are moving away from us. The relationship between the distance to a galaxy and how fast it’s moving is now known as Hubble’s law. This law uses the also-eponymous Hubble constant to describe the rate at which the universe is expanding. It also tells us the age of the universe: Astronomers can use the Hubble constant to “rewind” time to when the universe would be a single point in space—the big bang.

There are two main ways to measure this fundamental number. One is by tracing tiny fluctuations in the cosmic microwave background from the beginning of the universe. The other is to watch flickering stars known as Cepheids. But those two methods disagree. This baffling mismatch is known as the Hubble tension, and it’s unclear if it’s a problem with our models of the universe or our measurements.

If it’s our measurements, the error might result from the way we survey Cepheid stars. Astronomers consider these objects to be a type of “standard candle,” a thing in space whose intrinsic brightness is known. We can observe how bright one of these stars looks in the sky. If it’s faint, it’s farther away. Brighter is closer. 

Researchers use the luminosity of these stars like a yardstick to measure distance. Then, with methods such as spectroscopy, they can gauge the motion of far-off galaxies. Putting those observations together tells us how fast the universe is expanding.

[Related: NASA releases Hubble images of cotton candy-colored clouds in Orion Nebula]

“When we use Cepheids like this, we need to be very, very sure we’re measuring their brightnesses correctly, otherwise our distance measurements will be off. However, Cepheids can be in crowded parts of their galaxies and if our telescopes aren’t sensitive enough, we can’t clearly distinguish a Cepheid from the stars around it,” explains astronomer Tarini Konchady, a program officer at the National Academies of Sciences, Engineering, and Medicine. 

Before JWST, the Hubble Space Telescope (HST) took the best measurements of Cepheid stars. HST couldn’t distinguish individual Cepheids where they were bunched in crowded regions, but JWST can—and it just did. JWST peered into two distant galaxies, and made measurements of the Hubble constant 2.5 times better than HST could. 

“Webb’s measurements have dramatically cut the noise in the Cepheid measurements,” said project lead Adam Riess, an astronomer at Johns Hopkins University in a NASA press release. “This kind of improvement is the stuff astronomers dream of!”

One of JWST’s major advantages is its ability to look at the cosmos in infrared light, which helps cut through dust between our telescopes and the Cepheids. “Sharp infrared vision is one of the James Webb Space Telescope’s superpowers,” Riess said.

[Related: How old is the universe? Our answer keeps getting more precise.]

However, the new measurements matched up with those from HST, just with smaller error bars—so we can’t confidently pin the mystery on those old numbers.

The new results from Riess and team are just the beginning, though, and they still have many more galaxies to observe with JWST. “I think the jury is still out on whether the JWST has completely eliminated crowding as a solution to the Hubble tension,” says University of Chicago astronomer Abigail Lee. “Analyzing the data for the rest of the 42 galaxies [that JWST plans to observe] will illuminate whether the Hubble tension is alive and real or if there are indeed just errors in the Cepheid measurements.”

The fate of the universe, or at least the Hubble tension, doesn’t just hinge on JWST. Many other facilities will come online in the next few years, providing more evidence for this investigation. The Vera Rubin Observatory, for example, is going to scan the whole Southern sky every few nights when it opens next year, and will likely discover many more Cepheid stars.

“We’re at a point where astronomers are going to be deluged by the most sensitive and wide-reaching data yet,” says Konchady. There might not be a clear answer yet, but astronomers are surely on the case to figure out this mystery.

This post has been updated to include additional details about astronomical methods for measuring the expansion rate.

The post JWST takes a jab at the mystery of the universe’s expansion rate appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Bursting stars could explain why it was so bright after the big bang https://www.popsci.com/science/star-bursts-cosmic-dawn/ Tue, 03 Oct 2023 14:00:00 +0000 https://www.popsci.com/?p=576696
Artist conception of early starbursting galaxies. The image is rendered from FIRE simulation data used for this research that can explain recent JWST results. Stars and galaxies are shown in the bright white points of light, while the more diffuse dark matter and gas are shown in purples and reds.
Artist conception of early starbursting galaxies. The image is rendered from FIRE simulation data used for this research that can explain recent JWST results. Stars and galaxies are shown in the bright white points of light, while the more diffuse dark matter and gas are shown in purples and reds. Aaron M. Geller, Northwestern, CIERA + IT-RCDS

Intense flashes of light may explain why early galaxies imaged by the James Webb Space Telescope are so dazzling.

The post Bursting stars could explain why it was so bright after the big bang appeared first on Popular Science.

]]>
Artist conception of early starbursting galaxies. The image is rendered from FIRE simulation data used for this research that can explain recent JWST results. Stars and galaxies are shown in the bright white points of light, while the more diffuse dark matter and gas are shown in purples and reds.
Artist conception of early starbursting galaxies. The image is rendered from FIRE simulation data used for this research that can explain recent JWST results. Stars and galaxies are shown in the bright white points of light, while the more diffuse dark matter and gas are shown in purples and reds. Aaron M. Geller, Northwestern, CIERA + IT-RCDS

In space, the brightness of a galaxy is typically determined by its mass. However, some new research suggests that less massive galaxies can actually glow just as brightly as larger ones. Due to irregular and brilliant bursts of star formation, some  younger galaxies appear deceptively large. The new findings are detailed in a study published October 3 in the Astrophysical Journal Letters.

[Related: Our universe mastered the art of making galaxies while it was still young.]

The first stellar images released by the James Webb Space Telescope (JWST) in 2022 came with a bit of a quandary. To some astronomers, the young galaxies appeared to be too bright, too massive, and too mature to have formed so soon after the big bang, almost as if an infant grew into an adult after only a few years. 

“The discovery of these galaxies was a big surprise because they were substantially brighter than anticipated,” study co- author and Northwestern University astrophysicist Claude-André Faucher-Giguère said in a statement. “Typically, a galaxy is bright because it’s big. But because these galaxies formed at cosmic dawn, not enough time has passed since the big bang. How could these massive galaxies assemble so quickly? Our simulations show that galaxies have no problem forming this brightness by cosmic dawn.”

The period in cosmological history called Cosmic Dawn lasted from about 100 million years to 1 billion years after the big bang and is marked by the formation of the first stars and galaxies in the universe

“The JWST brought us a lot of knowledge about cosmic dawn,” study co-author and Northwestern University astrophysicist Guochao Sun said in a statement. “Prior to JWST, most of our knowledge about the early universe was speculation based on data from very few sources. With the huge increase in observing power, we can see physical details about the galaxies and use that solid observational evidence to study the physics to understand what’s happening.”

The team used advanced computer simulations to model how galaxies formed just after the big bang. Part of Northwestern’s Feedback of Relativistic Environments (FIRE) project, the simulations combine astrophysical theory and advanced algorithms to model how galaxies form. These models help researchers see how galaxies grow and change shape all while considering mass, energy, momentum, and chemical elements returned from stars

“The key is to reproduce a sufficient amount of light in a system within a short amount of time,” Sun said. “That can happen either because the system is really massive or because it has the ability to produce a lot of light quickly. In the latter case, a system doesn’t need to be that massive. If star formation happens in bursts, it will emit flashes of light. That is why we see several very bright galaxies.”

[Related: Your guide to the types of stars, from their dusty births to violent deaths.]

The simulations in the study created galaxies that were just as bright as the ones observed by JWST. They also found that the early galaxies formed at cosmic dawn likely had stars that formed in bursts. This is a concept called bursty star formation, where stars form in an alternating pattern. It begins with the formation of a bunch of stars at once, then millions of years with little to no stars, and then another burst of stars. By comparison, our Milky Way galaxy followed a very different pattern of star formation at a steady rate.

According to Faucher-Giguère, bursty star formation is particularly common in low-mass galaxies. However, the details of why this happens are still the subject of other research. The team on this study believes that it happens when the initial bursts of stars explode as supernovae a few million years later. The gas is kicked out and then falls back inwards to form new stars and drives the cycle again. 

When the galaxies get massive enough, they have significantly stronger gravity. So when the  supernovae explode, they aren’t strong enough to eject gas from the star system and the gravity binds the galaxy together. The result is a more steady state.

“Most of the light in a galaxy comes from the most massive stars,” Faucher-Giguère said in a statement. “Because more massive stars burn at a higher speed, they are shorter lived. They rapidly use up their fuel in nuclear reactions. So, the brightness of a galaxy is more directly related to how many stars it has formed in the last few million years than the mass of the galaxy as a whole.”

The post Bursting stars could explain why it was so bright after the big bang appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How tiny spacecraft could ‘sail’ to Mars surprisingly quickly https://www.popsci.com/science/solar-sail-mars-study/ Thu, 28 Sep 2023 17:00:00 +0000 https://www.popsci.com/?p=575568
Solar sail concept art from NASA
Solar sails are no longer relegated to science fiction. NASA

A new study demonstrates just how promising solar sails could be for exploring our neighboring planets.

The post How tiny spacecraft could ‘sail’ to Mars surprisingly quickly appeared first on Popular Science.

]]>
Solar sail concept art from NASA
Solar sails are no longer relegated to science fiction. NASA

Solar sails that leverage the sun’s photonic rays for “wind” are no longer the stuff of science fiction—in fact, the Planetary Society’s LightSail 2 practical demonstration was deemed a Grand Award Winner for PopSci’s Best of What’s New in 2019. And while countless projects continue to explore what solar sails could hold for the future of space travel, a new study demonstrates just how promising the technology could be for excursions to Earth’s nearest planetary neighbor, and beyond.

According to a paper recently submitted to the journal Acta Astronautica, detailed computer simulations show tiny, incredibly lightweight solar sails made with aerographite could travel to Mars in just 26 days—compare that to conventional rocketry time estimates of between 7-to-9 months. Meanwhile, a journey to the heliopause (the demarcation line for interstellar space where the sun’s magnetic forces cease to influence objects) could take between 4.2 and 5.3 years. For comparison, the Voyager 1 and Voyager 2 space probes took a respective 35 and 41 years to reach the same boundary.

[Related: This novel solar sail could make it easier for NASA to stare into the sun.]

The key to such speedy trips is the 1 kg solar sails’ 720g of aerographite—an ultra-lightweight material with four times less density than most solar sail designs’ Mylar components. The major caveat to these simulations is that they involved an extremely miniscule payload weight, something that will most often not be the case for major interplanetary and interstellar journeys.

“Solar sail propulsion has the potential for rapid delivery of small payloads (sub-kilogram) throughout the solar system,” René Heller, an astrophysicist at the Max Planck Institute for Solar System Research and study co-author, explained to Universe Today earlier this month. “Compared to conventional chemical propulsion, which can bring hundreds of tons of payload to low-Earth orbit and deliver a large fraction of that to the Moon, Mars, and beyond, this sounds ridiculously small. But the key value of solar sail technology is speed.”

Another issue still that still needs addressing is deceleration methods needed upon actually reaching a destination. Although aerocapture—using a planet’s atmosphere to reduce velocity—is a possible option, researchers concede more investigation will be needed to determine the best, most efficient way to actually stop at a solar sail-equipped spacecraft’s intended endpoint. Regardless, the study only adds even more wind in the sails (so to speak) for the impressive interstellar travel method.

The post How tiny spacecraft could ‘sail’ to Mars surprisingly quickly appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Why astronomers want to put a telescope on the dark side of the moon https://www.popsci.com/technology/lusee-lunar-telescope/ Wed, 27 Sep 2023 22:00:00 +0000 https://www.popsci.com/?p=575343
Rendering of Firefly Space's Blue Ghost lunar lander on moon surface
LuSEE-Night will arrive aboard Firefly Aerospace's Blue Ghost lunar lander. Firefly Aerospace

LuSEE-Night is designed to provide never-before-seen glimpses of one of the universe's least understood eras.

The post Why astronomers want to put a telescope on the dark side of the moon appeared first on Popular Science.

]]>
Rendering of Firefly Space's Blue Ghost lunar lander on moon surface
LuSEE-Night will arrive aboard Firefly Aerospace's Blue Ghost lunar lander. Firefly Aerospace

The dark side of the moon, despite its name, is a perfect vantage point for observing the universe. On Earth, radio signals from the furthest depths of space are obscured by the atmosphere, alongside humanity’s own electronic chatter, but the lunar far side has none of these issues. Because of this, establishing an observation point there could allow for unimpeded views of some of cosmic history’s earliest moments—particularly a 400 million year stretch known as the universe’s Dark Ages when early plasma cooled enough to begin forming the  protons and electrons that eventually made hydrogen.

After years of development and testing, just such an observation station could come online as soon as 2026, in part thanks to researchers at the Lawrence Berkeley National Laboratory in California.

[Related: Watch a rocket engine ignite in ultra-slow motion.]

The team is currently working alongside NASA, the US Department of Energy, and the University of Minnesota on a pathfinder project called the Lunar Surface Electromagnetics Experiment-Night (LuSEE-Night). The radio telescope is on track to launch atop Blue Ghost, private space company Firefly Aerospace’s lunar lander, as part of the company’s second moon excursion. Once in position, Blue Ghost will detach from Firefly’s Elytra space vehicle, then travel down to the furthest site ever reached on the moon’s dark side. 

“If you’re on the far side of the moon, you have a pristine, radio-quiet environment from which you can try to detect this signal from the Dark Ages,” Kaja Rotermund, a postdoctoral researcher at Berkeley Lab, said in a September 26 project update. “LuSEE-Night is a mission showing whether we can make these kinds of observations from a location that we’ve never been in, and also for a frequency range that we’ve never been able to observe.”

More specifically, LuSEE-Night will be equipped with specialized antennae designed by the Berkeley Lab team to listen between 0.5 and 50 megahertz. To accomplish this, both the antennae and its Blue Ghost transport will need to be able to withstand the extreme temperatures experienced on the moon’s far side, which can span between -280 and 250 degrees Fahrenheit. Because of its shielded lunar location, however, LuSEE-Night will also need to beam its findings up to an orbiting satellite that will then transfer the information back to Earth.

“The engineering to land a scientific instrument on the far side of the moon alone is a huge accomplishment,” explained Berkeley Lab’s antenna project lead, Aritoki Suzuki, in the recent update. “If we can demonstrate that this is possible—that we can get there, deploy, and survive the night—that can open up the field for the community and future experiments.”

If successful, LuSEE-Night could provide data from the little known Dark Ages, which breaks up other observable eras such as some of the universe’s earliest moments, as well as more recent moments after stars began to form.

According to Berkeley Lab, the team recently completed a successful technical review, and is currently working on constructing the flight model meant for the moon. Once landed, LuSEE-Night will peer out into the Dark Age vastness for about 18 months beginning in 2026. 

The post Why astronomers want to put a telescope on the dark side of the moon appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
JWST just scanned the skies of potentially habitable exoplanet TRAPPIST-1 b https://www.popsci.com/science/jwst-trappist-atmosphere-spectroscopy/ Tue, 26 Sep 2023 18:16:40 +0000 https://www.popsci.com/?p=574707
An artistic representation of the TRAPPIST-1 red dwarf star, featuring its very active nature. Exoplanet TRAPPIST-1 b is the closest planet to the system’s central star and is featured in the foreground with no apparent atmosphere. The exoplanet TRAPPIST-1 g is in the background to the right of the star.
An artistic representation of the TRAPPIST-1 red dwarf star, featuring its very active nature. Exoplanet TRAPPIST-1 b is the closest planet to the system’s central star and is featured in the foreground with no apparent atmosphere. The exoplanet TRAPPIST-1 g is in the background to the right of the star. Benoît Gougeon/Université de Montréal

We now know more about the atmospheres of an Earth-like exoplanet.

The post JWST just scanned the skies of potentially habitable exoplanet TRAPPIST-1 b appeared first on Popular Science.

]]>
An artistic representation of the TRAPPIST-1 red dwarf star, featuring its very active nature. Exoplanet TRAPPIST-1 b is the closest planet to the system’s central star and is featured in the foreground with no apparent atmosphere. The exoplanet TRAPPIST-1 g is in the background to the right of the star.
An artistic representation of the TRAPPIST-1 red dwarf star, featuring its very active nature. Exoplanet TRAPPIST-1 b is the closest planet to the system’s central star and is featured in the foreground with no apparent atmosphere. The exoplanet TRAPPIST-1 g is in the background to the right of the star. Benoît Gougeon/Université de Montréal

About 40 light years away, a system of seven Earth-sized planets orbit a star that is much cooler and smaller than our sun— the exoplanetary system called TRAPPIST-1. When these exoplanets were discovered in 2016, astronomers speculated that they could one day support humans. Three of those worlds are located in the star’s habitable zone, also called the “Goldilocks zone,” where the conditions for life could be “just right.” Now, astronomers using the James Webb Space Telescope (JWST) have made important progress in understanding the atmosphere of one of its potentially habitable planets.

[Related: JWST’s double take of an Earth-sized exoplanet shows it has no sky.]

JWST observations ruled out the possibilities for a clear, extended atmosphere, failing to detect elements such as hydrogen. The telescope’s new detections also cut through the interference of the star at the center of this system, avoiding what astronomers call stellar contaminations. The findings are detailed in a study published September 22 in The Astrophysical Journal Letters.

The new study specifically sheds light on the nature TRAPPIST-1 b, the exoplanet that is closest to the system’s central star. The team from institutions in the United States and Canada used the JWST’s NIRISS instrument to observe TRAPPIST-1 b during two transits, when the planet passed in front of its star. 

An illustration shows what the TRAPPIST-1 planetary system may look like, based on available data about the planets’ diameters, masses, and distances from the host star. CREDIT: NASA/JPL-Caltech
An illustration shows what the TRAPPIST-1 planetary system may look like, based on available data about the planets’ diameters, masses, and distances from the host star. CREDIT: NASA/JPL-Caltech

The team used a technique called transmission spectroscopy to look deeper into the distant world. They saw the unique fingerprint left by the molecules and atoms that were found within the exoplanet’s atmosphere. “These are the very first spectroscopic observations of any TRAPPIST-1 planet obtained by the JWST, and we’ve been waiting for them for years,” study co-author and Université de Montréal doctoral student Olivia Lim said in a statement

In the past, stars at the center of solar systems may have hampered our understanding of far-off atmospheres. That’s because these suns can create “ghost signals” which fool observers into thinking they are seeing a particular molecule in the exoplanet’s atmosphere. This phenomenon, stellar contamination, is the influence of a star’s own features on the measurements of an exoplanet’s atmosphere.  A sun’s dark spots and bright faculae, or bright spots on its surface, can warp the chemical fingerprints that telescopes detect.

“In addition to the contamination from stellar spots and faculae, we saw a stellar flare, an unpredictable event during which the star looks brighter for several minutes or hours,” said Lim. “This flare affected our measurement of the amount of light blocked by the planet. Such signatures of stellar activity are difficult to model but we need to account for them to ensure that we interpret the data correctly.”

The team also used the observations to explore a range of atmospheric models for TRAPPIST-1 b. They ruled out the existence of cloud-free, hydrogen-rich atmospheres, which means that TRAPPIST-1 b likely does not have a clear and extended atmosphere around it. However, the data could not confidently rule out the possibility of a thinner atmosphere, perhaps made up of pure water, carbon dioxide, or methane

[Related: The James Webb Space Telescope just identified its first exoplanet.]

According to the team, this result underscores the importance of taking stellar contamination into account when planning future observations of all exoplanetary systems. This consideration is especially true for systems like TRAPPIST-1, because the system is centered around a red dwarf star which can be particularly active with frequent flare events and dark spots.

More observations will be needed to determine exactly what kind of atmosphere is surrounding this exoplanet and if it could support human life. “This is just a small subset of many more observations of this unique planetary system yet to come and to be analyzed,” study co-author and Université de Montréal astronomer René Doyon said in a statement. “These first observations highlight the power of NIRISS and the JWST in general to probe the thin atmospheres around rocky planets.”

The post JWST just scanned the skies of potentially habitable exoplanet TRAPPIST-1 b appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A massive detector in China will try to find a supernova before it happens https://www.popsci.com/science/juno-neutrino-detector-supernova/ Tue, 26 Sep 2023 15:00:00 +0000 https://www.popsci.com/?p=574515
A metal sphere under construction as workers climb over it.
Workers at the construction site of China's next-generation neutrino detector, Jiangmen Underground Neutrino Observatory. Qiu Xinsheng/VCG via Getty Images

Ghostly particles can give advance warning that a star is about to explode.

The post A massive detector in China will try to find a supernova before it happens appeared first on Popular Science.

]]>
A metal sphere under construction as workers climb over it.
Workers at the construction site of China's next-generation neutrino detector, Jiangmen Underground Neutrino Observatory. Qiu Xinsheng/VCG via Getty Images

Trillions of particles from distant stars and galaxies are streaming through your body every second—you just can’t feel them. These ghost-like particles are called neutrinos. Although the universe spits them out constantly, these objects barely interact with matter—they can even slip through humanity’s toughest barriers, such as steel or lead walls. 

Some neutrinos come from supernovae, the extravagant deaths of the biggest stars; they’re also produced by radioactive decay in Earth’s rocks, reactions in the sun, and even our planet’s aurorae. These hard-to-see particles are all over the place and crucial to multiple areas of science, but we’re still in need of better ways of finding them. Now, a new observatory under construction in China’s Guangdong province—the Jiangmen Underground Neutrino Observatory, or JUNO—plans to hunt these elusive particles with better sensitivity than ever before. 

Like most neutrino detectors, it’s a huge vat filled with liquid for the neutrinos to interact with—the bigger the net, the more fish you’re likely to catch. When it is completed, JUNO will be 20 times larger than the largest existing detector of the same type,” says Yufeng Li, a researcher and member of the JUNO collaboration at the Institute of High Energy Physics (IHEP) in Beijing. Currently under construction and expected to start operation in 2024, this detector will not only be bigger, but also more sensitive to slight variations in neutrinos’ energies than any of its predecessors. Li adds, it’s going to be “a unique and important observatory in the community.”

[Related: The Milky Way’s ghostly neutrinos have finally been found]

The observatory’s most ambitious goal is to preemptively spot neutrinos from stars that are dying but haven’t exploded yet. That way, telescopes can catch these stars in their final destructive act. “Neutrinos are expected to reach Earth hours earlier than photons because of their weakly-interacting nature,” explains Irene Tamborra, a physicist at the Niels Bohr Institute in Denmark not affiliated with the project. 

Astronomers still don’t know the finer details of how a star explodes, but observing the supernova as it starts might help give some clues. “The early detection of neutrinos will be crucial to point the telescopes in the direction of the supernova and catch its electromagnetic emission early on,” adds Tamborra. JUNO should be able to alert astronomers hours to days before a star is slated to explode, giving them time to prep and point their telescopes. It might even be able to measure the faint background of neutrinos coming from distant supernovae, all across the galaxy, which is of great interest to cosmologists trying to put together a picture of the whole universe. 

A staff member works at the construction site of the underground neutrino observatory.
A staff member works at the construction site of the underground neutrino observatory. Deng Hua/Xinhua via Getty Images

In addition to supernovae, the observatory will be searching for neutrinos from much closer to home: nuclear reactors. The nearby Yangjiang and Taishan nuclear power plants produce neutrinos, and physicists are hoping to get a taste of those neutrinos’ flavors with JUNO. Neutrinos come in three flavors (yes, they’re really called that!), known as the electron, tau, and muon neutrinos. They can flip between their different states in so-called oscillations. Scientists can calculate the number of neutrinos of each kind they expect from the power plant, and compare to what they actually observe with JUNO to better understand these flips.

[Related: This ghostly particle may be why dark matter keeps eluding us]

“It is also very likely that there will be surprise discoveries, as that often happens when powerful new experiments are deployed,” says Ohio State University astrophysicist John Beacom.

JUNO isn’t the only big observatory after neutrinos. The current largest liquid neutrino detector is Super-Kamiokande in Japan, and researchers there are planning a huge upgrade to make it the Hyper-Kamiokande. The United States is getting in the game too, currently using a detector at the Fermi National Accelerator Lab and planning its own multi-billion-dollar next-gen observatory, called the Deep Underground Neutrino Experiment. These projects are a few years away, though, so IHEP president Yifang Wang told Science that he gives JUNO “3-to-1 odds to get there first” to figure out some fundamental properties of neutrinos.

No matter who wins the race, this observatory is opening up one of our windows to the universe a bit wider. “JUNO is a huge step forward for neutrino physics and astrophysics,” Beacom says, “and I’m very excited to see what it will do.”

The post A massive detector in China will try to find a supernova before it happens appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Nature generates more data than the internet … for now https://www.popsci.com/science/human-nature-data-comparison/ Fri, 22 Sep 2023 19:00:00 +0000 https://www.popsci.com/?p=573562
Internet data server farm with green and pink glowing LED lights
A data server farm in Frankfurt, Germany. By some estimates, the internet is growing at a rate of 26 percent annually. Sebastian Gollnow/picture alliance via Getty Images

In the next century, the information transmitted over the internet might eclipse the information shared between Earth's most abundant lifeforms.

The post Nature generates more data than the internet … for now appeared first on Popular Science.

]]>
Internet data server farm with green and pink glowing LED lights
A data server farm in Frankfurt, Germany. By some estimates, the internet is growing at a rate of 26 percent annually. Sebastian Gollnow/picture alliance via Getty Images

Is Earth primarily a planet of life, a world stewarded by the animals, plants, bacteria, and everything else that lives here? Or, is it a planet dominated by human creations? Certainly, we’ve reshaped our home in many ways—from pumping greenhouse gases into the atmosphere to literally redrawing coastlines. But by one measure, biology wins without a contest.

 In an opinion piece published in the journal Life on August 31, astronomers and astrobiologists estimated the amount of information transmitted by a massive class of organisms and technology for communication. Their results are clear: Earth’s biosphere churns out far more information than the internet has in its 30-year history. “This indicates that, for all the rapid progress achieved by humans, nature is still far more remarkable in terms of its complexity,” says Manasvi Lingam, an astrobiologist at the Florida Institute of Technology and one of the paper’s authors.

[Related: Inside the lab that’s growing mushroom computers]

But that could change in the very near future. Lingam and his colleagues say that, if the internet keeps growing at its current voracious rate, it will eclipse the data that comes out of the biosphere in less than a century. This could help us hone our search for intelligent life on other planets by telling us what type of information we should seek.

To represent information from technology, the authors focused on the amount of data transferred through the internet, which far outweighs any other form of human communication. Each second, the internet carries about 40 terabytes of information. They then compared it to the volume of information flowing through Earth’s biosphere. We might not think of the natural world as a realm of big data, but living things have their own ways of communicating. “To my way of thought, one of the reasons—although not the only one—underpinning the complexity of the biosphere is the massive amount of information flow associated with it,” Lingam says.

Bird calls, whale song, and pheromones are all forms of communication, to be sure. But Lingam and his colleagues focused on the information that individual cells transmit—often in the form of molecules that other cells pick up and respond accordingly, such as producing particular proteins. The authors specifically focused on the 100 octillion single-celled prokaryotes that make up the majority of our planet’s biomass

“That is fairly representative of most life on Earth,” says Andrew Rushby, an astrobiologist at Birkbeck, University of London, who was not an author of the paper. “Just a green slime clinging to the surface of the planet. With a couple of primates running around on it, occasionally.”

Bacteria colony forming red biofilm on black background
This colorized image shows an intricate colony of millions of the single-celled bacterium Pseudomonas aeruginosa that have self-organized into a sticky, mat-like colony called a biofilm, which allows them to cooperate with each other, adapt to changes in their environment, and ensure their survival. Scott Chimileski and Roberto Kolter, Harvard Medical School, Boston

As all of Earth’s prokaryotes signal to each other, according to the authors’ estimate, they generate around a billion times as much data as our technology. But human progress is rapid: According to one estimate, the internet is growing by around 26 percent every year. Under the bold assumption that both these rates hold steady for decades to come, the authors stated its size will continue to balloon until it dwarfs the biosphere in around 90 years’ time, sometime in the early 22nd century.

What, then, does a world where we create more information than nature actually look like? It’s hard to predict for certain. The 2110s version of Earth may be as strange to us as the present Earth would seem to a person from the 1930s. That said, picture alien astronomers in another star system carefully monitoring our planet. Rather than glimpsing a planet teeming with natural life, their first impressions of Earth might be a torrent of digital data.

Now, picture the reverse. For decades, scientists and military experts have sought out signatures of extraterrestrials in whatever form it may take. Astronomers have traditionally focused on the energy that a civilization of intelligent life might use—but earlier this year, one group crunched the numbers to determine if aliens in a nearby star system could pick up the leakage from mobile phone towers. (The answer is probably not, at least with LTE networks and technology like today’s radio telescopes.)

MeerKAT radio telescope dish under starry sky
The MeerKAT radio telescope array in South Africa scans for, among other things, extraterrestrial communication signals from distant stars. MeerKAT

On the flip side, we don’t totally have the observational capabilities to home in on extraterrestrial life yet. “I don’t think there’s any way that we could detect the kind of predictions and findings that [Lingam and his coauthors] have quantified here,” Rushby says. “How can we remotely determine this kind of information capacity, or this information transfer rate? We’re probably not at the stage where we could do that.”

But Rushby thinks the study is an interesting next step in a trend. Astrobiologists—certainly those searching for extraterrestrial life—are increasingly thinking about the types and volume of information that different forms of life carries. “There does seem to be this information ‘revolution,’” he says, “where we’re thinking about life in a slightly different way.” In the end, we might learn that there’s more harmony between the communication networks nature has built and computers.

The post Nature generates more data than the internet … for now appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
31 award-winning astronomy photos: From fiery horizons to whimsical auroras https://www.popsci.com/science/astronomy-photographer-of-the-year-2023/ Sat, 16 Sep 2023 13:00:00 +0000 https://www.popsci.com/?p=570984
Iridescent Running Chicken Nebula with glowing gases and stars
The winner for the Young Astronomy Photographer of the Year was 'The Running Chicken Nebula'. Runwei Xu and Binyu Wang

The Royal Observatory Greenwich's Astronomy Photographer of the Year awards seriously dazzled in 2023.

The post 31 award-winning astronomy photos: From fiery horizons to whimsical auroras appeared first on Popular Science.

]]>
Iridescent Running Chicken Nebula with glowing gases and stars
The winner for the Young Astronomy Photographer of the Year was 'The Running Chicken Nebula'. Runwei Xu and Binyu Wang

An unexpected and astonishing find located more than 2.5 million light-years from Earth took top honors at the Royal Observatory Greenwich’s Astronomy Photographer of the Year awards this week. Amateur astronomers Marcel Drechsler, Xavier Strottner, and Yann Sainty captured an image of a massive plasma arc near the Andromeda Galaxy, a discovery that has resulted in scientists looking closer into the giant gas cloud.

“This astrophoto is as spectacular as [it is] valuable,” judge and astrophotographer László Francsics said in a press release. “It not only presents Andromeda in a new way, but also raises the quality of astrophotography to a higher level.”

[Related: How to get a great nightsky shot]

While “Andromeda, Unexpected” captured the prestigious overall winner title, other category winners also dazzled with photos of dancing auroras, neon sprites raining down from the night’s sky, and stunning far-off nebulas that might make you feel like a tiny earthling floating through space.

Sit back and scroll in awe at all the category winners, runners-up, and highly commended images from the 2023 Royal Observatory Greenwich’s Astronomy Photographer of the Year honorees.

Galaxy

Overall winner: Andromeda, Unexpected

Andromeda Galaxy shown next to plasma arc
A team of amateur astronomers led by Marcel Drechsler, Xavier Strottner, and Yann Sainty made a surprising discovery−a huge plasma arc next to the Andromeda Galaxy. Scientists are now investigating the newly discovered giant in a transnational collaboration. It could be the largest such structure in the nearby environment in the Universe. The Andromeda Galaxy is the closest spiral galaxy to the Milky Way. It is undoubtedly one of the most photographed deep-sky objects ever. The new discovery of such a large structure in the immediate vicinity of the galaxy was all the more surprising. Photo: Marcel Drechsler, Xavier Strottner, and Yann Sainty

Runner-Up: The Eyes Galaxies

Eyes Galaxies and dust swirls in space
The Eyes Galaxies (NGC 4438) are the famous interacting galaxies in the Virgo Cluster. They’re small and require a large telescope to reveal their many components, such as the dust in the middle and the tiny flares on the left and right. Those tiny details have rarely been revealed on other amateur images. Photo: Weitang Liang

Highly Commended: Neighbors

Three galleries shimmer among stars
A deep-space photograph showing galaxies NGC 5078 and IC879, to the left, and NGC 5101 on the right. The detailed image captures the hazy dust of the galaxies clearly. Photo: Paul Montague

Aurora

Winner: Brushstroke

A green aurora like a ribbon in the sky
An abstract aurora in the shape of a brushstroke. Unusually, the photographer decided to photograph the aurora in isolation. Photo: Monika Deviat

Runner-up: Circle of Light

Green aurora encircling a mountain and lake

A stunning photograph of a vivid aurora over Skagsanden beach, Lofoten Islands, Norway. The mountain in the background is Hustinden, which the aurora appears to encircle. Photo: Andreas Ettl

Highly Commended: Fire on the Horizon

Yellow pink and red aurora over a small building

New Zealand regularly has auroras, but due to its distance from the magnetic pole they are often not particularly vibrant for observers. With to the increased solar activity the region saw this year, the photographer was able to capture a highly colorful aurora over Birdlings Flat, New Zealand. Photo: Chester Hall-Fernandez 

Our Moon

Winner: Mars-Set

Closeup of the moon with mars peeking out behind smaller
An occultation of Mars that took place on December 8, 2022. During the occultation, the moon passes in front of the planet Mars, allowing the astrophotographer to capture both objects together. The image shows Mars behind the moon’s southern side in impressive detail. Photo: Ethan Chappel

Runner-Up: Sundown on the Terminator

Mars photo

The Plato Crater is an almost perfectly circular crater that measures 109 kilometes in diameter. This photograph was taken during a local lunar sunset in the last quarter, when approximately half of the moon’s face is visible from Earth. The image captures dramatic shadows moving across the moon. Photo: Tom Williams

Highly Commended: Last Full Moon of the Year Featuring a Colourful Corona During a Close Encounter with Mars

Full moon with an iridescent ring

A photograph of the last full moon of 2022 immersed in clouds. The colourful ring surrounding the moon is a lunar corona, which occurs when moonlight is diffracted though water droplets in the Earth’s atmosphere. Mars can just be seen to the right of the moon, appearing as a small orange dot. Photo: Miguel Claro

Our Sun

Winner: A Sun Question

Plasma on sun's surface
A photograph of the sun with a huge filament in the shape of a question mark. Solar filaments are arcs of plasma in the sun’s atmosphere given shape by magnetic fields. The photo is a mosaic of two panels. Photo: Eduardo Schaberger Poupeau

Runner-Up: Dark Star

A large dark spot on the sun
A photograph of the sun turned ‘inside-out’. The photographer inverted the rectangular image onto polar coordinates to highlight the smaller prominences that occur on the edge of the sun. Photo: Peter Ward

Highly Commended: The Great Solar Flare 

Solar flare closeup
The sun photographed moving towards its maximum cycle. A large solar flare around 700,000 kilometers long erupts to the left of the image. Photo: Mehmet Ergün

People & Space

Winner: Zeila

A shipwreck disappears in the fog under stars
The most northerly part of Namibia’s Atlantic facing coast is one of the most treacherous coastlines in the world and has gained the name the Skeleton Coast. The ship in this photo, Zeila, was stranded on August 25, 2008 and is still in a well-preserved state. The image shows the delicate colors of different star types. Photo: Vikas Chander

Runner-Up: A Visit to Tycho

The international space station against a crater on the moon
In this photo, the International Space Station has been captured in alignment with the Tycho Crater. While actually 1,000 times closer to Earth than the moon, this perspective makes it seem like the station is in fact orbiting our natural satellite. McCarthy travelled to the Sonoran Desert in Arizona to find the perfect position. Photo: Andrew McCarthy

Highly Commended: Close Encounters of The Haslingden Kind

A spaceship-like sculpture under a time-lapse of stars
Haslingden’s Halo is an 18-meter diameter sculpture located in the hills of Lancashire. McGuinness took inspiration from the Close Encounters of The Third Kind film poster to create her image. More than 150 images, taken over an hour and with exposures of 25 seconds each, were combined to show the apparent rotation of stars around Polaris. Photo: Katie McGuinness

Planets, Comets & Asteroids

Winner: Suspended in a Sunbeam

A blurry, colorful Venus
A unique view of Venus using infrared or ultraviolet false colour. By going beyond the visible part of the spectrum, a myriad of fine detail within the upper atmosphere of the planet is revealed. Photo: Tom Williams

Runner-Up: Jupiter Close to Opposition

Closeup of Jupiter's red spot
An image of Jupiter 30 minutes after it crossed the meridian. The Great Red Spot and many details of the turbulent atmosphere, primarily composed of hydrogen and helium gas, are clearly visible, including several smaller storms. Photo: Marco Lorenzi

Highly Commended: Uranus with Umbriel, Ariel, Miranda, Oberon and Titania

Distant photo of Uranus and its five moons
Uranus is so distant that light from the sun takes nearly three hours to reach it and makes it very hard to photograph. This photo was taken in optimum conditions, on a still night with no cloud cover, so the photographer was able to capture Uranus and its five brightest moons, from top to bottom, Titania, Miranda, Ariel, Umbriel, and Oberon. Photo: Martin Lewis

Skyscapes

Winner: Grand Cosmic Fireworks

Pink sprites fall from the sky
Sprites are an extremely rare phenomenon of atmospheric luminescence that appear like fireworks. An took this photograph from the highest ridge of the Himalaya mountains. Photo: Angel An

Runner-Up: Celestial Equator Above First World War Trench Memorial

Rainbow-colored star trails over a stone wall
Star trails above the preserved First World War trenches in Canadian National Vimy Memorial Park in northern France. Taken over five hours, the camera captured the rotation of the sky, revealing the colorful stars. Photo: Louis Leroux-Gere

Highly Commended: Noctilucent Night

Storm cloud reflecting over a pond and grassland
Noctilucent clouds are rarely seen around the summer solstice in Hungary, when this photograph was taken. The reflection on the pond below creates a perfect symmetry. Photo: Peter Hoszang

Stars & Nebulae

Winner: New Class of Galactic Nebulae Around the Star YY Hya

Red galactic nebula shines against a background of stars
A team of amateur astronomers, led by Marcel Drechsler from Germany and Xavier Strottner from France, were able to make an important contribution to the study of the evolution of binary star systems: on old images of sky surveys, they discovered a previously unknown galactic nebula. At its center, a pair of stars surrounded by a common envelope was found. On more than 100 nights, more than 360 hours of exposure time were collected. The result shows an ultra-deep stellar remnant that the team has baptized “the heart of the Hydra.” Photo: Marcel Drechsler

Runner-Up: LDN 1448 et al.

molecular cloud that looks like dust floating in space
A photograph of LDN 1448, which is close to the more spectacular and more often photographed NGC 1333. Quintile chose to photograph the lesser-known molecular cloud to explore the fascinating dust in this part of the sky. Photo: Anthony Quintile

Highly Commended: The Dark Wolf – Fenrir

Thick black molecular cloud on a red hydrogen gas
This image shows a dark, thick molecular cloud in the form of a wolf, known as the Wolf Nebula or Fenrir Nebula. Baguley chose a starless image to emphasise the beautiful red background, which is a dense backdrop of hydrogen gas. Photo: James Baguley

The Sir Patrick Moore Prize for Best Newcomer

Winner: Sh2-132: Blinded by the Light

Colorful gas cloud on the edge of two constellations
The Sh2-132 complex lies near the border of the Cepheus and Lacerta constellations and contains multiple deep sky structures. The photograph includes 70 hours of data, the rich interplay of all the gasses reveals something different each time you look at it. Photo: Aaron Wilhelm

Young Astronomy Photographer of the Year

Winner: The Running Chicken Nebula

Purple, red, and yellow nebula
The Running Chicken Nebula, IC2944, is located in the constellation of Centaurus, 6,000 light years away from the Earth. Embedded in the nebula’s glowing gas the star cluster Collinder 249 is visible. Photo: Runwei Xu and Binyu Wang

Runner-Up: Blue Spirit Drifting in the Clouds

Seven Sisters star cluster shining brightly
Pleiades is an open star cluster lit by the brightest stars, which illuminate the surrounding nebula giving it an attractive blue hue. The cluster is also known as the Seven Sisters, because many people can see seven stars. But as astrophotography reveals, there are actually over 1,000. Photo: Haocheng Li and Runwei Xu

Highly Commended: Lunar Occultation of Mars

the moon large in the foreground with mars smaller in the background
The lunar occultation of Mars was one of the most interesting celestial events of 2022. Here, an iPhone was used with a Celestron Astromaster 102az Refractor Telescope to capture the moment just before the moon blocked our view of Mars. Photo: Joshua Harwood-White

Highly Commended: Roses Blooming in the Dark: NGC 2337

Red, purple, and blue Rosette Nebula dotted in stars
The Rosette Nebula, NGC 2337, is a large nebula and has a diameter of about 130 light-years. This image has been achieved using narrowband-filter processing. For the star point LRGB filters have been used. Photo: Yanhao Mo

Highly Commended: Moon at Nightfall

Timelapse of the moon rising over a bridge
A photograph of a moonrise over the Xinghai Bay Bridge in Dalian. Atmospheric extinction alters the hue and brightness of the moon when it is low on the horizon. In this photo, you can see the moon appears brighter and less red as it rises in the sky. Photo: Haohan Sun

Annie Maunder Prize for Image Innovation

Winner: Black Echo

Chandra X-ray telescope sonification data of Perseus Galaxy
Taking audio source material from NASA’s Chandra Sonification Project, White visually captured the sound of the black hole at the centre of the Perseus Galaxy. Photo: John White

The post 31 award-winning astronomy photos: From fiery horizons to whimsical auroras appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A newly spotted black hole keeps munching on a star the size of our sun https://www.popsci.com/science/black-hole-discovery-swiftj0230/ Thu, 07 Sep 2023 15:00:00 +0000 https://www.popsci.com/?p=568507
An optical image of the galaxy in which the new event occurred, taken from archival PanSTARRS data. The X-ray object was located to somewhere inside the white circle, which is about the size a pinhead 100m away would appear. The position of a 2 year old supernova is also shown.
An optical image of the galaxy in which the new event occurred, taken from archival PanSTARRS data. The X-ray object was located to somewhere inside the white circle, which is about the size a pinhead 100m away would appear. The position of a 2 year old supernova is also shown. Daniele B. Malesani/PanSTARRS

Luckily for us, the voracious Swift J0230 is 500 million light-years from the Milky Way.

The post A newly spotted black hole keeps munching on a star the size of our sun appeared first on Popular Science.

]]>
An optical image of the galaxy in which the new event occurred, taken from archival PanSTARRS data. The X-ray object was located to somewhere inside the white circle, which is about the size a pinhead 100m away would appear. The position of a 2 year old supernova is also shown.
An optical image of the galaxy in which the new event occurred, taken from archival PanSTARRS data. The X-ray object was located to somewhere inside the white circle, which is about the size a pinhead 100m away would appear. The position of a 2 year old supernova is also shown. Daniele B. Malesani/PanSTARRS

Just in time for spooky season, astronomers have detected a dark and hungry space monster. The newly spotted black hole named Swift J0230 is gradually eating huge chunks of a star that is very much like our own sun. Every time this star passes close to Swift J0230, it loses the equivalent mass of three Earths. The findings are described in a study published September 7 in the journal Nature Astronomy.

[Related: Astronomers used dead stars to detect a new form of ripple in space-time.]

A bright X-ray flash that seemed to come from the center of a nearby galaxy called 2MASX J02301709+2836050 first alerted a team of astronomers from the University of Leicester. This galaxy is about 500 million light-years away from the Milky Way and the black hole Swift J0230 was officially spotted via a new tool developed by the scientists at NASA’s Neil Gehrels Swift Observatory. 

The team scheduled more observations of this black hole and found that instead of decaying away as they expected, it would shine brightly for 7 to 10 days before abruptly switching off and repeating this process about every 25 days.

“Given that we found Swift J0230 within a few months of enabling our new transient-hunting tool, we expect that there are a lot more objects like this out there, waiting to be uncovered,” study co-author and University of Leicester astrophysicist Kim Page said in a statement

According to the team, similar behavior has been observed in quasi-periodic eruptions and periodic nuclear transients. This is where a star has its material ripped away by a black hole as it is orbiting close by. However, black holes can differ in how often they erupt and whether the eruption is predominantly in X-rays or optical light. The regularity of Swift J0230’s emissions fell somewhere between these two types of outbursts, suggesting that it could form the ‘missing link’ between them.

Now you don’t see it, now you do! X-ray images of the same location on the sky before (left) and after (right) Swift J0230 erupted. These images were taken with the X-ray Telescope on-board the Swift satellite. CREDIT: Phil Evans (University of Leicester) / NASA Swift
Now you don’t see it, now you do! X-ray images of the same location on the sky before (left) and after (right) Swift J0230 erupted. These images were taken with the X-ray Telescope on-board the Swift satellite. CREDIT: Phil Evans (University of Leicester) / NASA Swift

“This is the first time we’ve seen a star like our sun being repeatedly shredded and consumed by a low mass black hole,” study co-author and University of Leicester astronomer Phil Evans said in a statement. “So-called ‘repeated, partial tidal disruption’ events are themselves quite a new discovery and seem to fall into two types: those that outburst every few hours, and those that outburst every year or so. This new system falls right into the gap between these, and when you run the numbers, you find the types of objects involved fall nicely into place too.”

For the study, the team used models proposed for these two classes of events as a guide. They concluded that Swift J0230’s outbursts represent that a sun-sized star is in an elliptical orbit around a low-mass black hole smack in the center of its galaxy. As this star’s orbit takes it closer to the intense gravitational pull of the black hole, the material equivalent to the mass of three Earths is sucked from the star’s atmosphere and heated up as it plummets into the black hole. The intense heat is about 3.6 million degrees Fahrenheit and releases the surge of X-rays that the Swift satellite first detected. 

[Related: Black hole collisions could possibly send waves cresting through space-time.]

The team estimates that the black hole is about 10,000 to 100,000 times the mass of our sun—shockingly  small for the supermassive black holes that are usually found at the center of galaxies. By comparison, the black hole at the center of our own galaxy is believed to be about 4 million solar masses, while most are in the region of 100 million solar masses.

This is the first discovery for the new transient detector on the Swift satellite, which was developed by the University of Leicester team and running on their computers. 

“This type of object was essentially undetectable until we built this new facility, and soon after it found this completely new, never-before-seen event. Swift is nearly 20 years old and it’s suddenly finding brand new events that we never knew existed,” said Evans. “I think it shows that every single time you find a new way of looking at space, you learn something new and find there’s something out there you didn’t know about before.”

The team was supported by the UK Space Agency and the UK Science and technology Facilities Council (STFC).

The post A newly spotted black hole keeps munching on a star the size of our sun appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Astronomers detect a distant galaxy’s magnetic field for the first time https://www.popsci.com/science/magnetic-field-galaxy-9io9/ Thu, 07 Sep 2023 12:00:00 +0000 https://www.popsci.com/?p=568497
A blue semi circle on the right with a ball of blue light on the left on a black background. The orientation of the magnetic field in the distant 9io9 galaxy, seen here when the universe was only 20 percent of its current age and the furthest ever detection of a galaxy’s magnetic field.
The orientation of the magnetic field in the distant 9io9 galaxy, seen here when the universe was only 20 percent of its current age and the furthest ever detection of a galaxy’s magnetic field. ALMA (ESO/NAOJ/NRAO)/J. Geach et al.

It took more than 11 billion years for the light from galaxy 9io9 to reach Earth.

The post Astronomers detect a distant galaxy’s magnetic field for the first time appeared first on Popular Science.

]]>
A blue semi circle on the right with a ball of blue light on the left on a black background. The orientation of the magnetic field in the distant 9io9 galaxy, seen here when the universe was only 20 percent of its current age and the furthest ever detection of a galaxy’s magnetic field.
The orientation of the magnetic field in the distant 9io9 galaxy, seen here when the universe was only 20 percent of its current age and the furthest ever detection of a galaxy’s magnetic field. ALMA (ESO/NAOJ/NRAO)/J. Geach et al.

Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) radio telescope have detected the magnetic field of a galaxy that is so far away from Earth, that its light has taken more than 11 billion years to get here. With the telescope, we are seeing this galaxy just as it was when our universe was only 2.5 billion years old.

[Related: Our universe mastered the art of making galaxies while it was still young.]

The findings are detailed in a study published September 6 in the journal Nature. Finally seeing this cosmic artifact could give astronomers some vital clues to how the magnetic fields of galaxies like the Milky Way came to be. Magnetic fields are present in many of the universe’s astronomical bodies from stars to planets and up to galaxies. 

“Many people might not be aware that our entire galaxy and other galaxies are laced with magnetic fields, spanning tens of thousands of light-years,” study co-author and University of Hertfordshire astrophysicist James Geach said in a statement.

It is not yet fully clear both how early in our universe’s lifetime and how quickly the magnetic fields in galaxies form. To date, astronomers have only mapped magnetic fields in galaxies close to us.

“We actually know very little about how these fields form, despite their being quite fundamental to how galaxies evolve,” study co-author and Stanford University extragalactic astronomer Enrique Lopez Rodriguez said in a statement

In this new study, the team used data from ALMA and the European Southern Observatory (ESO) and discovered a fully formed magnetic field in a distant galaxy. It’s similar in structure to what is observed in nearby galaxies, and while the magnetic field is about 1,000 times weaker than our planet’s magnetic field, it extends over more than 16,000 light-years.

Observing a fully developed magnetic field this early in the history of the universe is an indication that magnetic fields spanning entire galaxies can form pretty quickly, even while younger galaxies are still growing.  

According to the team, intense star formation in the universe’s early days may have played a role in accelerating the development of the magnetic fields and that the fields can influence how later generations of stars will eventually form. 

[Related: Secrets of the early universe are hidden in this chill galaxy cluster.]

These new findings show off the inner workings of galaxies, according to study co-author and ESO astronomer Rob Ivison. “The magnetic fields are linked to the material that is forming new stars,” Ivison said in a statement

To detect this light, the team searched for light emitted by dust grains in a distant galaxy named 9io9. When a magnetic field is present, galaxies are full of dust trains that tend to align and the light that they emit becomes polarized. When this happens, the light waves oscillate along a preferred direction instead of randomly. When ALMA detected and mapped the more polarized signal coming from galaxy 9io9, it confirmed the presence of a magnetic field in a very distant galaxy for potentially the first time. 

“No other telescope could have achieved this,” said Geach. 

The team hopes that with this new discovery and future observations of distant magnetic fields, astronomers will get closer to how fundamental components of galaxies form. 

The post Astronomers detect a distant galaxy’s magnetic field for the first time appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
See the stunning Supernova 1987A in a whole new light https://www.popsci.com/science/jwst-supernova-1987a/ Fri, 01 Sep 2023 13:00:00 +0000 https://www.popsci.com/?p=567509
Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape.
Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape. Science: NASA, ESA, CSA, Mikako Matsuura (Cardiff University), Richard Arendt (NASA-GSFC, UMBC), Claes Fransson (Stockholm University), Josefin Larsson (KTH). Image Processing: Alyssa Pagan (STScI)

The remnants of an exploded blue supergiant star rest about 168,000 light-years away from Earth.

The post See the stunning Supernova 1987A in a whole new light appeared first on Popular Science.

]]>
Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape.
Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape. Science: NASA, ESA, CSA, Mikako Matsuura (Cardiff University), Richard Arendt (NASA-GSFC, UMBC), Claes Fransson (Stockholm University), Josefin Larsson (KTH). Image Processing: Alyssa Pagan (STScI)

The James Webb Space Telescope (JWST) has taken some new images of a star that exploded during the Reagan Administration. The space telescope’s NIRCam (Near-Infrared Camera) helped capture the images of a world renowned supernova called Supernova 1987A (SN 1987A) in September 2022. The jaw-dropping new images were officially made public on August 31. 

[Related: An amateur astronomer spotted a new supernova remarkably close to Earth.]

Supernova 1987A is roughly 168,000 light-years away from Earth and located in the Large Magellanic Cloud–a satellite dwarf galaxy of the Milky Way. The supernova is the remnants of a blue supergiant star called Sanduleak–69 202. It was believed to hold a mass about 20 times that of the sun before the explosion was detected in February 1987. It is also the closest observed supernova since 1604, when Kepler’s Supernova illuminated the Milky Way. Supernova 1987A has been the target of observations at wavelengths ranging from gamma rays to radio waves for nearly 40 years. 

The latest image shows a central structure of inner ejecta similar to a keyhole. Clumpy gas and dust pack up the center that is ejected by the supernova explosion. According to NASA, the dust is so dense that even near-infrared light that Webb can detect can’t penetrate it, shaping the dark “hole” in the keyhole. 

Surrounding the inner keyhole is a bright equatorial ring which forms a band around the “waist” of the supernova which connects the two faint arms of hourglass-shaped outer rings. The equatorial ring is formed from material ejected tens of thousands of years before the supernova even exploded.. Bright hot spots in the ring appeared as the supernova’s shock wave hit it, and now exist externally to the ring, with diffuse emission surrounding it. These are where the supernova shocks hit more exterior material.

Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A), which has been annotated to highlight key structures. At the center, material ejected from the supernova forms a keyhole shape. Just to its left and right are faint crescents newly discovered by Webb. Beyond them an equatorial ring, formed from material ejected tens of thousands of years before the supernova explosion, contains bright hot spots. Exterior to that is diffuse emission and two faint outer rings. In this image blue represents light at 1.5 microns (F150W), cyan 1.64 and 2.0 microns (F164N, F200W), yellow 3.23 microns (F323N), orange 4.05 microns (F405N), and red 4.44 microns (F444W). CREDITS: Science–NASA, ESA, CSA, Mikako Matsuura (Cardiff University), Richard Arendt (NASA-GSFC, UMBC), Claes Fransson (Stockholm University), Josefin Larsson (KTH). Image ProcessinG–Alyssa Pagan (STScI).
Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A), which has been annotated to highlight key structures. At the center, material ejected from the supernova forms a keyhole shape. Just to its left and right are faint crescents newly discovered by Webb. Beyond them an equatorial ring, formed from material ejected tens of thousands of years before the supernova explosion, contains bright hot spots. Exterior to that is diffuse emission and two faint outer rings. In this image blue represents light at 1.5 microns (F150W), cyan 1.64 and 2.0 microns (F164N, F200W), yellow 3.23 microns (F323N), orange 4.05 microns (F405N), and red 4.44 microns (F444W). CREDITS: Science–NASA, ESA, CSA, Mikako Matsuura (Cardiff University), Richard Arendt (NASA-GSFC, UMBC), Claes Fransson (Stockholm University), Josefin Larsson (KTH). Image ProcessinG–Alyssa Pagan (STScI).

The Hubble and Spitzer Space Telescopes and the Chandra X-ray Observatory have also observed Supernova 1987A, but JWST’s sensitivity and spatial resolution abilities showed a new feature in this supernova remnant–small crescent-like structures. The crescents are believed to be part of the outer layers of gas that shot out from the supernova explosion. They are very bright, which may be an indication of an optical phenomenon called limb brightening. This results from being able to observe the expanding material in three dimensions. “The viewing angle makes it appear that there is more material in these two crescents than there actually may be,” NASA wrote in a press release.

Before JWST, the now-retired Spitzer telescope observed this supernova in infrared throughout its entire 16 year lifespan, providing astronomers with key data about how Supernova 1987A’s emissions evolved over time. However, Spitzer couldn’t observe the supernova with the same level of clarity and detail as JWST.  


[Related:
JWST captures an unprecedented ‘prequel’ to a galaxy.]

There are still several mysteries surrounding this supernova, namely some unanswered questions about the neutron star that should have formed in the aftermath of the supernova explosion. There is some indirect evidence for the neutron star in the form of X-ray emission that was detected by NASA’s Chandra and NuSTAR X-ray observatories. Additionally, some observations taken by the Atacama Large Millimeter/submillimeter Array indicate the neutron star may be hidden within one of the dust clumps at the heart of the remnant.

JWST will continue to observe the supernova over time, using the NIRSpec (Near-Infrared Spectrograph) and MIRI (Mid-Infrared Instrument) instruments that give astronomers the ability to capture new, high-fidelity infrared data over time. 

The post See the stunning Supernova 1987A in a whole new light appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The Whirlpool Galaxy’s buff, spiral arms grab JWST’s attention https://www.popsci.com/science/jwst-whirlpool-galaxy/ Tue, 29 Aug 2023 20:00:00 +0000 https://www.popsci.com/?p=566625
A large spiral galaxy takes up the entirety of the image. The core is mostly bright white, but there are also swirling, detailed structures that resemble water circling a drain. There is white and pale blue light that emanates from stars and dust at the core’s center, but it is tightly limited to the core. The rings feature colors of deep red and orange and highlight filaments of dust around cavernous black bubbles.
In this new image of M51 taken by the James Webb Space Telescope, the dark red regions trace the filamentary warm dust permeating the medium of the galaxy. The orange and yellow portions show areas of ionized gas created by recently formed star clusters. ESA/Webb, NASA & CSA, A. Adamo (Stockholm University) and the FEAST JWST team

M51 is a grand-design spiral galaxy about 25 million light-years away from Earth and boasts very well-developed arms.

The post The Whirlpool Galaxy’s buff, spiral arms grab JWST’s attention appeared first on Popular Science.

]]>
A large spiral galaxy takes up the entirety of the image. The core is mostly bright white, but there are also swirling, detailed structures that resemble water circling a drain. There is white and pale blue light that emanates from stars and dust at the core’s center, but it is tightly limited to the core. The rings feature colors of deep red and orange and highlight filaments of dust around cavernous black bubbles.
In this new image of M51 taken by the James Webb Space Telescope, the dark red regions trace the filamentary warm dust permeating the medium of the galaxy. The orange and yellow portions show areas of ionized gas created by recently formed star clusters. ESA/Webb, NASA & CSA, A. Adamo (Stockholm University) and the FEAST JWST team

The James Webb Space Telescope (JWST) has captured a stellar new image of the Whirlpool Galaxy (aka M51 or NGC 5194), a grand-design spiral galaxy about 27 million light-years away from Earth. According to the European Space Agency (ESA), grand-design spiral galaxies like this one have prominent, well-developed spiral arms, unlike other spiral galaxies that have more ragged or disrupted spiral arms. 

[Related: Herschel Space Telescope’s First Images Give Promising Glimpse of What’s to Come.]

M51 lies in the constellation Canes Venatici (or The Hunting Dogs) and is trapped in a bit of a tumultuous relationship with the dwarf galaxy NGC 5195. The interaction between these two galactic neighbors has been one of the more well studied galaxy pairs in the sky. M51’s gravitational influence on its smaller companion is believed to be partially responsible for the grand nature of its prominent and distinct spiral arms. 

This new galactic portrait uses data from JWST’s Near-InfraRed Camera (NIRCam) and Mid-InfraRed Instrument (MIRI). This new observation is one of a series of observations collectively titled Feedback in Emerging extrAgalactic Star clusTers (FEAST). The FEAST observations were designed for astronomers and the public to learn more about stellar feedback and star formation environments outside of the Milky Way galaxy. 

Stellar feedback describes the outpouring of energy from stars into the environments which form them. It is a crucial process in determining the rates at which stars form, and is important to building accurate models of star formation. 

“Stellar feedback has a dramatic effect on the medium of the galaxy and creates a complex network of bright knots as well as cavernous black bubbles,” the ESA wrote in a statement

In the new image, the dark red regions trace the filamentary warm dust permeating the medium of the galaxy. These rosy regions show the reprocessed light from complex molecules forming on dust grains. The orange and yellow portions show areas of ionized gas created by recently formed star clusters.

A large spiral galaxy takes up the entirety of the image. The core is mostly bright white, but there are also swirling, detailed structures that resemble water circling a drain. There is white and pale blue light that emanates from stars and dust at the core’s center, but it is tightly limited to the core. The rings feature colors of deep red and orange and highlight filaments of dust around cavernous black bubbles
Unlike the menagerie of weird and wonderful spiral galaxies with ragged or disrupted spiral arms, grand-design spiral galaxies boast prominent, well-developed spiral arms like M51. CREDIT: ESA/Webb, NASA & CSA, A. Adamo (Stockholm University) and the FEAST JWST team.

Before JWST became operative in 2022, other observatories including those made at the Atacama Large Millimetre Array in the Chilean desert and the Hubble Telescope gave astronomers a glimpse of star formation. These observations occurred at either the onset, when the dense gas and dust clouds where stars will form, or after the stars have been destroyed with their energy their natal gas and dust clouds. JWST is opening up a new observational window to the earlier stages of star formation and stellar light. 

“Scientists are seeing star clusters emerging from their natal cloud in galaxies beyond our local group for the first time. They will also be able to measure how long it takes for these stars to pollute with newly formed metals and to clean out the gas (these time scales are different from galaxy to galaxy),” wrote the ESA.

[Related: Our universe mastered the art of making galaxies while it was still young.]

More observations and study of these processes is expected to lead to a better understanding of how the whole star formation cycle and metal enrichment process are regulated within galaxies. It also could help present a more clear time scale for when planets and brown dwarfs form because once gas and dust is removed from newly formed stars, there isn’t any material left to form planets.

The post The Whirlpool Galaxy’s buff, spiral arms grab JWST’s attention appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
When two stars orbit each other, gravity gets weird https://www.popsci.com/science/theory-of-gravity-alternative/ Tue, 15 Aug 2023 16:00:00 +0000 https://www.popsci.com/?p=563124
A purple galaxy cluster against a black background of space, studded with stars.
Studying galaxy clusters such as this one helps astronomers look for the nature of dark matter. NASA/CXO/Fabian et al.; Gendron-Marsolais et al.; NRAO/AUI/NSF; SDSS

Newton and Einstein's explanations for gravity might not fully explain some cosmic phenomena.

The post When two stars orbit each other, gravity gets weird appeared first on Popular Science.

]]>
A purple galaxy cluster against a black background of space, studded with stars.
Studying galaxy clusters such as this one helps astronomers look for the nature of dark matter. NASA/CXO/Fabian et al.; Gendron-Marsolais et al.; NRAO/AUI/NSF; SDSS

The idea of gravity as we know it has been around for a long time. More than 300 years ago, Isaac Newton first shared his theory of gravitation, describing how massive objects are attracted to each other. Then, around a hundred years ago, Albert Einstein refined and expanded upon Newton’s ideas to create the theory of relativity—explaining gravity as the way objects, especially at the extremes across the universe, warp the fabric of space around them.

But there are still a few mysteries in the cosmos that even the well-tested ideas of relativity can’t explain. The biggest one? Dark matter, the most notorious problem in astronomy today. Many scientists think dark matter is some kind of yet-unknown particle that obeys traditional laws of gravity. Others think the issue is actually gravity itself. In that view, perhaps we need a modified theory of gravity—also known as MOND, for MOdified Newtonian Dynamics—where, at the largest and smallest scales, gravity acts differently from the usual Newton or Einstein theories.

MOND is often met with significant skepticism, because Newton and Einstein’s ideas of gravity have had so much success. But new observations recently published in The Astrophysical Journal claim to provide evidence for modified gravity by taking a detailed look at the ways binary stars move around each other. 

“The new results provide direct evidence that Newton’s theory simply breaks down” at certain scales, explains Kyu-Hyun Chae, astronomer at Sejong University in Seoul, South Korea and author of the new paper claiming evidence for MOND. Chae used data from the European Gaia satellite, which has been measuring the positions and motions of stars with unprecedented precision over the past decade. In particular, he looked at binary stars with particularly wide, far-apart orbits to measure their accelerations, for which MOND and traditional theories predict different values. 

[Related: Have we been measuring gravity wrong this whole time?]

These spaced-out stars move pretty slowly, enabling tests of gravity where there are tiny accelerations. These small accelerations are where the two theories of gravity diverge, and modified gravity predicts the stars will move 30 to 40 percent faster than they would under “normal” gravity—precisely what Chae claims to have seen in the data. At the small scales of binary stars, too, according to Chae, dark matter can’t really have an effect, so it can’t explain the observed differences from the predictions of traditional gravity.

Xavier Hernandez, an astronomer at the National Autonomous University of Mexico who first proposed the idea of testing gravity with wide binary systems but wasn’t involved in the new work, has confidence in these new results, especially since they complement his past work. “Two largely independent and complementary approaches have been shown to yield the same result,” he says, emphasizing that this a clear example of the scientific process.

The best explanation for Chae’s observations is a particular flavor of modified gravity theories, called AQUAL MOND. But just because gravity might not be a perfect match to one theory, doesn’t mean we need to throw out everything we have. “There are many versions of modified gravity because it can be anything that goes beyond Einstein’s theory of general relativity,” said physicist Sergei Ketov in a news release from the University of Tokyo Kavli Institute. “Modified gravity does not rule out Einstein’s theory, but it shows its boundaries.”

[Related: Gravity could be bringing you down with IBS]

Not all in the scientific community are convinced this is actually a “smoking-gun” for MOND, though. “The quick answer is that this result is a confluence of three things: good science, bad science, and the ugly state of science news,” wrote science communicator Ethan Siegel on Friday in his column Starts with a Bang. Siegel and other scientists have expressed concerns about the reliability of the observations used in Chae’s study—with some even publishing contradictory research—and discontent with news articles creating the impression that this work is a decisive victory for modified gravity. Depending on what stars scientists include in their analysis, the results vary, and these scientists currently disagree on what assumptions are the correct ones to make.

“If anyone is truly skeptical, he/she should try to disprove my results,” counters Chae. However, he empathizes with the motivation for some of the disbelief. The analyses at odds with this research, he adds, failed to include an important self-calibration step. Current modified gravity theories are “like the Bohr model of atoms without quantum physics developed yet. But, we need to remember that quantum physics was eventually developed,” he adds. (The Bohr model is the classic elementary-school science view of an atom, with electrons orbiting a nucleus, which was later replaced by the much fuzzier and probabilistic view of quantum mechanics.)

Only time and many other tests will be able to determine which theory will come out on top, and if dark matter is a particle or just a tweak to gravity. “We have these binary stars orbiting each other in front of us, and not doing what Newton said they should be doing,” says Hernandez. “Not considering modified gravity is no longer an option.”

This post has been updated with additional comments from Chae.

The post When two stars orbit each other, gravity gets weird appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Watch 17 years of an exoplanet’s journey in only 10 seconds https://www.popsci.com/science/exoplanet-star-orbit-beta-pictoris/ Thu, 10 Aug 2023 15:00:00 +0000 https://www.popsci.com/?p=562222
An artist’s impression of the planet Beta Pictoris b orbiting its star.
An artist’s impression of the planet Beta Pictoris b orbiting its star. ESO L. Calçada/N. Risinger.

Beta Pictoris b is about 12 times the size of gas giant Jupiter.

The post Watch 17 years of an exoplanet’s journey in only 10 seconds appeared first on Popular Science.

]]>
An artist’s impression of the planet Beta Pictoris b orbiting its star.
An artist’s impression of the planet Beta Pictoris b orbiting its star. ESO L. Calçada/N. Risinger.

While it takes the Earth 365 days to revolve around our star (aka the sun), the exoplanet Beta Pictoris b takes 23.6 Earth years to orbit its star. Now, an astrophysicist and exoplanet imager at Northwestern University has used 17 years of footage to create a time-lapse video of this almost complete orbit of the giant planet around its star.

[Related: New image reveals a Jupiter-like world that may share its orbit with a ‘twin’.]

Beta Pictoris b is an enormous planet that has 12 times the mass of the gas giant Jupiter. It’s about 63 lightyears away from the Earth in the constellation Pictor. The whopping planet is about 10 times further away from its star than the Earth is from the sun, and Beta Pictoris b is  about 1.75 times as massive and 8.7 times more luminous than our sun. 

Astrophysicist Jason Wang used real time footage collected between 2003 and 2020 and condense the 17-year-long journey into 10 seconds showing Beta Pictoris b making roughly 75 percent of one full orbit of its star. 

“We need another six years of data before we can see one whole orbit,” Wang said in a statement. “We’re almost there. Patience is key.”

This very young planet is only 20 to 26 million years old and was first imaged in 2003. At the time, its size and brightness made it easier to spot compared to the galaxy’s other exoplanets. 

“It’s extremely bright,” Wang said. “That’s why it’s one of the first exoplanets to ever be discovered and directly imaged. It’s so big that it’s at the boundary of a planet and a brown dwarf, which are more massive than planets.”

Wang first constructed his first time-lapse footage of the Beta Pictoris b with five years of its circuit. He started working with a local high school student named Malachi Noel who used AI-driven image-processing techniques to uniformly analyze archival imaging data from the Gemini Observatory’s Gemini Planet Imager and the European Southern Observatory’s NACO and SPHERE instruments.

“Due to the long time-range, there was a lot of diversity among the datasets, which required frequent adaptations to the image processing,” Noel said in a statement. “I really enjoyed working with the data. While it is too early to know for sure, astrophysics is definitely a career path I am seriously considering.” 

CREDIT: Jason Wang/CIERA/Northwestern University.

After the data was uniformly processed, Wang used an algorithmic technique called motion interpolation to fill in the gaps to make a continuous video. This kept the image of the exoplanet looking more smooth as it orbits through space. 

“If we just combined the images, the video would look really jittery because we didn’t have continuous viewing of the system every day for 17 years,” Wang said. “The algorithm smooths out that jitter, so we can imagine how the planet would look if we did see it every day.”

Wang used a technology called adaptive optics to assemble the video, which also helped to  correct the image blurring that Earth’s atmosphere causes and suppress the glare of the central star in the system. The star’s glare is still so intense that it outshines Beta Pictoris b when it gets too close. 

[Related: The Milky Way’s shiniest known exoplanet has glittering metallic clouds.]

Wang hopes exoplanet videos give viewers a unique look into planetary motion and demonstrates the inner workings of the universe

“A lot of times, in science, we use abstract ideas or mathematical equations,” Wang said. “But something like a movie—that you can see with your own eyes—gives a visceral kind of appreciation for physics that you wouldn’t gain from just looking at plots on a graph.”

The post Watch 17 years of an exoplanet’s journey in only 10 seconds appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Two tiny stars fit into an orbit smaller than our sun https://www.popsci.com/science/tiny-star-binary-system/ Tue, 08 Aug 2023 10:00:00 +0000 https://www.popsci.com/?p=561717
An illustration of a brown dwarf and a hotter star, in white.
A NASA illustration of a binary system, including a brown dwarf, though its pictured companion (to the upper left) is a long-dead white dwarf. NOIRLab/NSF/AURA/P. Marenfeld/Acknowledgement: William Pendrill

This unusual system 'shouldn't exist,' says one astronomer, who notes the orbit is as long as his daily commute.

The post Two tiny stars fit into an orbit smaller than our sun appeared first on Popular Science.

]]>
An illustration of a brown dwarf and a hotter star, in white.
A NASA illustration of a binary system, including a brown dwarf, though its pictured companion (to the upper left) is a long-dead white dwarf. NOIRLab/NSF/AURA/P. Marenfeld/Acknowledgement: William Pendrill

Reality is stranger than fiction, especially in space, where astronomers just spotted two tiny stars orbiting so close together that the whole system could fit inside our sun. In a new article submitted to the Open Journal of Astrophysics, researchers present the discovery of ZTF J2020+5033, a not-quite-a-star object called a brown dwarf that’s circling a small, low-mass star.

This is what’s known as a binary system, where two stars are bound to each other in a sort of gravitational dance—think the iconic twin suns in the sky above Tatooine, the Star Wars planet. What’s wild about this particular new—and very real—binary is just how small it is. “This system shouldn’t exist,” says Mark Popinchalk, an astronomer at the American Museum of Natural History not involved in the new research. 

The brown dwarf completes one lap of its parent star in just under two hours, about the time it takes Popinchalk to commute from Brooklyn to his Manhattan office and back. “I would have been skeptical of the system,” he adds, but the authors have collected “an impressive amount of data” using multiple telescopes and techniques to support this discovery.

[Related: Your guide to the types of stars, from their dusty births to violent deaths]

“The orbit is much tighter (i.e., smaller, with a shorter orbital period) than any previously discovered brown dwarf binaries,” says lead author Kareem El-Badry, an astronomer at Caltech. “Until now it seemed like these kinds of binaries were unable to reach such short periods, but this system shows that is not the case.”

Binary systems are an important tool for astronomers to understand stars more generally. Thanks to the gravitational interactions between the two components, researchers can measure mass, radius, and temperature and other key properties more reliably and accurately for binaries than they can when observing lone stars. These measurements are needed to test our models and understanding of how stars change over time.

The center of this binary system is a low-mass star—something smaller than our sun—with a brown dwarf orbiting around it. Brown dwarfs are sometimes called “failed stars” because they’re not quite big enough to be a star but too big to be a planet. “Failed stars” may be a misnomer, though, since astronomers are still trying to figure out if brown dwarfs and stars are born the same way.

This particular newly discovered brown dwarf, which is about 80 times the mass of Jupiter, is on the cusp of being massive enough to be a star. Studying it in particular can help astronomers unravel how these intermediate objects came to be. “The way brown dwarfs form still has several big question marks around it, and each brown dwarf/low-mass star binary system is an important laboratory to answer these questions,” says Popinchalk. ZTF J2020+5033 is such a large example of a brown dwarf that someday, if any of its partner star’s material transfers onto it, that addition might push the brown dwarf into star territory—“like a cosmic gift, some mass passed on to an old friend to help them over the line and into the category of full fledged star,” says Popinchalk.

[Related: Dust clumps around a young star could one day form planets]

Plus, this new binary’s tight orbit poses a puzzle for researchers. Stars are puffier when they’re young—so much so that if these stars weren’t old, they couldn’t orbit so close and would be touching. “A majority of known brown dwarfs are young and inflated,” says El-Badry. “So it lets us test models for how brown dwarfs should cool as they age.” Their youthful puffiness also means they couldn’t have possibly been in this orbit their whole lives, and instead the orbit somehow shrunk with the stars by a factor of five over their lifetimes.

The authors propose the shrinking orbit could be caused by magnetic braking, where energetic particles from a star are funneled through its magnetic field, robbing the star of energy. Existing models assume that magnetic braking doesn’t work for small stars, but it looks like it must be operating here. If small stars decelerate more than previously thought, this could have big impacts for the evolution of other types of binary stars too—X-ray binaries that have a neutron star and a low-mass star, or cataclysmic variables with a low-mass star and a white dwarf.

The post Two tiny stars fit into an orbit smaller than our sun appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The Ring Nebula is a glowing gas-filled donut in the latest JWST snap https://www.popsci.com/science/ring-nebula-jwst/ Fri, 04 Aug 2023 17:00:00 +0000 https://www.popsci.com/?p=561247
JWST/NIRcam composite image of the Ring Nebula. The image clearly shows the main ring, surrounded by a faint halo and with many delicate structures. The interior of the ring is filled with hot gas. The star which ejected all this material is visible at the very center.
JWST/NIRcam composite image of the Ring Nebula. The image clearly shows the main ring, surrounded by a faint halo and with many delicate structures. The interior of the ring is filled with hot gas. The star which ejected all this material is visible at the very center. NASA, ESA, CSA, JWST Ring Nebula Team photo. Image processing by Roger Wesson

The plenary nebula about 2,600 light-years away can be seen with backyard telescopes and boasts stunning colors.

The post The Ring Nebula is a glowing gas-filled donut in the latest JWST snap appeared first on Popular Science.

]]>
JWST/NIRcam composite image of the Ring Nebula. The image clearly shows the main ring, surrounded by a faint halo and with many delicate structures. The interior of the ring is filled with hot gas. The star which ejected all this material is visible at the very center.
JWST/NIRcam composite image of the Ring Nebula. The image clearly shows the main ring, surrounded by a faint halo and with many delicate structures. The interior of the ring is filled with hot gas. The star which ejected all this material is visible at the very center. NASA, ESA, CSA, JWST Ring Nebula Team photo. Image processing by Roger Wesson

The James Webb Space Telescope (JWST) has just headed into its second year in service, and recently recorded new images of the Ring Nebula named Messier 57. This nebula is about 2,600 light-years away from Earth, located in the Lyra constellation. The images were released by an international team of astronomers who are part of the JWST Ring Nebula Project.

[Related: James Webb Space Telescope reconstructed a ‘star party,’ and you’re invited.]

The Ring Nebula is a common target for space enthusiasts and is known for a donut-shaped ring of dust and gas that can even be viewed with backyard telescopes in the summer months. 

“I first saw the Ring Nebula as a kid through just a small telescope,” Western University astrophysicist and member of the JWST Ring Nebula Imaging Project Jan Cami said in a statement. “I would never have thought that one day, I would be part of the team that would use the most powerful space telescope ever built, to look at this object.”

Messier 57 is known as a planetary nebula. These objects are the colorful remnants of dying stars that have tossed a majority of their mass at the end of their stellar lives. Nebulae like the Ring Nebula come in a variety of shapes and patterns, from something that looks like a lobster, to expanding bubbles, to cotton candy-like clouds. The Ring Nebula’s vibrant colors are shown in a whole new light with JWST’s NIRcam.

“We are amazed by the details in the images, better than we have ever seen before. We always knew planetary nebulae were pretty. What we see now is spectacular,” University of Manchester astrophysicist Albert Zijlstra said in a statement. 

A close-up of the southern part of the outer halo, the part outside the main ring. The team finds several hundred linear features, pointing approximately at the central star. Their origin is not yet clear. How a single star can create such a complex nebula is not well understood. JWST will be used to study the structure, and the origin of the clumps and stripes. In the background, thousands of more distant, numerous faint galaxies can be seen, some with clear spiral structure. CREDIT: The University of Manchester.
A close-up of the southern part of the outer halo, the part outside the main ring. The team finds several hundred linear features, pointing approximately at the central star. Their origin is not yet clear. How a single star can create such a complex nebula is not well understood. JWST will be used to study the structure, and the origin of the clumps and stripes. In the background, thousands of more distant, numerous faint galaxies can be seen, some with clear spiral structure. CREDIT: The University of Manchester.

The patterns in the Ring Nebula are the consequence of a complicated array of different physical properties that astronomers are still figuring out. The light from its hot and central star is illuminating the layers in the pattern. Similar to fireworks, different chemical elements within the Ring Nebula emit specific light colors. The colors help scientists understand the chemical evolution of these objects in better detail. 

“These images hold more than just aesthetic appeal; they provide a wealth of scientific insights into the processes of stellar evolution. By studying the Ring Nebula with JWST, we hope to gain a deeper understanding of the life cycles of stars and the elements they release into the cosmos,” member and co-lead scientist of the JWST Ring Nebula Imaging Project Nick Cox said in a statement.

[Related: This highly detailed image of the Cat’s Eye Nebula might finally help us understand how it formed.]

Investigating Messier 57 in this detail can also help astronomers better understand the sun. When stars of similar sizes to our solar system’s central star run out of the fuel needed for nuclear fusion, they can’t support themselves against their own gravity. This ends the balancing forces that kept the star stable for millions to billions of years.

The star’s outer layers are blasted outward as the core collapses, since nuclear fusion is still occurring in these outside layers. The star will initially become a red giant, which is expected to happen to our sun in about five billion years. Eventually, the outer shells will cool and disperse in the variety of shapes nebulae are famous for. 

“We are witnessing the final chapters of a star’s life, a preview of the Sun’s distant future so to speak, and JWST’s observations have opened a new window into understanding these awe-inspiring cosmic events,” astronomer and co-lead scientist of the JWST Ring Nebula Imaging Project Mike Barlow from University College London said in a statement. “We can use the Ring Nebula as our laboratory to study how planetary nebulae form and evolve.”

The post The Ring Nebula is a glowing gas-filled donut in the latest JWST snap appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Secrets of the early universe are hidden in this chill galaxy cluster https://www.popsci.com/science/relaxed-galaxy-cluster/ Fri, 28 Jul 2023 18:30:00 +0000 https://www.popsci.com/?p=559674
SPT2215 relaxed galaxy cluster in composite image by Chandra, Hubble, and other space instruments
This composite image contains X-rays from Chandra (blue), which helped identify SPT2215 along with other telescopes, and data from Hubble (cyan and orange). Before this, astronomers were not sure relaxed clusters existed at this epoch of the universe, because they are usually still merging with other clusters or groups of galaxies as they increase in size. X-ray: NASA/CXC/MIT/M. Calzadilla; UV/Optical/Near-IR/IR: NASA/STScI/HST; Image processing: N. Wolk

Astronomers used the afterglow of the big bang, hungry supermassive black holes, and space telescopes to find a rare 'relaxed' galaxy cluster.

The post Secrets of the early universe are hidden in this chill galaxy cluster appeared first on Popular Science.

]]>
SPT2215 relaxed galaxy cluster in composite image by Chandra, Hubble, and other space instruments
This composite image contains X-rays from Chandra (blue), which helped identify SPT2215 along with other telescopes, and data from Hubble (cyan and orange). Before this, astronomers were not sure relaxed clusters existed at this epoch of the universe, because they are usually still merging with other clusters or groups of galaxies as they increase in size. X-ray: NASA/CXC/MIT/M. Calzadilla; UV/Optical/Near-IR/IR: NASA/STScI/HST; Image processing: N. Wolk

The early universe was a stressful place for galaxies. Globs of tens to hundreds of neighboring galaxies, called galaxy clusters, would share a communal pool of hot gas—but not without drama. There was always another wayward galaxy crashing into the cluster, merging with one of the former occupants, and generally perturbing the gas pool, known as the intracluster medium.

That’s what makes the newly discovered galaxy cluster SPT2215 so special. Found about 8.4 billion-light years from Earth, astronomers recently captured views of SPT2215 as it existed when the universe was just 5 billion years old. On further study, they’ve deemed it one of the few “relaxed” galaxy clusters found from that period in the cosmos. It could lead scientists to revise how their models of how fast galaxies formed at the dawn of the universe.

[Related: These 6 galaxies are so huge, they’ve been nicknamed ‘universe breakers’]

“If the galaxy cluster is in the process of forming, we call it ‘disturbed’—it’s just kind of a mess,” says Michael Calzadilla, a PhD candidate in astrophysics at MIT and lead author of an April 19 paper in The Astrophysical Journal characterizing the newly discovered SPT2215 cluster with the help of multiple telescopes and flying observatories.

“If the gas is very round, very symmetrical, and looks kind of like a ball, it tells you that there haven’t been any recent interactions,” he says. “It’s very ‘relaxed.’” In other words, there are no galaxy mergers disrupting things, which seems to be the case with SPT2215.

Finding and studying relaxed galaxy clusters from the early universe can give astronomers clues to how galaxy and star formation differed between eight billion years ago and today. The discovery of SPT2215, however, came about unlike that of any other galaxy cluster. It began with an interesting shadow of microwave frequencies and ended with a bizarre thermostat reading.

An international team of dozens of scientists went looking for signs of distant galaxy clusters in the SPTpol Extended Cluster Survey, which uses the Sunyaev–Zel’dovich effect—the cosmic microwave background interacting with the hot communal gas from galaxies—to find relevant groups of stars.

The cosmic microwave background is the first light in the universe, a.k.a. the afterglow of the big bang, Cazadilla notes. When low-energy microwave photons encounter a galaxy cluster on their way to Earth, they’re scattered to higher energies by the gas, or the plasma inside of the galaxy cluster,” he says. The gaps left behind by those amped-up photons show up as shadows against the cosmic microwave background, giving a rough idea of where the cluster is. From there, astronomers have to do follow-up observations to tell the distance, and whether the cluster is disturbed or relaxed. In the case of SPT2215, Calzadilla and his colleagues used a collection of instruments including the Hubble Space Telescope, the infrared Spitzer Telescope, the Chandra X-ray observatory, and ground-based telescopes like the Giant Magellan Telescope in Chile.

”You get more of the whole picture of what’s going on if you look at different wavelengths,” Calzadilla says. “Chandra is looking at X-ray wavelengths; Spitzer is looking at infrared wavelengths; and Hubble is looking at optical wavelengths that are kind of in the middle.”

The intracluster gas of a galaxy cluster typically cools over time, first emitting X-rays, then cooling to emit ultraviolet light, and finally, emitting electromagnetic wavelengths down to the infrared region, he explains. “We can catch each part of this process at different wavelengths, using these different telescopes.”

[Related: How a microwave helped astronomers solve the peryton mystery]

Normally, the cooling gas shared in a galaxy cluster slowly falls inward, forming and feeding a central galaxy that tends to dominate the others, Calzadilla says. The gas sustains star birth in that central galaxy, but also fuels the creation of a supermassive black hole at that galaxy’s center. When feeding, supermassive black holes will generate energetic outbursts, which push back against the cooling and inflating gas.

“It acts as a thermostat and regulates the temperature, in a sense of the galaxy cluster,” Calzadilla notes, slowing down the rate at which the gas cools.    

But what’s interesting about SPT2215, he adds, is that “it looks like that thermostat is having a hard time keeping up with the amount of cooling that’s going on.” That gives it a chillier aura than expected (starting at around 179,540 degrees Fahrenheit), with the gas being projected to cool much faster than in most other galaxy clusters found at a similar time in the universe. The central galaxy also exhibits more new, young stars than a cluster where a black hole kept the gas from cooling too quickly.        

Calzadilla thinks there could be a variety reasons SPT2215 is so cool, including the possibility “that maybe the black hole has only just now been turned on. It it takes a while for this cooling gas to make it to the central galaxy and into that black hole.”

While it would take further observations, perhaps with the James Webb Space Telescope or longer follow-ups with Hubble, to know for certain, “[SPT2215] could be telling us that galaxies are forming at a younger age than we thought,” in the early universe, Calzadilla says. “That’s challenging our timeline of when things happened.”

The post Secrets of the early universe are hidden in this chill galaxy cluster appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Dust clumps around a young star could one day form planets https://www.popsci.com/science/young-star-planet-formation/ Tue, 25 Jul 2023 14:00:00 +0000 https://www.popsci.com/?p=558964
A young star named V960 Mon is at the center, with dusty material with the potential to form planets surrounding it. V960 Mon is located over 5000 light-years away from Earth in the constellation Monoceros.
A young star named V960 Mon is at the center, with dusty material with the potential to form planets surrounding it. V960 Mon is located over 5000 light-years away from Earth in the constellation Monoceros. ESO/ALMA (ESO/NAOJ/NRAO)/Weber et al.

The 'captivating' discovery shows the potential birth of planets 5,000 light-years from Earth.

The post Dust clumps around a young star could one day form planets appeared first on Popular Science.

]]>
A young star named V960 Mon is at the center, with dusty material with the potential to form planets surrounding it. V960 Mon is located over 5000 light-years away from Earth in the constellation Monoceros.
A young star named V960 Mon is at the center, with dusty material with the potential to form planets surrounding it. V960 Mon is located over 5000 light-years away from Earth in the constellation Monoceros. ESO/ALMA (ESO/NAOJ/NRAO)/Weber et al.

A stellar new image from the European Southern Observatory (ESO) is offering up some clues about how planets as enormous as the gas giant Jupiter could form. Researchers used the ESO’s Very Large Telescope (VLT) and an international astronomy facility called Atacama Large Millimeter/submillimeter Array (ALMA) to detect large dusty clumps located close to a young star. The clumps may collapse and one day create planets. The findings were published July 25 in the The Astrophysical Journal Letters.

[Related: Your guide to the types of stars, from their dusty births to violent deaths.]

“This discovery is truly captivating as it marks the very first detection of clumps around a young star that have the potential to give rise to giant planets,” study co-author and researcher at the Universidad Diego Portales in Chile Alice Zurlo said in a statement

This new analysis is based on a picture obtained with the VLT’s Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument that shows more detail of the material around the star V960 Mon. This is a young star that is located over 5,000 light-years away from Earth in the constellation Monoceros

V960 Mon attracted astronomers’ attention in 2014 when it suddenly increased its brightness by more than 20 times. SPHERE took observations shortly after the onset of this burst of brightness, which revealed that the material orbiting V960 Mon is coming together in a series of spiral arms extending over distances bigger than the entire solar system.

Astronomers were motivated by this finding to go back and look at older observations of the same system that ALMA made. Observations made by the VLT probe the surface of the dusty material around the star, while ALMA can look deeper into deeper into its structure. 

“With ALMA, it became apparent that the spiral arms are undergoing fragmentation, resulting in the formation of clumps with masses akin to those of planets,” said Zurlo.

Giant planets either form when dust grains come together in a core accretion, or when large fragments of material contract and collapse around a star by gravitational instability. Astronomers have found evidence of core accretion, but support for gravitational instability has been more difficult to capture. 

[Related: Wiggly space waves show neutron stars on the edge of becoming black holes.]

“No one had ever seen a real observation of gravitational instability happening at planetary scales—until now,” study co-author and University of Santiago researcher Philipp Weber said in a statement. 

The group on this study has been searching for signs of how planets form for over a decade. Future studies will hopefully unveil more details of V960 Mon and the “captivating planetary system in the making.” According to the team, the future Extremely Large Telescope (ELT) will play a key role. This new telescope is currently under construction in Chile’s Atacama Desert, and will be able to observe the V960 Mon system in even better detail. 

“The ELT will enable the exploration of the chemical complexity surrounding these clumps, helping us find out more about the composition of the material from which potential planets are forming,” said Weber.

The post Dust clumps around a young star could one day form planets appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
5 space robots that could heal human bodies—or even grow new ones https://www.popsci.com/health/3d-printed-robots-space/ Tue, 25 Jul 2023 13:00:00 +0000 https://www.popsci.com/?p=558688
Futuristic doctor performs medical procedure on astronaut in space with robotic arms. Saturn can be seen outside of the spaceship window. Illustrated in blues and pinks.
Astronauts will have many robotic medical assistants on long-distance spaceflights. Zoë van Dijk for Popular Science

What would a space ER look like? Bio-inks, magnetic robots, and fungi-inspired tubes are just some of the futuristic options.

The post 5 space robots that could heal human bodies—or even grow new ones appeared first on Popular Science.

]]>
Futuristic doctor performs medical procedure on astronaut in space with robotic arms. Saturn can be seen outside of the spaceship window. Illustrated in blues and pinks.
Astronauts will have many robotic medical assistants on long-distance spaceflights. Zoë van Dijk for Popular Science

IN ONE OF HUMANITY’S many possible futures, the fearless explorers tasked with climbing cloud-splitting mountains in oxygen-poor atmospheres or charting the low, darkened craters of various alien landscapes would never perish from injuries during perilous scouting expeditions. Nor would they fall ill or sustain genetic damage, thanks to supercharged hypersleep chambers that would heal otherwise fatal wounds. As it is today, astronauts don’t have the luxury of being unprepared—instead they must be equipped to deal with all sorts of medical mishaps, especially as they experiment with long-term spaceflight beyond the far side of the moon. 

Current human-rated spacecraft come stocked with emergency supplies to assist the crew, mostly everyday things like Band-Aids and aspirin, but also more specialized items like hydromorphone injections and those all-too-famous space blankets. While astronauts on the International Space Station (ISS) have relied on these, as well as telemedicine calls, to treat ailments and keep a clean bill of health, the fact is, being on another world could put a serious dent in the capacity of emergency medical care. NASA notes that all crew members are trained to handle the medical devices on board—but if a complex surgery is needed and the patient can’t be quickly flown back to Earth, the trainees would have to forge on with limited tools and experience. Thankfully, the worst they’ve faced so far is blood clots.

To plan for these inevitable crises, space agencies have latched on to the science of 3D bioprinting to help revolutionize regenerative medicine for life in the cosmic abyss and on the ground. Researchers have already made strides in bioprinting—the process of generating living cells and medical products in a manner similar to 3D printing—creating tissues, skin grafts, and eventually, whole organs for future transplants, as well as artificial bones that could become “spare parts” for injured astronauts. 

But as demand for smaller, more compact technologies grows, another class of machines has been rocketing to new heights. Capable of stretching, squeezing, bending, and even twisting to fulfill their tasks, “soft robots” are fabricated with materials inspired by living tissue such as human skin, instead of the rigid structures used in traditional remote-controlled systems. This allows robotic instruments to interact more safely with our bodies and lets surgeons perform complicated procedures with more accuracy and precision, says Sheila Russo, an assistant professor at Boston University who specializes in mechanical engineering design for miniaturized surgical robots.

“I work in a field where we build robots that can help patients survive,” Russo explains. “We as engineers listen to people that have problems, and we want to engineer a robotic solution to it.” She likes to point to Big Hero 6’s Baymax as a fictional example of an autonomous soft robot that successfully heals people, either with the various medical devices it’s equipped with or by offering helpful advice. 

Though the doodads in development won’t be able to simply hug anyone’s aches and pains away (yet), they’re lightweight and relatively cheap to produce, making them easy to transport to remote locations, says Russo. For instance, one lab at King’s College in the UK is trying to address the limitations of ultrasound by creating adaptable soft robots that can withstand high-energy sound waves. 

As these prototypes gain traction within the greater medical field, there’s still a long list of quirks and challenges to tackle. But their endless potential could help humans endure extreme circumstances both on Earth and in the stars.  

Flexible In Situ 3D Bioprinter 

Dream Team: The University of New South Wales

Function: Swiss Army knife 

ETA: 5–7 years

flexible medical tube and 3-d printing head for medical procedures in space. on orange background.
F3DB’s printing head uses hydraulics to flex in three different directions. UNSW Medical Robotics Lab

Acting much like a medical endoscope, this tiny, multifunctional robotic arm (about 0.8 inches in diameter) can be used to fix damaged body parts directly inside a patient’s body. Conventional devices rely on large desktop printers to create artificial tissues, which can then either be kept and grown until mature or implanted directly into the body. But this high-cost method often poses risks, such as structural damage to the faux organ during transport, tissue injuries, and contamination once the part is brought out of a sterile environment. 

The flexible in situ 3D bioprinter (F3DB), on the other hand, works by accessing hard-to-reach areas of the body via small incisions or through natural orifices such as the mouth or anus. “About 90 percent of the human body has a tubular structure,” says Thanh Nho Do, a senior lecturer at UNSW Sydney and one of the team leads for the project. “If you can develop the technology, [robots] can navigate along this way in any desired direction.” 

Once positioned in the target area, F3DB’s multiaxis printing head, which is mounted on a snakelike extendable arm, bends its nozzle to print in three different directions, delivers water to wash away blood and tissue, and acts as an electric scalpel to flag and sever cancerous lesions or tumors. It’s so versatile in its applications that it could potentially be used as an all-in-one surgical tool for medical professionals, says Do. 

Although this tool is still more than half a decade away from human trials, researchers plan to continue using haptic technology—sensor-filled gadgets that can convey tactile information—to manipulate the device, so the system could one day be easily controlled in extreme environments, such as on space stations or in lunar or Martian settlements. 

The 3D BioFabrication Facility 

Dream Team: Redwire Space 

Function: Knee replacement

ETA: 5–10 years

Astronaut using BFF 3D printer on ISS
ISS astronauts have been putting BFF to the test since January 2023. NASA

A recent addition to the ISS, the 3D BioFabrication Facility (BFF) and Advanced Space Experiment Processor are two separate payloads that combine to make a powerful 3D bioprinting laboratory. In collaboration with the ISS National Lab and the Uniformed Services University of the Health Sciences Center for Biotechnology, Redwire’s researchers plan to use it to re-create part of a human knee in space—specifically the meniscus, cartilage that helps absorb shock and stabilizes the joint. If successful, it could be the first step in helping to treat severe knee injuries for US military service members on Earth. 

“A torn meniscus is one of, if not the most common issue that our military have,” says Ken Savin, the aerospace manufacturing company’s chief scientist. “[It’s] a day-to-day issue that a lot of people have and translates to the general population, so it’s a great target to go after.” The printer itself, which is about the size of a dorm fridge, cultures pre-harvested adult stem cells into a solution called bio-ink. 

After being warmed, fed with liquid nutrients, and stimulated to grow, the mixture can be layered into precise, ultrafine structures aboard the ISS and then shipped back to Earth. Strong gravitational forces cause the soft tissues to spread apart like puddles of water, but in space, they can be expected to hold their form due to the microgravity inherent to the ISS, says Savin. 

“When you remove gravity, you open up a whole new field of science,” Savin says. “It allows you to do things and see things that were otherwise hidden.” Once the ISS is decommissioned (which will happen after 2030), Redwire aims to continue advancing its biomanufacturing research aboard Blue Origin’s planned space station, Orbital Reef. 

While the company is now still in the early planning stages of the meniscus project, Savin expects it to be a stepping stone to many other medical breakthroughs, including individualized heart patches that restore cardiac function. Depending on the size of the 3D-printed tissue, production would likely take less than a day. And that’s not the only way BFF would move anatomical technologies along. With future commercialization, the portable lab could help organ-donation hopefuls avoid long wait times and subpar inorganic replacements.

The Soft Growing Robot

Dream Team: University of Minnesota

Function: Infinitely stretching tube 

ETA: 10+ years

In a lab experiment, the plant-inspired robot grows out of a liquid solution to move along a track.
In a lab experiment, the plant-inspired robot grows out of a liquid solution to move along a track. Matthew Hausladen / Ellison Group / University of Minnesota

Inspired by plant roots, pollen tubes, and fungi, engineers at the University of Minnesota recently developed a process that allows soft robots to exhibit a level of movement called tip growth, previously seen only in nature. Organisms use this method to add new cells to the ends of their bodies, enabling them to generate large, specific structures over time, cross harsh terrain with ease, and navigate via external stimuli like light or chemical signals. 

In 2022, researchers were able to mimic this process in their own robotic prototype by using a technique called photopolymerization, which uses light to transform liquid molecules into solid materials. It’s a popular 3D-printing strategy in the medical field, specifically for creating accurate anatomical models of patients’ bodies, but in this novel application, it allows a soft robot to build its own body from a liquid monomer solution as it navigates complex environments. 

Capable of a number of exploratory tasks as it slinks along its path, this inchworm-like device can grow up to speeds of about 5 inches per minute, stretch up to about 5 feet, and avoid and even deflect obstacles to reach the deepest recesses of the human body. The tool could be especially helpful for medical fields like gynecology and urology, according to Timothy Kowalewski, an associate professor of mechanical engineering at the University of Minnesota and a member of the project. He also sees it making a difference in procedures like automated intubation and heart attack treatment, where soft catheters are pushed through blood vessels to stabilize a patient. 

The BioPrint FirstAid Handheld Bioprinter

Dream Team: The German Aerospace Center

Function: Cellular Band-Aid

ETA: 5–10 years

small gunlike tool with red wheels floats in zero gravity
The handheld bioprinter made its debut on the ISS in early 2022. Matthias Maurer / ESA / NASA

Not all soft robots are meant to turn humans into cyborgs with fancy mechanical parts. One bioprinter prototype, developed by the German Aerospace Center, was designed to accelerate an astronaut’s own healing process, says Michael Becker, the project manager for the program. 

Like other innovations in space-centered healthcare, the BioPrint FirstAid Handheld Bioprinter will use cells collected from astronauts before the mission to prepare cartridges of personalized bio-ink for emergency wound treatment, like fixing up superficial lesions and even bone fractures. Likely the first-ever handheld version of a bioprinter in space, the device resembles a compact glue gun—complete with a printing head, guide wheels, and room to hold two bio-ink cartridges for easy access and use. 

While the machine was created to be completely manually operated, the actual printing process takes only a few minutes, Becker explains. “You basically put the printer on your arm or somewhere else and drive over the injured skin.” The nozzle then pushes the solution out to create a plaster-like wound covering. In 2021, ESA astronaut Matthias Maurer demonstrated the technology using simulated cells during a training session on Earth, and he did it again in 2022 during his Cosmic Kiss mission on the ISS.

Having a handheld bioprinter along on a long-duration spaceflight would allow the crew to quickly provide personalized medical care, but the creators need to clear two hurdles first: determining just how many bio-ink cartridges would be needed for a given interplanetary journey and figuring out how to store them in a stable environment. “The challenge right now [is] to create ink where these cells can survive for long-term missions,” says Becker. 

The team hopes the astronaut-friendly tool finds alternative uses, such as in research missions to harsh environments like Antarctica or for bedridden patients. 

The Ferromagnetic Soft Catheter Robot

Dream Team: Huazhong University of Science and Technology

Function: Magnetic bioprinter 

ETA: Decades

Tube-like gray robot draws different shaped with orange bio-ink
The magnetic catheter produces complex designs with bio-ink. Huazhong University of Science and Technology

Another robot designed to print tissues and organs inside the human body in a minimally invasive manner, the ferromagnetic soft catheter robot (FSCR) stands out from its counterparts because it relies on magnets to move about. 

“This work provides two very new ideas,” says Jianfeng Zang, a professor at Huazhong University of Science and Technology whose work revolves around bridging the gap between hard machines and the soft human body. “One, in that we can do minimally invasive bioprinting, and the second one is that we use a magnetic system to do it.” 

Usually, these kinds of medical machines use motors to propel themselves through the patient’s body. But Zang’s group disperses particles of the rare-earth metal neodymium down the center of their catheter-shaped robot, which also doubles as a bioprinter capable of fabricating complex structures. The device can be swiftly steered via an external computer-controlled magnet to transport materials like drugs or injectable bio-inks through narrow, winding environments. It’s also highly durable because neodymium retains its magnetism for hundreds of years.

Researchers are working to miniaturize the device, which is currently a fraction of an inch, even further. It could one day offer physicians finer control over the instrument’s movements and allow them to complete complex procedures without radioactive X-rays. 

“We just want to use magnetic robots to treat some disease or do some precise surgery that existing technology cannot do,” says Zang. “It’s our dream.”

Read more PopSci+ stories.

The post 5 space robots that could heal human bodies—or even grow new ones appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Smashed asteroid surrounded by a ‘cloud’ of boulders https://www.popsci.com/science/dart-asteroid-boulder-cloud/ Fri, 21 Jul 2023 17:00:00 +0000 https://www.popsci.com/?p=558133
This Hubble Space Telescope image of the asteroid Dimorphos was taken on December 19, 2022, about four months after the asteroid was impacted by NASA's DART mission (Double Asteroid Redirection Test). Hubble’s sensitivity reveals a few dozen boulders knocked off the asteroid by the force of the collision. These are among the faintest objects Hubble has ever photographed inside the solar system.
This Hubble Space Telescope image of the asteroid Dimorphos was taken on December 19, 2022, about four months after the asteroid was impacted by NASA's DART mission (Double Asteroid Redirection Test). Hubble’s sensitivity reveals a few dozen boulders knocked off the asteroid by the force of the collision. These are among the faintest objects Hubble has ever photographed inside the solar system. Image- NASA, ESA, David Jewitt (UCLA). Image Processing- Alyssa Pagan (STScI)

Several months after the DART impact, Dimorphos has a posse of 37 space rocks around it.

The post Smashed asteroid surrounded by a ‘cloud’ of boulders appeared first on Popular Science.

]]>
This Hubble Space Telescope image of the asteroid Dimorphos was taken on December 19, 2022, about four months after the asteroid was impacted by NASA's DART mission (Double Asteroid Redirection Test). Hubble’s sensitivity reveals a few dozen boulders knocked off the asteroid by the force of the collision. These are among the faintest objects Hubble has ever photographed inside the solar system.
This Hubble Space Telescope image of the asteroid Dimorphos was taken on December 19, 2022, about four months after the asteroid was impacted by NASA's DART mission (Double Asteroid Redirection Test). Hubble’s sensitivity reveals a few dozen boulders knocked off the asteroid by the force of the collision. These are among the faintest objects Hubble has ever photographed inside the solar system. Image- NASA, ESA, David Jewitt (UCLA). Image Processing- Alyssa Pagan (STScI)

The three-decade old Hubble Space Telescope has spotted a swarm of space boulders around the asteroid Dimorphos. If that name sounds familiar, it is the same asteroid that NASA deliberately slammed the 1,200 pound DART spacecraft into in September 2022.

[Related: NASA’s first attempt to smack an asteroid was picture perfect.]

The mission was the first time humans set out to change the movement of an object in space. The Double Asteroid Redirection Test (DART) spacecraft slammed head-on into Dimorphos at 13,000 miles per hour on September 26, 2022 in an effort to change the asteroid’s velocity. The smashing results demonstrated how this kind of kinetic impact technology could be used to deflect asteroids heading towards the Earth. Dimorphos and the larger asteroid that it orbits, named Didymos, do not pose a known threat to Earth. 

The 37 free-flung boulders that Hubble has detected range in size from three 22 feet across. They are slowly drifting away from Dimorphos at slightly over half-mile per hour. The total mass in these detected boulders is about 0.1 percent the mass of Dimorphos.

“This is a spectacular observation–much better than I expected. We see a cloud of boulders carrying mass and energy away from the impact target. The numbers, sizes, and shapes of the boulders are consistent with them having been knocked off the surface of Dimorphos by the impact,” said University of California at Los Angeles planetary scientist David Jewitt said in a statement. “This tells us for the first time what happens when you hit an asteroid and see material coming out up to the largest sizes. The boulders are some of the faintest things ever imaged inside our solar system.”

According to Jewitt, this finding opens up a new dimension for studying the aftermath of the DART experiment when the European Space Agency’s Hera spacecraft arrives at the binary asteroid in late 2026. Hera is scheduled to perform a detailed post-impact survey. 

Image of the asteroid Dimorphos, with compass arrows, scale bar, and color key for reference. The north and east compass arrows show the orientation of the image on the sky. Note that the relationship between north and east on the sky (as seen from below) is flipped relative to direction arrows on a map of the ground (as seen from above). The bright white object at lower left is Dimorphos. It has a bluish dust tail extending diagonally to the upper right. A cluster of blue dots (marked by white circles) surrounds the asteroid. Hubble photographed the slow-moving boulders using the Wide Field Camera 3  in December 2022. The color results from assigning a blue hue to the monochromatic (grayscale) image.
Image of the asteroid Dimorphos, with compass arrows, scale bar, and color key for reference. The north and east compass arrows show the orientation of the image on the sky. Note that the relationship between north and east on the sky (as seen from below) is flipped relative to direction arrows on a map of the ground (as seen from above). The bright white object at lower left is Dimorphos. It has a bluish dust tail extending diagonally to the upper right. A cluster of blue dots (marked by white circles) surrounds the asteroid. Hubble photographed the slow-moving boulders using the Wide Field Camera 3  in December 2022. The color results from assigning a blue hue to the monochromatic (grayscale) image. CREDIT: Image- NASA, ESA, David Jewitt (UCLA). Image Processing- Alyssa Pagan (STScI).

The boulder cloud is also expanding and dispersing, and is expected to spread along Dimorphos and Didymos’ surface. NASA believes that the boulders are likely not shattered pieces of the asteroid caused by the impact. These pieces were already scattered across Dimorphos’ surface, based on the final close-up image that DART spacecraft took only two seconds before the collision. 

Jewitt estimates that the impact from DART shook off two percent of the boulders on the Dimorphos’ surface, and that the boulder observations made by Hubble also give an estimate for the size of the DART impact crater.

 “The boulders could have been excavated from a circle of about 160 feet across (the width of a football field) on the surface of Dimorphos,” he said. When Hera arrives in three years and five months, it will determine the actual crater size

[Related: Why scientists are studying the clouds of debris left in DART’s wake.]

It’s not fully clear how the boulders were lifted off Dimorphos’ surface, but they could have been part of an ejecta plume that Hubble and other observatories have photographed. It’s also possible that a seismic wave from the impact with DART may have rattled through the asteroid and shook it loose. 

“If we follow the boulders in future Hubble observations, then we may have enough data to pin down the boulders’ precise trajectories. And then we’ll see in which directions they were launched from the surface,” said Jewitt.

Asteroids present a real collision hazard to Earth, such as the one that caused the mass extinction event 65 million years ago that wiped out the dinosaurs. Protecting the Earth from asteroids is also front of mind to respondents of a poll on Americans views on space exploration from Pew Research released on July 20. Sixty percent of respondents said that monitoring asteroids should be NASA’s top priority going forward, compared with only 12 percent who said that going to the moon again should be front and center. 

The post Smashed asteroid surrounded by a ‘cloud’ of boulders appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
New image reveals a Jupiter-like world that may share its orbit with a ‘twin’ https://www.popsci.com/science/exoplanet-twin-exotrojan-orbit/ Wed, 19 Jul 2023 16:00:00 +0000 https://www.popsci.com/?p=557713
This image taken with the Atacama Large Millimeter/submillimeter Array (ALMA) shows the young planetary system PDS 70, located nearly 400 light-years away from Earth. The system features a star at its center, around which the planet PDS 70 b is orbiting. On the same orbit as PDS 70b, astronomers have detected a cloud of debris that could be the building blocks of a new planet or the remnants of one already formed. The ring-like structure that dominates the image is a circumstellar disc of material, out of which planets are forming. There is in fact another planet in this system: PDS 70c, seen to the right of the inner rim of the disc.
This image taken with the Atacama Large Millimeter/submillimeter Array (ALMA) shows the young planetary system PDS 70, located nearly 400 light-years away from Earth. The system features a star at its center, around which the planet PDS 70 b is orbiting. On the same orbit as PDS 70b, astronomers have detected a cloud of debris that could be the building blocks of a new planet or the remnants of one already formed. ALMA (ESO/NAOJ/NRAO) /Balsalobre-Ruza et al.

Exoplanet system PDS 70 could be home to the first-found 'exotrojan.'

The post New image reveals a Jupiter-like world that may share its orbit with a ‘twin’ appeared first on Popular Science.

]]>
This image taken with the Atacama Large Millimeter/submillimeter Array (ALMA) shows the young planetary system PDS 70, located nearly 400 light-years away from Earth. The system features a star at its center, around which the planet PDS 70 b is orbiting. On the same orbit as PDS 70b, astronomers have detected a cloud of debris that could be the building blocks of a new planet or the remnants of one already formed. The ring-like structure that dominates the image is a circumstellar disc of material, out of which planets are forming. There is in fact another planet in this system: PDS 70c, seen to the right of the inner rim of the disc.
This image taken with the Atacama Large Millimeter/submillimeter Array (ALMA) shows the young planetary system PDS 70, located nearly 400 light-years away from Earth. The system features a star at its center, around which the planet PDS 70 b is orbiting. On the same orbit as PDS 70b, astronomers have detected a cloud of debris that could be the building blocks of a new planet or the remnants of one already formed. ALMA (ESO/NAOJ/NRAO) /Balsalobre-Ruza et al.

Researchers using Chile’s Atacama Large Millimeter/submillimeter Array of telescopes (ALMA) may have found a rare “sibling” sharing the same orbit of a Jupiter-like planet about 370 light-years away from Earth in the Centaurus constellation. The newly discovered twin shares the same orbit as PDS 70b around a young star in the  PDS 70 system

[Related: How engineers saved NASA’s new asteroid probe when it malfunctioned in space.]

While two Jupiter-like planets, PDS 70b and PDS 70c, are already known to orbit this star, the team detected a cloud of debris within PDS 70b’s orbital path following this planet’s orbit. The debris could be the beginnings of a new planet, or even the remnants of one that is already formed. The findings were published on July 19 in the journal Astronomy and Astrophysics. If confirmed, this discovery would present the strongest known evidence that two exoplanets can share one orbit. 

“Two decades ago it was predicted in theory that pairs of planets of similar mass may share the same orbit around their star, the so-called Trojan or co-orbital planets. For the first time, we have found evidence in favor of that idea,” Olga Balsalobre-Ruza study co-author and a student at Centre for Astrobiology in Madrid, Spain said in a statement.

Rocky bodies that are in the same orbit as a planet called Trojans are common throughout our solar system. Jupiter’s more than 12,000 known Trojan asteroids that are in the same orbit as our sun are the most common example. The asteroids in Jupiter’s orbit were named after heroes of the Trojan War when they were first discovered, which is why the catch-all name Trojans is used to describe these celestial objects. 

Astronomers have speculated that systems like this could exist around a star other than our sun—appropriately called exotrojans.

“Exotrojans have so far been like unicorns: they are allowed to exist by theory but no one has ever detected them,” study co-author and researcher at the Centre for Astrobiology Jorge Lillo-Box said in a statement.

In this new study, an international team of scientists analyzed archival ALMA observations of the PDS 70 system system, and spotted the cloud of debris at the location in PDS 70b’s orbit where Trojans are expected to exist. Trojans typically occupy two extended regions in a planet’s orbit where the combined gravitational pull of the star and the planet can trap material called Lagrangian zones/points. By studying these two regions of PDS 70b’s orbit, the team noticed a faint signal coming from one of them, indicating that a cloud of debris that has a mass roughly two times that of our moon might be present. 

[Related: The James Webb Space Telescope just identified its first exoplanet.]

This cloud of debris could point to an existing Trojan world in this system, or a planet in the process of forming, according to the team.

 “Who could imagine two worlds that share the duration of the year and the habitability conditions? Our work is the first evidence that this kind of world could exist,” said  Balsalobre-Ruza. “We can imagine that a planet can share its orbit with thousands of asteroids as in the case of Jupiter, but it is mind blowing to me that planets could share the same orbit.”

Patience will be key to fully confirm this detection. The team will have to wait until after 2026, when they plan to use ALMA to see if both PDS 70b and its sibling debris cloud move significantly along their orbit together around the star. 

“The future of this topic is very exciting and we look forward to the extended ALMA capabilities, planned for 2030, which will dramatically improve the array’s ability to characterize Trojans in many other stars,” study co-author and European Southern Observatory Head of the Office for Science Itziar De Gregorio-Monsalvo concluded in a statement.

The post New image reveals a Jupiter-like world that may share its orbit with a ‘twin’ appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Astronomers spy cosmic dust, with a twist, from the very early universe https://www.popsci.com/science/jwst-carbon-dust-early-universe/ Wed, 19 Jul 2023 15:30:00 +0000 https://www.popsci.com/?p=557714
Orange, fire-like clouds extend from a central star.
NASA's Hubble Space Telescope captured the luminous shroud around hot star Wolf-Rayet 124. ESA/Hubble and NASA

This baby powder from outer space is unexpectedly rich in carbon.

The post Astronomers spy cosmic dust, with a twist, from the very early universe appeared first on Popular Science.

]]>
Orange, fire-like clouds extend from a central star.
NASA's Hubble Space Telescope captured the luminous shroud around hot star Wolf-Rayet 124. ESA/Hubble and NASA

The universe is a dusty place. Cosmic particles can range from the size of a single large molecule up to a bit larger than a grain of terrestrial sand, and these can accumulate in billowing clouds light-years wide. The general scientific understanding was that dust piles up gradually, produced by stars and supernovae over hundreds of millions of years. Dust is usually a fixture of mature galaxies, or so astronomers thought. 

But in a new paper published Wednesday in the journal Nature, astronomers found a specific type of cosmic dust, high in carbon, in young distant galaxies just 800 million years after the Big Bang. That accumulation happened far earlier than current theories of dust formation suggest is possible. It’s a finding that could change how astronomers understand the creation of stars and evolution of galaxies in the early universe, and ultimately, how that young universe grew into the cosmos we know today. 

For a long time, astronomers treated the cosmic stuff the way we might view a dust bunny under a sofa: as a nuisance. Scientists tried to look beyond large clouds of cosmic dust, treated more like obstacles than subjects of study in their own right. “The way most astronomers interact with it is that [dust] actually absorbs a lot of the light that we’re trying to observe,” says lead study author Joris Witstok, a post-doctoral researcher with the Kavli Institute for Cosmology at Cambridge, in the UK. 

But that’s changed in recent years, thanks to observatories such as NASA’s James Webb Space Telescope, which uses infrared light to see through the clouds. Scientists have also come to appreciate the dust itself, realizing these tiny flecks of carbon, silicon, and other matter are responsible for large-scale processes in the universe, such as new star formation. 

”For example, in the Milky Way, we have these sites where new stars are forming, and they’re very dusty,” Witstok says. “There’s big clouds of gas and dust and the dust really helps to allow the gas to cool and contract and therefore form new stars.”

[Related: 5,000 tons of ancient ‘extraterrestrial dust’ fall on Earth each year]

It’s not that the early universe was dustless. Previous studies had found large quantities of dust in galaxies in the very early universe, according to Witstok. Astronomers are interested in this early dust because it represents when stars began to produce some of the first elements heavier than hydrogen.

“The first stars that started to convert hydrogen into helium, which was the only thing that was around all the way at the beginning, into the heavier elements like carbon, oxygen,” Witstok says. 

Large primordial stars may have expelled vast quantities of dust, made of these heavier elements, toward the end of their life cycles, or during supernovae explosions as they died. 

But previous studies hadn’t been able to detect carbonaceous dust—meaning it’s rich in carbon—at such early times. 

“The thing that is really a new discovery here is that we’re able to pinpoint the type of dust grains that we’re seeing,” Witstok says. ”What we’re actually able to tell is that there’s something producing, specifically, these carbon dust grains on a very short timescale. And that’s where the surprise lies.”

Spectrographic observations of dust nearer to Earth, within the Milky Way galaxy, made this discovery possible. Spectroscopy breaks light into a spectrum and looks for telltale signs of absorbed light at certain wavelengths associated with different elements and compounds—sort of like reading a unique rainbow. 

Carbonaceous dust produces a spectroscopic “bump” at a wavelength of 217.5 nanometers, a wavelength that places it in the ultraviolet portion of the spectrum. At least, that’s the wavelength of the light as it left its home galaxy billions of years ago. 

“Since it’s been traveling over roughly 13 billion years, while the universe is expanding, the light really gets stretched with that expansion,” Witstok says, a phenomenon known as redshift. Light that was ultraviolet gets stretched longer, so that the wavelength—about 1.5 to 2 micrometers—is now in the infrared, the part of the spectrum JWST is fine-tuned to measure. 

“That’s exactly why we couldn’t do this before,” Witstok says. “Because with JWST, we’re now for the first time able to look and make these very precise measurements in the infrared.”

[Related: Physicists figured out a recipe to make titanium stardust on Earth

Now that researchers have measured this carbonaceous dust at an earlier time in the universe than expected, they’re left trying to figure out what process could be producing it. There are two theories, Witstok says, though neither are perfect. 

The first is that supernovae in early galaxies make the dust, with dying stars expelling the material before their final fiery death throes. But the problem there, he says, is that violent forces unleashed by the supernovae might also destroy much of that dust.

Another source of the dust could be Wolf-Rayet stars, massive, hot, and fast-burning stars that can expel a large portion of their mass into space in less than a million years’ time. “But again, it’s the question of how much can they actually produce?” Witstok says. “Is it enough to explain what we’re seeing in the early universe?”

Witstok and his colleagues hope to answer those questions with computer simulations. Theorists can try to tweak models of supernovae and Wolf-Rayet stars to try to find the conditions that produce the carbonaceous dust seen in the JWST observations. 

And further observations of early galaxies may net answers as well, he says. “We could start to look at what might be hints of an unusual number of Wolf-Rayet stars within those galaxies, for example.”

Whatever is driving carbonaceous dust creation in the early universe may hold clues for understanding how galaxies in the more recent universe evolved, and how stars and planets form, too. ”Dust is this really key component of how galaxies evolve,” Witstok says. ”That we’re now starting to see more and more evidence of it forming very early on is telling us that perhaps this evolution is taking place more quickly than we previously thought. That then has a knock-on effect, down the line, as to how we get to the present.”

The post Astronomers spy cosmic dust, with a twist, from the very early universe appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How astronomers traced a puzzling signal to a lunchtime mistake https://www.popsci.com/science/peryton-astronomy-fast-radio-burst/ Tue, 18 Jul 2023 21:00:00 +0000 https://www.popsci.com/?p=557466
A glowing bluish star remnant bursts with X-ray beams in an artist's illustration.
A powerful X-ray burst erupts from a magnetar–a supermagnetized version of a stellar remnant known as a neutron star–in this illustration of an event that implicates these husks as a likely source of mysterious fast radio bursts. NASA’s Goddard Space Flight Center/Chris Smith (USRA)

Australian scientists solved the mystery of the peryton, a perplexing radio wave with an Earthly origin.

The post How astronomers traced a puzzling signal to a lunchtime mistake appeared first on Popular Science.

]]>
A glowing bluish star remnant bursts with X-ray beams in an artist's illustration.
A powerful X-ray burst erupts from a magnetar–a supermagnetized version of a stellar remnant known as a neutron star–in this illustration of an event that implicates these husks as a likely source of mysterious fast radio bursts. NASA’s Goddard Space Flight Center/Chris Smith (USRA)

In the series I Made a Big MistakePopSci explores mishaps and misunderstandings, in all their shame and glory.

Astronomers can’t help but be enchanted with fast radio bursts, or FRBs, thanks to their mysterious nature. These humongous pulses of radio waves blast toward Earth from outer space, often from beyond the Milky Way. But these bursts were almost thrown aside as noise almost 10 years ago, all because of a lunchtime blunder. FRBs are real signals from space, but a very similar radio wave, known as a peryton, originates from an Earthly mistake. 

When the first FRB was discovered in 2006, researchers knew they’d found something unexpected—but they didn’t know what it was. West Virginia University astronomers Duncan Lorimer and Maura MacLaughlin were trawling through old troves of radio telescope observations, hunting for signals from pulsars, the rapidly spinning husks of dead stars. Pulsars pulse because they have bright jets that sweep across Earth, like an interstellar lighthouse. One day, a student working on this project came in with a bizarre finding: a pulse more than a hundred times brighter than expected. 

The team’s first thought was that it could be interference from Earth-based radio transmissions, but this burst had all the usual fingerprints of something coming from space—it was definitely something new and strange the universe had produced. They published this detection in the prestigious journal Science in 2007, and this first FRB discovery became known as the “Lorimer burst.”

The Lorimer burst spurred more searches, with teams of astronomers scouring radio data to see whether they missed any FRBs in past observations. FRBs were elusive. Years went by without discovering new ones. 

Astronomers did, however, find another type of signal in 2007: the peryton. No one knew exactly what it was, but it showed up in radio telescope data for decades, looked kind of like an FRB, and was clearly coming from Earth—not space, like the Lorimer burst had claimed to be.

These perytons “basically cast doubt on the original event,” says Lorimer. Even its name evokes this doubt—the mythological peryton, created by Argentine writer Jorge Luis Borges, is an elk-bird creature that casts a misleading human shadow. “Many people just moved on.”

But not everyone. At the time, a graduate student in Australia named Emily Petroff was writing her PhD thesis on FRBs. Her advisor, though, was so concerned about perytons that he asked her to get to the bottom of the mystery. “The line between the two [perytons and FRBs] was blurry enough to be concerning,” she says. During her PhD work, she’d present new results to her research group, only to be met with the same question, she recalls: “That’s great, but have we figured out the perytons yet?”

[Related: Astronomers spot repeating radio burst patterns from deep space]

Petroff and her collaborators collected all the hints about perytons observed at their local facility, Parkes Observatory. Perytons only showed up when the telescope was pointed in particular directions, so the scientists deduced it had to be something at the observatory. Their monitoring systems showed a spike in energy at the same time a peryton was observed around 2.5 gigahertz, a common frequency that WiFi, Bluetooth, kitchen appliances, and other electronics employ. Looking through old data revealed these spikes had happened since 1998, so the cause had to be decades-old technology. And most damning—they happened much more often around lunchtime. 

All signs pointed to microwaves, which were in the two buildings where perytons appeared to come from. But what exactly about the microwaves made this signal? The observatory staff tried everything: microwaving water, microwaving different foods, using different settings, and more. As they experimented, one engineer would stand by the microwave, communicating on a walkie-talkie to another engineer at the telescope. Eventually, they tried breaking the major rule of microwaves—opening the door while it’s still running. 

And voila, the peryton appeared. 

[Related: Two bizarre stars might have beamed a unique radio signal to Earth]

The mystery was solved with a clear-cut, satisfying answer. Response to the result, published in the journal Monthly Notices of the Royal Astronomical Society in 2015, was electric. “I’ve heard from university teachers, high school teachers, that they teach this paper as how science works,” adds Petroff, who now works as support staff at the Perimeter Institute in Canada. “I don’t think I’ve ever had as satisfying of a moment in my research.”

With the peryton mystery solved, astronomers could devote more time to the puzzle of FRBs. They finally detected a second batch of FRBs in 2013, six years after the initial Lorimer burst, and their count reached almost a dozen by 2015. The momentum shows no signs of stopping, either, as the Canadian CHIME instrument discovers multiple FRBs daily. Radio astronomers have a plethora of other telescopes on the case, too: the Green Bank Telescope in West Virginia, precursors to the Square Kilometer Array in South Africa, the Deep Synoptic Array in California, and ASKAP in Australia. “Ten years from now, we’ll have probably well over 50,000 FRBs,” Lorimer says.

Astronomers also finally have a clue to what these things actually are. The leading theory traces FRBs to magnetars, spinning dead stars (similar to pulsars) with extremely strong magnetic fields. “When you’re spinning around on a carousel, you have some rotational energy due to the fact that you’re spinning,” explains Alice Curtin, astronomy graduate student at McGill University. But magnetars also store energy in their magnetic fields. “We think that it’s something having to do with the possible release of energy from their magnetic fields that could be powering FRBs.”

FRBs have also proven to be an extraordinary resource for exploring the universe. “FRBs are encoded with information about all the stuff between us and them,” adds Curtin. Armed with their newly-expanded catalog of FRBs, astronomers can track hard-to-see dust and gas filling the spaces between the stars. When the FRB travels through matter in space, parts of it are slowed down, smearing out the FRB across frequencies. By looking at the amount of smear, scientists can approximate the amount of stuff. Just earlier this year, a team used FRBs to explore the Milky Way, finding our galaxy actually has less matter than expected.

Perytons are a thing of the past: Radio observatories now have stricter rules for using microwaves. But other sources of radio interference are ramping up, threatening astronomers’ ability to observe the night sky. SpaceX’s infamous Starlink satellites, for example, are ruining so-called radio-quiet zones around major telescopes. The future looks shaky for some ground-based astronomy, and it won’t be as easy to solve as turning off a microwave.

But, for now, the tale of the peryton-producing microwave is a great example of a mistake with a satisfying scientific conclusion—and a fun story. “When I talk to people about FRBs, or even just radio astronomy,” Petroff says, “someone will almost always mention microwave ovens.” 

The post How astronomers traced a puzzling signal to a lunchtime mistake appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How old is the universe? Our answer keeps getting more precise. https://www.popsci.com/story/science/how-old-is-the-universe/ Mon, 02 Aug 2021 17:01:27 +0000 https://stg.popsci.com/uncategorized/how-old-is-the-universe/
Hubble space telescope deep field view of ancient galaxies that helps answer the question: How old is the universe?
Measuring the distance to various galaxies and the speed at which they are moving away from each other as the universe expands is one way to tell how old the universe is. NASA, ESA, F. Summers, Z. Levay, L. Frattare, B. Mobasher, A. Koekemoer and the HUDF Team (STScI)

Cosmologists are getting closer to the truth.

The post How old is the universe? Our answer keeps getting more precise. appeared first on Popular Science.

]]>
Hubble space telescope deep field view of ancient galaxies that helps answer the question: How old is the universe?
Measuring the distance to various galaxies and the speed at which they are moving away from each other as the universe expands is one way to tell how old the universe is. NASA, ESA, F. Summers, Z. Levay, L. Frattare, B. Mobasher, A. Koekemoer and the HUDF Team (STScI)

In milliseconds, Google can serve up a fact that long eluded many of humanity’s deepest thinkers: The universe is nearly 14 billion years old. And many cosmologists continue to grow more confident in that number. In December of 2020, a collaboration of researchers working on the Atacama Cosmology Telescope (ACT) in Chile published their latest estimate: 13.77 billion years, plus or minus a few tens of millions of years. Their answer matches that of the Planck mission, a European satellite that made similar observations between 2009 and 2013.

The precise observations of ACT and Planck come after more than a millennium of humans watching the sky and pondering where it all could have come from. Somehow, primates with lifespans of less than a century got a handle on events that took place eons before their planet—and even the ancient stars and atoms that would form their planet—existed. Here’s a brief account of how humanity came around to figure out how old the universe is.

Antiquity: The beginning of creation

Every culture has a creation myth. The Babylonians, for instance, believed the heavens and the Earth to be hewn from the carcass of a slain god. But few belief systems specified when existence started existing (one exception is Hinduism, which teaches that the universe reforms every 4.3 billion years, not so far off from the actual age of the Earth).

The idea that stuck, at least in the West, came from the Greek philosophers, and it was actually something of a scientific step back. In the fourth and third centuries BCE, Plato, Aristotle, and other philosophers went all in on the notion that the planets and stars were embedded in eternally rotating celestial spheres. For the next millennium or so, few expected the entire universe to have an age at all.

1600 to 1900: The end of infinity

Astronomer Johannes Kepler realized in 1610 that one major crack in the popular Greek-inspired cosmology had been staring stargazers in the face all along. If an eternal universe hosted an infinite number of stars, as many had come to believe, why didn’t all those stars fill the universe with a blinding light? A dark night sky, he reasoned, suggested a finite cosmos where the stars eventually peter out.

The clash between the night sky and the infinite universe became known as Olber’s paradox, named after Heinrich Olber, an astronomer who popularized it in 1826. An early version of the modern solution came, of all people, from the poet Edgar Allan Poe. We experience night, he speculated in his prose poem “Eureka” in 1848, because the universe is not eternal. There was a beginning, and not enough time has elapsed since then for the stars to fully light up the sky.

1900s: The early and modern universes come into view

But the resolution to Olber’s paradox took time to sink in. In 1917, when Einstein’s own theory of gravity told him that the universe likely grew or shrank over time, he added a fudge factor into his equations—the cosmological constant—to get the universe to hold still (allowing it to endure forever).

[Related: From the archives: The Theory of Relativity gains speed]

Meanwhile, larger telescopes had brought clearer views of other galaxies to astronomers’ eyepieces, prompting a fierce debate over whether they were looking at far-off “island universes,” or nearby star clusters inside the Milky Way. Edwin Hubble’s keen eyes settled the argument in the late 1920s, measuring intergalactic distances for the first time. He found that not only were galaxies immense and distant objects, they were also flying away from each other.

The universe was expanding, and Hubble clocked its expansion rate at 500 kilometers per second per megaparsec, a constant that now bears his name. With the expansion of the universe in hand, astronomers had a powerful new tool to look back in time and gauge when the cosmos started to grow. Hubble’s work in 1929 pegged cosmic expansion in such a way that the universe should be roughly 2 billion years old.

“The expansion rate is telling you how fast you can rewind the history of the Universe, like an old VHS tape,” says Daniel Scolnic, a cosmologist at Duke University. “If the rewind pace is faster, then that means the movie is shorter.”

But measuring the distances to far-flung galaxies is messy business. A cleaner method arrived in 1965, when researchers detected a faint crackling of microwaves coming from every direction in space. Cosmologists had already predicted that such a signal should exist, since light emitted just hundreds of thousands of years after the universe’s birth would have been stretched by the expansion of space into lengthier microwaves. By measuring the characteristics of this Cosmic Microwave Background (CMB), astronomers could take a sort of snapshot of the young universe, deducing its early size and contents. The CMB served as unassailable evidence that the cosmos had a beginning.

“The most important thing accomplished by the ultimate discovery of the [CMB] in 1965 was to force us all to take seriously the idea that there was an early universe,” wrote Nobel prize laureate Steven Weinberg in his 1977 book, The First Three Minutes.

Ancient galaxy panorama from James Webb Space Telescope CEERS Survey
The James Webb Space Telescope has been surveying billions-year-old galaxies to further confirm the age of the universe. NASA, ESA, CSA, Steve Finkelstein (UT Austin), Micaela Bagley (UT Austin), Rebecca Larson (UT Austin)

1990 to present: Refining the calculation

The CMB let cosmologists get a sense of how big the universe was at an early point in time, which helped them calculate its size and expansion today. Scolnic likens the process to noting that a child’s arm appears one foot long in a baby picture, and then estimating the height and growth speed of the corresponding adolescent. This method gave researchers a new way to measure the universe’s current expansion rate. It turned out to be nearly 10 times slower than Hubble’s 500 kilometers per second per megaparsec, pushing the moment of cosmic genesis further back in time. In the 1990s, age estimates ranged from 7 to 20 billion years old.

Painstaking efforts from multiple teams strove to refine cosmology’s best estimate of the universe’s expansion rate. Observations of galaxies from the Hubble Space Telescope in 1993 pegged the current Hubble constant at 71 kilometers per second per megaparsec, narrowing the universe’s age to 9 to 14 billion years.

[Related: Stellar telescopes for your space-loving kids]

Then in 2003, the WMAP spacecraft recorded a map of the CMB with fine features. With this data, cosmologists calculated the universe’s age to be 13.5 to 13.9 billion years old. About a decade later, the Planck satellite measured the CMB in even more detail, getting a Hubble constant of 67.66 and an age of 13.8 billion years. The new independent CMB measurement from ACT got basically the same numbers, further bolstering cosmologists’ confidence that they know what they’re doing.

“Now we’ve come up with an answer where Planck and ACT agree,” said Simone Aiola, a cosmologist at the Flatiron Institute and member of the ACT collaboration, in a press release at the time. “It speaks to the fact that these difficult measurements are reliable.”

Up next: A cosmological conflict

But as measurements of the early and modern universes have gotten more precise, they’ve started to clash. While studies based on the CMB baby picture suggest a Hubble constant in the high 60s of kilometers per second per megaparsec, distance measurements of today’s galaxies (which Scolnic compares to a cosmic “selfie”) give brisker expansion rates in the low to mid 70s. Scolnic participated in one such survey in 2019, and another measurement based on the brightness of various galaxies came to a similar conclusion (that the modern universe is speedily expanding) in January 2021.

Taken at face value, the faster rates these teams are getting could mean that the universe is actually around a billion years younger than the canonical 13.8 billion years from Planck and ACT. Or, the mismatch may hint that something deeper is missing from modern astronomy’s picture of reality. Connecting the CMB to the present day involves assumptions about the poorly understood dark matter and dark energy that appear to dominate our universe, for instance, and the fact that the Hubble constant measurements aren’t lining up could indicate that calculating the true age of the universe will involve more than just rewinding the tape.

[Related: How to weigh the universe, according to astronomers]

Another controversial estimate claims the universe could be 26.7 billion years old, so twice as ancient as currently thought. This is based on the unconfirmed notion that redshift light from distant galaxies can be altered by physical constants other than the expansion of space. One way to test this is through finite measurements from the James Webb Space Telescope.

“I am not certain about how we are deriving the age of the universe,” Scolnic says. “I’m not saying that it’s wrong, but I can’t say it’s right.”

This story has been updated. It was originally published on January 13, 2021.

The post How old is the universe? Our answer keeps getting more precise. appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
An enormous radio telescope may soon be a powerful tool for planetary defense https://www.popsci.com/technology/green-bank-observatory-radar/ Thu, 13 Jul 2023 13:00:00 +0000 https://www.popsci.com/?p=556368
large dish on earth sends waves out to the moon in illustration
Ard Su for Popular Science

A collaboration between the Green Bank Telescope and Raytheon resulted in a detailed way to see the moon, asteroids, and other hazards near Earth.

The post An enormous radio telescope may soon be a powerful tool for planetary defense appeared first on Popular Science.

]]>
large dish on earth sends waves out to the moon in illustration
Ard Su for Popular Science

In Overmatched, we take a close look at the science and technology at the heart of the defense industry—the world of soldiers and spies.

A HIGH VALLEY in the mountains of West Virginia is home to one of the world’s largest radio telescopes: a white-paneled behemoth called the Green Bank Telescope whose dish is bigger than a football field and whose topmost point is almost as high as the Washington Monument’s. That telescope typically collects radio-wave emissions from cosmic phenomena such as black holes, pulsars, supernova remnants, and cosmic gases. When doing that work, it receives those emissions passively. But now it has had experience with a new, more active tool: a radar transmitter. 

Thanks to defense contractor Raytheon, the telescope has gotten practice emitting its own radio waves, using the big dish to direct them, and bouncing them off objects in space. The reflected signals were then collected by more radio telescopes—antennas spread across the planet that are part of a collection of instruments called the Very Long Baseline Array. Data from those radar signals can be used to produce detailed pictures of, and to learn more details about, the moon, the planets, asteroids, and space debris—a set of targets of interest to both science and the defense community.

Radar genesis

The collaboration is Steven Wilkinson’s fault. “I’m the instigator,” Wilkinson, principal technical fellow at Raytheon, confesses jokingly. Back in 2019, Wilkinson was working on ultraprecise clocks but needed to find a new funding stream. So he went to the American Astronomical Society meeting, hoping to talk to someone from the National Radio Astronomy Observatory (NRAO) about those clocks—a technology integral to the instrumentation of radio telescopes. The NRAO is a set of federally funded telescopes that astronomers from all over the world can use. 

At the meeting, Wilkinson met the director of NRAO, Tony Beasley, and Beasley did indeed want a partner—but not in timekeeping. He wanted a radar collaborator. “That is our core competency as a company,” says Wilkinson. “I just could not believe my ears.”

Always game for a new experiment, Wilkinson went back to Raytheon and attempted to convince the bosses to put a radar transmitter on the giant Green Bank Telescope—formerly part of the NRAO, now its own separate facility but often a partner in NRAO projects. (Disclosure: I worked at the Green Bank Observatory, which is where the Green Bank Telescope is located, as an educator from 2010 to 2012.) 

“For radar, you’re worried about sending a signal and then receiving it,” says Patrick Taylor, head of NRAO’s and Green Bank Observatory’s joint radar division. “So you lose a lot of your power going out and then coming back again. … In that sense, you need really large telescopes. And the largest telescopes in the world are radio telescopes.” The array of telescopes that would catch the returning signal, conveniently, belongs to NRAO.

By October of 2020, the joint Raytheon radio observatory team had built a 700-watt prototype transmitter—about as powerful as a household microwave oven—and placed it at the prime focus of the telescope.

With the system in place, the joint team has since performed three kinds of tests: experiments involving the moon, an asteroid, and space debris. “Those are the three main fields that we want to look at,” says Taylor. “Planetary-scale bodies, like the moon; small bodies, like asteroids and comets, for planetary science and planetary defense; and space debris, for, essentially, safety, security, and awareness of what’s out there around the Earth.” 

The system that illuminates all of these objects—natural and synthetic—is the same: Radar signals leave the telescope, bounce off the objects, and return to be collected by other telescopes.

Over the moon

The moon tests returned perhaps the most striking results, showing portraits of the Apollo 15 landing site and Tycho Crater in detail such as you might find on a United States Geological Survey quadrant map of Earth. The pictures, taken from hundreds of thousands of miles away, boast a similar level of detail to those shot with the high-tech camera aboard the Lunar Reconnaissance Orbiter, which, as its name suggests, is in orbit around the moon. 

Later, the team shot radio waves at an asteroid 1.3 million miles from Earth. The rocky body was just about 0.6 miles wide—small enough to make for impressive pictures from afar, but too big for comfort if it were on a collision course with Earth. Finding such asteroids, keeping track of their orbits, and understanding their characteristics could help scientists both know if a global catastrophe is careening toward the planet and develop mitigation strategies if one is—a capability the Double Asteroid Redirection Test recently demonstrated. (That mission involved slamming a spacecraft into an asteroid in orbit with another asteroid, to see if the bump could change its trajectory. It was successful.) 

“Radar is not great for finding asteroids in the sense of discovering them,” says Taylor, “but radar is great for tracking, monitoring, and characterizing them after they are discovered by optical or infrared observatories.”

Importantly, though, both sides of the team—those from Raytheon and those from Green Bank Observatory and the NRAO—are also interested in using the radar system to check out space debris. Those objects would be ones that are far out, between geostationary orbit (around 22,000 miles from Earth) and lunar orbit. “With so many more payloads going to the moon, there’s going to be more and more junk out there,” says Taylor. “Especially if we start sending human payloads, which we’re obviously planning to do, you’re gonna want to be able to track that debris.”

Wilkinson cites as an example the recent rocket booster from the Artemis I mission, a precursor to sending humans back to the moon. “That would be something that we would try to go and find and image and do some cool stuff,” he says. 

Knowing the nature of debris is of interest to scientists and to civil projects that may venture far out, but it’s also relevant to defense: The Space Force, for instance, is keeping an eye on the problem, and the Air Force Research Lab (AFRL) is even working on a program called the Cislunar Highway Patrol System (CHPS), which according to an AFRL statement will “search for unknown objects like mission related debris, rocket bodies, and other previously untracked cislunar objects, as well as provide position updates on spacecraft currently operating near the moon or other cislunar regions that are challenging to observe from Earth.”

Sure, you don’t want pieces of space trash to hurt astronauts or damage or destroy spacecraft. But military and intelligence officials are also, in general and specifically through programs like CHPS, trying to find out more about everyone’s spacecraft out there and what they’re up to. Powerful Earth-based radar, if it’s capable of surveilling debris, would be technologically capable of doing the same to active satellites too. 

Let’s dish

The team’s hope is that a higher-powered radar system would be a permanent fixture on the telescope now that the low-power prototype has done its demo job. The work can feed back into Raytheon’s other projects. “We could take a little bit more risk to develop technology and the things that we’re learning here and then fold that back into our other products,” says Wilkinson. This system could be a test bed, he says, for the company’s future tracking work in the space between geostationary orbit and the moon—a science experiment that could lead to the next generation of “space situational awareness” technology.

Both sides of the team are working on a conceptual design for the higher-power system with funding from the National Science Foundation. Flora Paganelli, a project scientist in NRAO’s radar division, says it’s the first time she’s been able to help craft a ground-based telescopic tool as it’s being built. Previously, she was a member of the Cassini Radar Science Team, and she also worked at the SETI Institute before joining NRAO. 

Having such input on this instrument is very significant right now. For researchers like Paganelli, such an instrument would augment science in a more significant way than it would have even just a few years ago. That’s because a few years ago, the US had two “planetary radars,” or systems that did work like surveilling the moon, planets, and asteroids.

Today, there’s just one—Goldstone, in California—because the other, at the iconic Arecibo Observatory in Puerto Rico, is no longer usable. Sadly, the telescope collapsed in 2020: The platform that hung above the dish crashed into its panels. Taylor worked there for years, before he did a stint at the Lunar and Planetary Institute and then came to NRAO. “Having a radar on the Green Bank Telescope, it’s something we considered for many years, essentially as a way to complement the other existing systems,” he says. 

Because there are no firm plans to rebuild Arecibo or something like it, Green Bank represents the best hope for a second such radar system in the United States. “It kind of went from something that could complement Arecibo to something that could step in and fill the void,” Taylor says of Green Bank’s system. Paganelli notes that the scientific community’s radar expertise could now coalesce there.

Wilkinson, though he comes from the corporate national security sphere, also has an inherent interest in astronomy, which makes this dual-use project exciting to him. Also exciting: astronomy’s openness. “A lot of the things we do here, typically, we can’t talk about,” says Wilkinson, of Raytheon. The universe’s secrets, on the other hand, are there to be discovered and shared, not kept. 

Read more PopSci+ stories.

The post An enormous radio telescope may soon be a powerful tool for planetary defense appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
15 remarkable JWST images that reveal the wonders of our vast universe https://www.popsci.com/science/james-webb-telescope-images/ Wed, 12 Jul 2023 10:00:00 +0000 https://www.popsci.com/?p=555650
JWST composite image of barred spiral galaxy NGC 5068, showing its core and part of a spiral arm. Clumps and filaments of dust, represented in a mossy green color, form an almost skeletal structure that follow the twist of the galaxy and its spiral arm.
NGC 5068, released June 2023: The brightness in the upper left is the central bar of galaxy NGC 5068—a dense slash of stars and gas through its midsection, seen around 17 million light-years away in the Virgo constellation. ESA/Webb, NASA & CSA, J. Lee and the PHANGS-JWST Team

The telescope has transported us to Jupiter's ghostly rings, the 'Cosmic Cliffs,' and a starry hourglass. Where to next?

The post 15 remarkable JWST images that reveal the wonders of our vast universe appeared first on Popular Science.

]]>
JWST composite image of barred spiral galaxy NGC 5068, showing its core and part of a spiral arm. Clumps and filaments of dust, represented in a mossy green color, form an almost skeletal structure that follow the twist of the galaxy and its spiral arm.
NGC 5068, released June 2023: The brightness in the upper left is the central bar of galaxy NGC 5068—a dense slash of stars and gas through its midsection, seen around 17 million light-years away in the Virgo constellation. ESA/Webb, NASA & CSA, J. Lee and the PHANGS-JWST Team

Few scientific tools get introduced in a press conference by the commander-in-chief. But NASA’s James Webb Space Telescope is no ordinary instrument. President Biden unveiled the first image from JWST in July 2022, revealing the sharpest, deepest infrared view of the universe ever taken. And that was only the beginning. 

The solar-powered device, which drifts at a stable point 930,000 miles away from Earth, has since captured giant galaxies from the cosmic dawn; helped researchers discover the most distant and active supermassive black hole; snapped glowing views of Saturn and Jupiter; and found a new world beyond our solar system. It has teased out the details of the atmospheres above exoplanets and made the first-ever in-space detection of a molecule called methyl cation, a building block for the more complex carbon compounds found on Earth. 

The telescope was built on several aerospace innovations. Its mirrors are plated in a microscopic film of gold, optimized to reflect light. Its imagers, which include the Near-Infrared Camera and Mid-Infrared Instrument, allow JWST to look beyond cosmic dust and sense weak and ancient light from up to 13 billion years ago, just 800,000 years after the universe was born. And thanks to far more recent technology, it’s also incredibly easy to set up alerts for when the JWST has captured a new image, so you never miss out.

These remarkable James Webb Space Telescope images show stars, galaxies, and space in all their sparkling glory. What are your favorites?

NASA’s James Webb Space Telescope has captured a lush, highly detailed landscape – the iconic Pillars of Creation – where new stars are forming within dense clouds of gas and dust.
Pillars of Creation, released October 2022: This image, a composite from two JWST cameras, shows orange infant stars emerging from a massive cloud of dust and gas: the famous Pillars of Creation, which are 6,500 light-years away in the Eagle Nebula. NASA, ESA, CSA, STScI
Purple dust and clouds surround a central star as it prepares to go nova.
Supernova prelude, released March 2023: This picture was taken moments, astronomically speaking, before a disaster. A dying Wolf-Rayet star, at the center of the image, is preparing to explode. It is 30 times bigger than our sun, NASA notes, and has already shed about 10 sun’s worth of mass, creating the shroud of gas around it. NASA, ESA, CSA, STScI, Webb ERO Production Team
JWST's image of the Cartwheel galaxy, with several other galaxies in the frame.
Cartwheel galaxy, released August 2022: Located 500 million light-years away in the Sculptor constellation, the Cartwheel galaxy’s unique structure resulted from a collision between two star clusters. NASA, ESA, CSA, STScI

[Related: The best telescopes for kids]

Galaxies distorted by the phenomenon known as gravitational lensing.
Warped galaxies, released March 2023: The warped, fisheye-like effect in this image is the result of what’s called gravitational lensing. A massive object in the foreground—a cluster of galaxies—is distorting the space-time around it. As light travels through that warp toward JWST, it bends, causing the appearance of streaks and arcs. ESA/Webb, NASA & CSA, J. Rigby
A galaxy in the shape of a spiral with arms like cobwebs.
Spiral galaxy IC 5332, released September 2022: JWST’s Mid-infrared Instrument can sense the gas patterns, arranged here like the strands of a cobweb, within a galactic structure. Galaxy IC 5332 is 66,000 light-years in diameter—a bit bigger than our Milky Way—and sits about 29 million light-years from Earth. ESA/Webb, NASA & CSA, J. Lee and the PHANGS-JWST and PHANGS-HST Teams
The gas giant Jupiter gives off shining infrared light.
Jupiter, released August 2022: JWST’s Near-Infrared Camera captured our solar system’s glowing gas giant, whose rings shine a million times fainter than the planet itself. NASA, ESA, CSA, Jupiter ERS Team; image processing by Judy Schmidt.
JWST's first public image, showing stars and distant galaxies.
SMACS 0723, released July 2022: In the first publicly released image taken by JWST, the galaxy cluster known as SMACS 0723 is a swarm of stars and spirals. Thanks to the lensing effects of gravity, JWST was able to detect super-distant galaxies—some shown here are from the universe’s first billion years. NASA, ESA, CSA, and STScI
Swirling clouds of gas and debris in the Orion Nebula.
Orion Nebula, released June 2023: Life as we know would be impossible without the element carbon. Within a protoplanetary disk in the Orion Nebula, 1,350 light-years away, JWST sensed the emission lines—a specific pattern of light—for methyl cation. This was the first detection of the carbon-based compound in space. ESA/Webb, NASA, CSA, M. Zamani (ESA/Webb), and the PDRs4All ERS Team
Cliff-like structures are carved into the gas clouds of this nebula.
Carina Nebula, July 2022: The telescope pierced the dust clouds of a star nursery to reveal freshly made suns in one of the first JWST images. The young stars emit ultraviolet radiation, and have carved what NASA named “Cosmic Cliffs” into the nebula. NASA, ESA, CSA, and STScI
The ringed planet Saturn in infrared.
Saturn, released June 2023: In near-infrared light, the rings of gas giant Saturn are neon bright. The planet itself is darker because its atmosphere contains methane gas, which absorbs sunlight at this wavelength. NASA, ESA, CSA, STScI, M. Tiscareno (SETI Institute), M. Hedman (University of Idaho), M. El Moutamid (Cornell University), M. Showalter (SETI Institute), L. Fletcher (University of Leicester), H. Hammel (AURA); image processing by J. DePasquale (STScI)
A star is forming out of a hot mass of gas, in a shape like a sand clock.
Hourglass protostar, released November 2022: This protostar is a hot mass of gas that’s drawn into a central core. Once that core is sufficiently dense and scorching, it will trigger nuclear fusion, becoming a sun. NASA, ESA, CSA, STScI
A misshapen spiral galaxy.
NGC 3256, released July 2023: This unevenly shaped galaxy, about the same size as the Milky Way, shows the scars of a collision. Dust and stars streak from its center; some material has been yanked toward the galaxy’s edge, roughly 120 million light-years from us. In the image’s bright spots, new stars form, their births caused by the clash. ESA/Webb, NASA & CSA, L. Armus, A. Evans
Herbig-Haro 211, released Herbig-Haro objects are formed when stellar winds or jets of gas spewing from newborn stars form shock waves colliding with nearby gas and dust at high speeds.
Herbig-Haro 211, released September 2023: Herbig-Haro objects form when stellar winds or jets of gas spew from newborn stars. Collisions with nearby gas and dust cause high-speed shock waves, seen to the lower left and upper right. NASA, ESA, CSA
A blue and pink swirl of soot in a star-forming region of the Small Magellanic Cloud.
Small Magellanic Cloud, released October 2023: The blue represents silicates and sooty chemicals known as polycyclic aromatic hydrocarbons, or PAHs. These molecules are swirling in a star-forming region of the Milky Way’s dwarf satellite galaxy, the Small Magellanic Cloud. NASA, ESA, CSA, STScI, N. Habel

This post has been updated. It was originally published in July 2023.

The post 15 remarkable JWST images that reveal the wonders of our vast universe appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The Milky Way’s shiniest known exoplanet has glittering metallic clouds https://www.popsci.com/science/galaxy-shiniest-exoplanet/ Tue, 11 Jul 2023 17:00:00 +0000 https://www.popsci.com/?p=555435
This is an artist impression of exoplanet LTT9779b orbiting its host star. The host star is located on the left as a large white circle with rays coming out of it in orange. The exoplanet is smaller and shown on the right of the image. The side of the exoplanet that is facing its host star is illuminated. The planet is around the size of Neptune and reflects 80% of the light shone on it, making it the largest known “mirror” in the Universe. The background of the image is black and speckled across the image is a starfield, showing innumerable stars of many sizes
An artist’s impression of exoplanet LTT9779b orbiting its host star. The host star is located on the left as a large white circle with rays coming out of it in orange. The exoplanet is smaller and shown on the right of the image. The planet is around the size of Neptune and reflects 80 percent of the light shone on it, making it the largest known “mirror” in the universe. Ricardo Ramírez Reyes (Universidad de Chile)

Dare to stare at this Neptune-sized 'mirror.'

The post The Milky Way’s shiniest known exoplanet has glittering metallic clouds appeared first on Popular Science.

]]>
This is an artist impression of exoplanet LTT9779b orbiting its host star. The host star is located on the left as a large white circle with rays coming out of it in orange. The exoplanet is smaller and shown on the right of the image. The side of the exoplanet that is facing its host star is illuminated. The planet is around the size of Neptune and reflects 80% of the light shone on it, making it the largest known “mirror” in the Universe. The background of the image is black and speckled across the image is a starfield, showing innumerable stars of many sizes
An artist’s impression of exoplanet LTT9779b orbiting its host star. The host star is located on the left as a large white circle with rays coming out of it in orange. The exoplanet is smaller and shown on the right of the image. The planet is around the size of Neptune and reflects 80 percent of the light shone on it, making it the largest known “mirror” in the universe. Ricardo Ramírez Reyes (Universidad de Chile)

Astronomers from the European Space Agency (ESA) have discovered the shiniest known exoplanet in our universe to date. Named LTT9779 b, this ultra hot exoplanet revolves around its host star every 19 hours and is 262 light-years away from Earth.

[Related: Gritty, swirling clouds of silica surround exoplanet VHS 1256 b.]

In our night sky, the moon and Venus are the brightest objects. Venus’ thick cloud layers reflect 75 percent of the sun’s incoming light, compared to Earth’s cloud layers that just reflect about 30 percent. LTT9779 b and it’s reflective metallic clouds can match Venus’ shininess. Detailed measurements taken by ESA’s Cheops (CHaracterising ExOPlanet Satellite) mission shows that the glittering globe reflects 80 percent of the light that is shone on it by its host star. 

LTT9779 b was first spotted in 2020 by NASA’s Transiting Exoplanet Survey Satellite (TESS) mission and ground-based observations conducted at the European Southern Observatory in Chile. ESA then selected this planet for additional observations as part of the Cheops mission.

At around the same size as the planet Neptune, LTT9779 b is the largest known “mirror” in the universe. According to ESA, it is so reflective due to its metallic clouds that are mostly made of silicate mixed in with metals like titanium. Sand and glass that are used to make mirrors are also primarily made up of silicate. The findings are detailed in a study published July 10 in the journal Astronomy & Astrophysics.

“Imagine a burning world, close to its star, with heavy clouds of metals floating aloft, raining down titanium droplets,” study co-author and Diego Portales University in Chile astronomer James Jenkins, said in a statement

The amount of light that an object reflects is called its albedo. Most planets have a low albedo, primarily because they either have an atmosphere that absorbs a lot of light or their surface is rough or dark. Frozen ice-worlds or planets like Venus that boast a reflective cloud layer tend to be the exceptions. 

For the team on this study, LTT9779 b’s high albedo came as a surprise, since the side of the planet that faces its host star is estimated to be around 3,632 degrees Fahrenheit. Any temperature above 212 degrees is too hot for clouds of water to form. On paper, the temperature of LTT9779 b’s atmosphere should even be too hot for clouds that are made of glass or metal.

“It was really a puzzle, until we realized we should think about this cloud formation in the same way as condensation forming in a bathroom after a hot shower,” said co-author and Observatory of Côte d’Azur researcher Vivien Parmentier in a statement. “To steam up a bathroom you can either cool the air until water vapor condenses, or you can keep the hot water running until clouds form because the air is so saturated with vapor that it simply can’t hold any more. Similarly, LTT9779 b can form metallic clouds despite being so hot because the atmosphere is oversaturated with silicate and metal vapors.”

[Related: JWST’s double take of an Earth-sized exoplanet shows it has no sky.]

In addition to being a shiny happy exoplanet, LTT9779 b also is remarkable because it is a planet that shouldn’t really exist. Its size and temperature make it an “ultra-hot Neptune,” but there are no known planets of its size in mass that have been found orbiting this close to their host star. This means that LTT9779 b lives in the “hot Neptune desert,” a planet whose atmosphere is heated to more than 1,700 degrees.

“’We believe these metal clouds help the planet to survive in the hot Neptune desert,” co-author and astronomer at Marseille Astrophysics Laboratory Sergio Hoyer said in a statement. “The clouds reflect light and stop the planet from getting too hot and evaporating. Meanwhile, being highly metallic makes the planet and its atmosphere heavy and harder to blow away.”

While its radius is about 4.7 times as big as Earth’s, one year on LTT9779 b takes only 19 hours. All of the previously discovered planets that orbit their star in less than one day are either  gas giants with a radius that is at least 10 times earth (called hot Jupiters) or rocky planets that are smaller than two Earth radii.

“It’s a planet that shouldn’t exist,” said Vivien. “We expect planets like this to have their atmosphere blown away by their star, leaving behind bare rock.”

Cheops is the first of three ESA missions dedicated to studying the exciting world of exoplanets. In 2026, it will be joined by the Plato mission which will focus on Earth-like planets that could be orbiting at a distance from their star that supports life. Ariel is scheduled to join in 2029, specializing in studying the atmospheres of exoplanets. 

The post The Milky Way’s shiniest known exoplanet has glittering metallic clouds appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Uranus got its name from a very serious authority https://www.popsci.com/science/how-did-uranus-get-its-name/ Fri, 07 Jul 2023 10:00:00 +0000 https://www.popsci.com/?p=553708
Uranus captured by Voyager 2 in true color and false color. Uranus got its name from Greek mythology.
These two pictures of Uranus were compiled from images recorded by Voyager 2 on January 10, 1986. The picture on the left has been processed to show Uranus as human eyes would see it from the vantage point of the spacecraft. The second picture is an exaggerated false-color view that reveals details not visible in the true-color view, including indications of what could be a polar haze of smog-like particles. NASA / JPL

From kings to Shakespearian sprites, Uranus captures the imagination that goes into naming objects in space.

The post Uranus got its name from a very serious authority appeared first on Popular Science.

]]>
Uranus captured by Voyager 2 in true color and false color. Uranus got its name from Greek mythology.
These two pictures of Uranus were compiled from images recorded by Voyager 2 on January 10, 1986. The picture on the left has been processed to show Uranus as human eyes would see it from the vantage point of the spacecraft. The second picture is an exaggerated false-color view that reveals details not visible in the true-color view, including indications of what could be a polar haze of smog-like particles. NASA / JPL

Everyone loves a good Uranus crack—the mere mention of its name can draw snickers in a serious science class. But the sideways planet has a surprisingly respectable backstory that few people know. 

How did Uranus get its name?

Uranus (officially pronounced yur-un-us) was the god of the sky in ancient Greece, but actually was not the first choice for the seventh planet’s name. The ice giant was discovered by British astronomer William Herschel in 1781, and finally recognized as a planet at that time. It had been seen in the night sky for millennia, but people simply assumed it was another star. “There were many observations of the position of Uranus before its discovery as a planet,” says Bonnie Buratti, planetary scientist at NASA’s Jet Propulsion Laboratory.

Herschel thought his new celestial trophy should be called Georgium after King George III, the reigning king of England at the time. Astronomers from other countries weren’t too happy with this choice, though, so they proposed a number of alternatives. A year later, German astronomer Johann Bode suggested the winning name, Uranus, the Latin word for the Greek god Ouranos. He made quite a persuasive argument with two main points. First, King George would stand out in a very strange way from the other planetary names, all based on ancient gods. Second, Saturn is the father of Jupiter in mythology, and Uranus’s Roman counterpart (Caelus) is the father of Saturn, making a neat hierarchy in the order of the planets. The element uranium was named in 1789 in support of Bode’s proposed title for the planet.

[Related: How old is Earth?]

It is a bit strange, however, that Uranus is the only Greek god amongst a planetary neighborhood full of Romans. It’s unclear if this was a mistake—maybe Bode didn’t know the Roman equivalent of Ouranos was actually Caelus—or if 18th-century astronomers simply preferred the Greek version of the name.

Such mistakes don’t really happen nowadays, as the International Astronomical Union (IAU) meticulously oversees the naming of celestial discoveries (and has done so since its founding in 1919), from whole new objects to detailed features on planets’ surfaces. 

“The IAU is the sole authority for official names for solar system objects,” says Tenielle Gaither, database manager for the U.S. Geological Survey Gazetteer of Planetary Nomenclature. Chuck Wood, Wheeling University scientist and member of the IAU Working Group on Planetary Nomenclature, adds, “the IAU is the only international body that is concerned with astronomy, and every professional astronomer and nation accepts their authority.”

How do astronomers choose names today?

When a new body in space needs a label, the IAU committee for that kind of object gets to work. Planetary scientists can suggest names, but the ultimate authority still rests with the IAU, which has specific themes for each planetary system and kind of feature. Exoplanets, for example, are named after the star they orbit or the telescope that found them (like 51 Pegasi b or Kepler-16b), followed by a lowercase letter assigned in order of discovery. Meanwhile, comets are named after their discoverers plus a standardized number, like 1P/Halley. Asteroids, on the other hand, are named by their discoverers (not after their discoverers), and can be a reference to anyone or anything as long as it’s not inappropriate. “An asteroid [363115 Chuckwood] is named after me, so I passed the bar,” says Wood. 

The IAU also maintains a list of categories for every planet and its moons in the solar system. The six largest known rocks that orbit Uranus are borrowed from works of Shakespeare and Alexander Pope: Puck, Miranda, Ariel, Umbriel, Titania, and Oberon. The features on these satellites have even more individualized naming conventions. For example, all the cracks, crevasses, and craters on Puck must be named after mischievous Puck-like spirits. On Miranda, names come from characters and places in Shakespeare plays. 

Just like in Herschel’s time, some proposals can stir up debate and drama. “You might think that deciding on names would be a dry, humdrum activity,” says Wood. “But it has often been contentious, starting with the US and Soviet naming of lunar features in the early [space race].” He’s been cursed at by other scientists, threatened with appeals to the president of the United States, and more, simply for insisting that names adhere to the IAU’s established rules.

There is a lot of beauty in planetary naming, too. “While IAU nomenclature is first and foremost a tool for scientists to discuss surface features clearly and unambiguously in the literature, some names certainly have personal significance,” says Gaither, whose favorite planetary feature name is Morrison crater on Mercury, which she helped propose. “I read most of Toni Morrison’s novels in my late teens and early 20s, and they were pivotal in developing my understanding of the tragedy of Black women’s lived experiences of racism, sexism, and poverty,” she adds.

[Related: How long does it take to get to Mars?]

In recent history, astronomical names have expanded from ancient gods of Western societies and works of famous white authors to now include important figures and landmarks from other cultures. Arguably the best-known example is the suspected interstellar comet 1I/2017 U1 ‘Oumuamua: Its name is Hawaiian for “a messenger from afar arriving first” because it was discovered with a telescope located atop Haleakala volcano on Maui.

A scientific name can capture history, culture, bureaucracy, and more. With Uranus, it captures people’s endless appreciation for bathroom humor, even though it’s not really pronounced that way.

Correction (July 7, 2023): Due to an editing error, this story incorrectly stated that the Haleakala volcano is located on the big Island of Hawai’i. It is on Maui.

The post Uranus got its name from a very serious authority appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Saturn’s rings get a glow up in new near-infrared telescope images https://www.popsci.com/science/jwst-saturn-images/ Mon, 03 Jul 2023 14:30:00 +0000 https://www.popsci.com/?p=553020
The ringed planet Saturn imaged for the first time using near-infrared observations. The planet itself appears quite dark and the rings are bright.
On June 25, 2023, NASA’s James Webb Space Telescope turned to famed ringed world Saturn for its first near-infrared observations of the planet. Image- NASA, ESA, CSA, Matthew Tiscareno (SETI Institute), Matthew Hedman (University of Idaho), Maryame El Moutamid (Cornell University), Mark Showalter (SETI Institute), Leigh Fletcher (University of Leicester), Heidi Hammel (AURA). Image Processing: Joseph DePasquale (STScI). Image Processing- Joseph DePasquale (STScI)

The brilliant images are thanks to James Webb Space Telescope's NIRCam.

The post Saturn’s rings get a glow up in new near-infrared telescope images appeared first on Popular Science.

]]>
The ringed planet Saturn imaged for the first time using near-infrared observations. The planet itself appears quite dark and the rings are bright.
On June 25, 2023, NASA’s James Webb Space Telescope turned to famed ringed world Saturn for its first near-infrared observations of the planet. Image- NASA, ESA, CSA, Matthew Tiscareno (SETI Institute), Matthew Hedman (University of Idaho), Maryame El Moutamid (Cornell University), Mark Showalter (SETI Institute), Leigh Fletcher (University of Leicester), Heidi Hammel (AURA). Image Processing: Joseph DePasquale (STScI). Image Processing- Joseph DePasquale (STScI)

It’s been almost one year since NASA’s James Webb Space Telescope (JWST) released its first finds to the public. Now the JWST has its sights set on the ringed planet Saturn. On June 25, JWST used its hard working Near-Infrared Camera (NIRCam) to capture stellar images of Saturn using near-infrared observations for the first time.

[Related: NASA hopes its snake robot can search for alien life on Saturn’s moon Enceladus.]

The planet itself appears very dark at this infrared wavelength observed by the telescope. The methane gas in the planet absorbs almost all of the sunlight that is falling on the atmosphere. Its famed icy rings are still relatively bright, making Saturn look a bit more unusual.  

This new image was taken as part of Webb Guaranteed Time Observation program 1247. Several very deep exposures of the sixth planet from the sun, which were designed to test JWST’s capacity to detect faint moons around Saturn and its bright rings. Newly discovered Saturnian moons could help scientists paint a more complete picture of the planet’s current system and its past history. 

Space Telescope photo
On June 25, 2023, NASA’s James Webb Space Telescope turned to famed ringed world Saturn for its first near-infrared observations of the planet. The initial imagery from JWST’s NIRCam (Near-Infrared Camera) is already fascinating researchers. CREDITS: Image- NASA, ESA, CSA, Matthew Tiscareno (SETI Institute), Matthew Hedman (University of Idaho), Maryame El Moutamid (Cornell University), Mark Showalter (SETI Institute), Leigh Fletcher (University of Leicester), Heidi Hammel (AURA). Image Processing: Joseph DePasquale (STScI). Image Processing- Joseph DePasquale (STScI).

Saturn’s ring system is shown in clear detail along with several of the planet’s over 140 known moons—Dione, Enceladus, and Tethys. Deeper exposure will help the team probe some of Saturn’s more faint rings that aren’t visible in this image. These include the thin G ring and the diffuse E ring. The rings of Saturn are made up of rocky and icy fragments, with particles running in size from smaller than a single grain of sand up to some that are as large as mountains here on Earth. Researchers recently used JWST to explore the moon Enceladus, and found a large plume jetting from its southern pole that contains both particles and plentiful amounts of water vapor. This moon plume feeds Saturn’s E ring.

The image also shows Saturn’s atmosphere in some surprising and unexpected detail. The Cassini spacecraft observed the atmosphere at greater clarity, but this is the first time that the atmosphere has been observed this clearly at this particular wavelength (3.23 microns), which is unique to JWST. The planet’s northern hemisphere has large, dark, diffuse structures that don’t follow its lines of latitude, so according to NASA, this image is lacking the familiar striped appearance that is typically seen from Saturn’s deeper atmospheric layers. 

[Related: Saturn’s rings have been slowly heating up its atmosphere.]

Comparing Saturn’s northern and southern poles in this image shows differences that are typical with the known seasonal changes on the planet. Saturn is currently experiencing summertime in its northern pole, with the southern pole emerging from darkness at the end of its winter.  However, it also shows a particularly dark northern pole, due to an unknown seasonal process that is particularly affecting polar aerosols. There is a small hint of brightening towards the edge of Saturn’s disk that could be due to a process called high-altitude methane fluorescence. During this process, light is emitted after it is absorbed. It could also be due to emission from the trihydrogen ion (H3+) in the ionosphere or a combination of both processes. Spectroscopy from JWST could help confirm the reason behind this brightness.

This new yet to be peer-reviewed data on Saturn will add to the famed Pioneer 11, Voyagers 1 and 2, missions and the decades of work done by the Cassini spacecraft and the Hubble Space Telescope

The post Saturn’s rings get a glow up in new near-infrared telescope images appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Euclid space telescope begins its search through billions of galaxies for dark matter and energy https://www.popsci.com/science/euclid-space-telescope-dark-matter/ Fri, 30 Jun 2023 15:43:20 +0000 https://www.popsci.com/?p=552596
Euclid Space Telescope mounted on SpaceX Falcon 9 rocket in a holding facility before dark energy and dark matter mission launch
On June 23, Euclid was secured to the adaptor of a SpaceX Falcon 9 rocket. The new ESA cosmological mission is getting ready for lift-off with a target launch date of July 1 from Cape Canaveral in Florida. SpaceX

The two-ton telescope will take up orbit near JWST to help us decipher the expanding universe.

The post Euclid space telescope begins its search through billions of galaxies for dark matter and energy appeared first on Popular Science.

]]>
Euclid Space Telescope mounted on SpaceX Falcon 9 rocket in a holding facility before dark energy and dark matter mission launch
On June 23, Euclid was secured to the adaptor of a SpaceX Falcon 9 rocket. The new ESA cosmological mission is getting ready for lift-off with a target launch date of July 1 from Cape Canaveral in Florida. SpaceX

It’s an exhilarating and sobering thought: All the planets, galaxies, starlight, and other objects that we can see and measure in the universe make up just 5 percent of existence. The other 95 percent are eaten up by two enigmas, dark matter and dark energy, known to scientists by their apparent gravitational effects on the surrounding universe, but not directly detectible.

On July 1, however, a new European Space Agency mission could help scientists get a little closer to solving the twin mysteries of dark matter and dark energy. The Euclid space telescope will take flight from Cape Canaveral Space Force Station no earlier than 11:11 a.m. EDT atop a SpaceX Falcon 9 rocket. NASA will live stream the launch beginning at 10:30 a.m.

Following blastoff, Euclid will take about 30 days to reach its operational orbit around Lagrange Point 2 (L2), an area a million miles toward the outer solar system where Euclid can maintain a constant position relative to Earth. The James Webb Space Telescope also orbits L2.

[Related: A super pressure balloon built by students is cruising Earth’s skies to find dark matter]

Once on location and operational, Euclid will begin what is expected to be a six-year mission where it will survey around a third of the sky, carefully measuring the shapes of billions of galaxies up to 10 billion light-years away to catch a glimpse at the ways dark matter and dark energy shape our cosmos. To do that, the roughly 4,600-pound space telescope will use its four-foot-wide primary mirror to collect and focus visible and near-infrared wavelengths of light on two instruments: the VISible instrument camera and Near-Infrared Spectrometer and Photometer, which helps determine the distance to far off galaxies.

“The awesomeness of how many galaxies Euclid will be able to measure and at what amazing precision—it’s just an amazing feat of human engineering,” says Lindley Winslow, a professor of physics at MIT who designs experiments to detect dark matter, but is not directly involved with this mission. “The fact that we can do precision cosmology is awesome.”

Dark energy and dark matter shaping the expanding universe. Illustration.
The European Space Agency’s Cosmic Vision aims to better define dark energy, dark matter, and their role in universal expansion. NASA/ESA/ESO/W. Freudling (ST-ECF)

Cosmologists, who study the formation, evolution, and structure of the universe, have a model called Lambda-CDM that might explain why everything is the way it is. Lambda is the cosmological constant, the force that appears to be causing the universe to expand at an accelerating rate and which scientists believe is related to or manifests in mysterious dark energy. CDM stands for “cold dark matter,” which interacts with normal matter gravitationally.

”Those are the two ingredients that have sculpted the universe that we know,” Winslow says. Dark energy drives universal expansion, while “in the early universe, it was this cold dark matter that pulled visible matter that we see now into potential wells, that then allowed it to contract and form galaxies and stars.”

Lambda-CDM helps us construe a lot of the large-scale universe, according to Winslow, but it doesn’t tell us how it fits together with the theory that explains how the small scale universe works: the Standard Model of particle physics. Euclid is one of several attempts to learn more about how the universe expands and revise Lambda-CDM.

“What we’re really interested in is, can we get more data? Winslow says. “And can we find something that Lambda-CDM doesn’t explain?”

To hunt for that evidence, Euclid will use a technique known as weak gravitational lensing. This is similar to the strong gravitational lensing technique employed by JWST, where the mass of a foreground object, such as a galaxy cluster, is used to magnify a more distant background object. With weak gravitational lensing, scientists are more interested in the way the mass of the foreground objects, including dark matter, creates subtle distortions in the shape of background galaxies.

“We’re using the background galaxies to learn about the matter distribution in the foreground,” says Rachel Mandelbaum, an astrophysicist at Carnegie Mellon University who is a member of the US portion of the Euclid Consortium, a group of thousands of scientists and engineers. “We’re trying to measure the effects of all of the matter between the distinct galaxy shape and us.”

[Related: Astronomers used dead stars to detect a new form of ripple in space-time]

This method will also help them measure the effects of dark energy, Mandelbaum adds. Since dark matter helps all other forms of matter clump together, and dark energy counteracts the gravitational effects of dark matter, by measuring how clumpy matter is over a range of distance from Earth, “we can measure how cosmic structure is growing and use that to infer the effects of dark energy on the matter distribution.”

Euclid will not be the first large sky survey using weak gravitational lensing to search for signs of dark matter and dark energy, but it will be the first survey of its kind in orbit. Previous studies, such as the Dark Energy Survey, have all been conducted by ground-based telescopes, according to Mandelbaum. Being up in space offers a different advantage.

“Ground-based telescopes see blurrier images than space-based telescopes because of the effects of the Earth’s atmosphere on the light of distant stars and galaxies,” Mandelbaum says. Euclid’s view from L2 will be helpful when “we’re trying to measure these very subtle distortions in the shapes of galaxies.” 

But dark matter and dark energy are tough enigmas to crack, and scientists can use all the data they can collect, from as many angles as possible. The Vera Rubin Observatory, currently under construction in Chile and scheduled to open in 2025, will host the ground-based Legacy Survey of Space and Time and scan the entire southern sky for similar phenomena. Efforts like these will help ensure the reproducibility of findings by Euclid, and vice versa, according to Mandelbaum.

”Euclid is a really exciting experiment within a broader landscape of surveys that are trying to get at the same science, but with very different datasets that have different assumptions,” she says. “They’re going to be doing somewhat different things that give us a different approach to answering these really fundamental questions about the universe.”

The post Euclid space telescope begins its search through billions of galaxies for dark matter and energy appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Astronomers used dead stars to detect a new form of ripple in space-time https://www.popsci.com/science/gravitational-waves-nanograv/ Thu, 29 Jun 2023 00:00:00 +0000 https://www.popsci.com/?p=551972
Low-frequency gravitation waves emerging from black hole collision in space. Illustration.
Two giant black holes, in the upper left, collide and distort the bright pulsars around them in this illustration. NANOGrav/Sonoma State University/Aurore Simonnet

Longer gravitational waves from colliding black holes could help explain why galaxies grow and change.

The post Astronomers used dead stars to detect a new form of ripple in space-time appeared first on Popular Science.

]]>
Low-frequency gravitation waves emerging from black hole collision in space. Illustration.
Two giant black holes, in the upper left, collide and distort the bright pulsars around them in this illustration. NANOGrav/Sonoma State University/Aurore Simonnet

Today, a humongous team of astronomers called the NANOGrav Collaboration announced something remarkable: the first evidence for a background hum of gravitational waves that permeates our universe. The research group, based in the US and Canada, used dead stars across the galaxy as a Milky-Way-sized measurement device to find these distorting undulations.

“We’ve been on a mission for the last 15 years” to find this background, said Stephen Taylor, Chair of NANOGrav and Vanderbilt University astronomy, in a press briefing. “And we’re very happy to announce that our hard work has paid off.” These waves can reveal the kinds of black holes scattered across the cosmos, which will help astronomers figure out how galaxies grow and change.

Gravitational waves are ripples in the fabric of space-time itself. Just like telescopes are specialized for different parts of the electromagnetic spectrum, gravitational wave experiments are sensitive to different wavelengths, too. The LIGO experiment, which found the first gravitational waves in 2016, can detect shorter waves, like those made when two star-sized black holes smash together. But it can’t feel longer, lower frequency waves, which some astronomers think are key to unlocking the universe’s history. 

“If we want to observe the largest black holes to further understand galaxy evolution, as well as test theories at the frontiers of modern physics, we need to be able to observe low-frequency gravitational waves,” says Vanderbilt University astronomer William Lamb, who is part of the NANOGrav team.

[Related: Astronomers recorded a whopping 35 gravitational wave events in just 5 months]

Such waves come from the most massive black holes, which should be merging all across the universe to create background noise, like cosmic TV static. For a while, astronomers worried these monster black holes could never get close enough to combine into one galactic center, which would be a big problem for our understanding of galaxies’ evolution—and would result in a quieter gravitational wave background. Since NANOGrav has heard the signal, now astronomers know these black holes do collide, and they can figure out the details of how galaxies merge. Gravitational waves from right after the Big Bang might also contribute to this background, offering one way to probe the first seconds of the universe.

To detect such a low-frequency signal, astronomers needed an experiment larger than the entire Earth—possibly something the size of the whole galaxy. Luckily, nature provided just the tool: pulsars. Pulsars are the dead cores of the heaviest stars, which spew out jets of light and spin unbelievably fast. Like watching the beams from a lighthouse, we see them pulse brighter when their jet spins toward us—and somehow nature is the best lighthouse keeper, since pulsars are as predictable in their timing as atomic clocks.

When these pulsars ride the swell of a gravitational wave, though, the space-time ripple distorts this precision. Pulsar timing arrays (PTAs), collections of radio telescopes that record pulsars across the galaxy and can measure these minute deviations in pulsars’ otherwise super-accurate clocks. Together, the many tiny shifts in pulsars’ periods paint a picture of how a long, low-frequency gravitational wave propagates throughout the galaxy. To make these measurements, NANOGrav used telescopes across North America: Puerto Rico’s famed Arecibo Telescope (which has since collapsed), the Green Bank Telescope in West Virginia, the Very Large Array in New Mexico, and the CHIME experiment in Canada.

A large telescope array in the foreground with West Virginia hills behind it.
The Green Bank Telescope, in West Virginia, was one of several observatories used in the new experiment. Jay Young for Green Bank Observatory

Pulsar timing “is fundamentally different from how LIGO detects gravitational waves,” says University of Mississippi astronomer Sumeet Kulkarni, who was not involved in the new work. “What I find particularly amazing about this discovery is the coordination involved” between the numerous telescopes and contributors, he adds.

This new result uses 15 years of data from NANOGrav’s PTAs, but it isn’t quite robust enough for the team to call it an official detection. Instead, the researchers are using the term “strong evidence.” But because the signal builds up with time, they’re confident that they’ll have a clear-cut detection in a few years. “We’ll be able to produce better and better maps of the gravitational wave sky,” said Luke Kelley, a University of California, Berkeley astronomer and NANOGrav team member, in a press briefing.

[Related: Gravitational waves just showed us something even cooler than black holes]

Full implications of this detection are yet to be understood, but studies of these low-frequency waves are only beginning. Members of the International Pulsar Timing Array have similar data from across the world, including Australia, China, and India. These measurements will be even more powerful when astronomers bring them all together, possibly within the next year. 

The post Astronomers used dead stars to detect a new form of ripple in space-time appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Explosive star ‘demolition derby’ observed for the very first time https://www.popsci.com/science/star-explosive-death-gamma-ray-burst/ Fri, 23 Jun 2023 13:00:00 +0000 https://www.popsci.com/?p=550652
Astronomers studying a powerful gamma-ray burst (GRB) with the International Gemini Observatory, operated by NSF’s NOIRLab, may have observed a never-before-seen way to destroy a star. Unlike most GRBs, which are caused by exploding massive stars or the chance mergers of neutron stars, astronomers have concluded that this GRB came instead from the collision of stars or stellar remnants in the jam-packed environment surrounding a supermassive black hole at the core of an ancient galaxy.
Astronomers studying a powerful gamma-ray burst (GRB) with the International Gemini Observatory, operated by NSF’s NOIRLab, may have observed a never-before-seen way to destroy a star. Unlike most GRBs, which are caused by exploding massive stars or the chance mergers of neutron stars, astronomers have concluded that this GRB came instead from the collision of stars or stellar remnants in the jam-packed environment surrounding a supermassive black hole at the core of an ancient galaxy. International Gemini Observatory/NOIRLab/NSF/AURA/M. Garlick/M. Zamani

Gamma-ray bursts were traced to the nucleus of an ancient galaxy about 3 billion light-years away from Earth.

The post Explosive star ‘demolition derby’ observed for the very first time appeared first on Popular Science.

]]>
Astronomers studying a powerful gamma-ray burst (GRB) with the International Gemini Observatory, operated by NSF’s NOIRLab, may have observed a never-before-seen way to destroy a star. Unlike most GRBs, which are caused by exploding massive stars or the chance mergers of neutron stars, astronomers have concluded that this GRB came instead from the collision of stars or stellar remnants in the jam-packed environment surrounding a supermassive black hole at the core of an ancient galaxy.
Astronomers studying a powerful gamma-ray burst (GRB) with the International Gemini Observatory, operated by NSF’s NOIRLab, may have observed a never-before-seen way to destroy a star. Unlike most GRBs, which are caused by exploding massive stars or the chance mergers of neutron stars, astronomers have concluded that this GRB came instead from the collision of stars or stellar remnants in the jam-packed environment surrounding a supermassive black hole at the core of an ancient galaxy. International Gemini Observatory/NOIRLab/NSF/AURA/M. Garlick/M. Zamani

Astronomers using the Gemini South telescope in Chile spotted an enormous energetic explosion coming from an ancient galaxy. This blow-up was likely triggered by a “demolition derby” type of star death that scientists have long hypothesized, but never observed. This smashing star annihilation is described in a study published June 22 in the journal Nature Astronomy.

[Related: What would happen if the Milky Way died?]

Most star deaths occur in pretty predictable ways, depending on their mass. Our sun and other relatively low-mass stars slough off their outer layers as they get older, and they eventually fade to become white dwarf stars. The bigger stars burn brighter and die out sooner in supernova explosions that create ultra dense objects like black holes and neutron stars. If two of these kinds of stellar remnants form a binary system, they can collide. 

This new study points to an option that has been hypothesized for at least 49 years, but hasn’t been observed. The gamma-ray burst (GRB) that they observed was about 3 billion light-years away from Earth in the rough proximity of the constellation Aquarius. It may have been caused by two compact stars—possibly neutron stars—colliding within a chaotic and densely packed environment near a giant black hole located at the center of an elliptically shaped galaxy. 

The team believes that these two ill fated stars were packing roughly the mass of our sun into a sphere that is only the size of a city.

“These new results show that stars can meet their demise in some of the densest regions of the Universe where they can be driven to collide,” Andrew Levan, study co-author and astronomer at Radboud University in The Netherlands, said in a statement. “This is exciting for understanding how stars die and for answering other questions, such as what unexpected sources might create gravitational waves that we could detect on Earth.”

Ancient galaxies hosting this star demolition derby event are typically long past their star-forming prime. They would have few, if any, giant stars which are the principal source material of long GRBs. However, the cores of these galaxies are full of stars and ultra-dense stellar remnants, including black holes, white dwarfs, and neutron stars.  

On October 19, 2019, scientists got the first hints that collisions like the one observed by the team could occur when NASA’s Neil Gehrels Swift Observatory detected the presence of a bright flash of gamma rays that lasted for just over 60 seconds. If a GRB lasts more than two seconds, it is considered long. These bursts are typically seen in the supernova death of stars that are at least 10 times the mass of our sun, but not always. 

[Related: An amateur astronomer spotted a new supernova remarkably close to Earth.]

To make long-term observations of the GRB’s fading afterglow and learn more about where it came from, the team used the Gemini South telescope. Their observations allowed the astronomers to find the exact location of the GRB to a region that is less than 100 light-years away from an ancient galaxy’s nucleus and also very near the galaxy’s enormous black hole.

The team also didn’t find any evidence of a corresponding supernova which would leave its imprint on the light studied by the telescope.

“Our follow-up observation told us that rather than being a massive star collapsing, the burst was most likely caused by the merger of two compact objects,” said Levan. “By pinpointing its location to the center of a previously identified ancient galaxy, we had the first tantalizing evidence of a new pathway for stars to meet their demise.”

The team hopes to discover more of these stellar events and also to match a GRB detection with a corresponding gravitational-wave detection. Matching these two events would reveal more about their true nature and even confirm their origins. 

“Studying gamma-ray bursts like these is a great example of how the field is really advanced by many facilities working together, from the detection of the GRB, to the discoveries of afterglows and distances with telescopes like Gemini, through to detailed dissection of events with observations across the electromagnetic spectrum,” said Levan.

The post Explosive star ‘demolition derby’ observed for the very first time appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
NASA turns spectacular space telescope images into vibey ‘cosmic sonifications’ https://www.popsci.com/technology/nasa-sonification-images/ Wed, 21 Jun 2023 14:36:22 +0000 https://www.popsci.com/?p=550098
R Aquarii binary star system
NASA released three new sonic renderings of galaxies, stars, and quasars. NASA/Chandra X-ray Center

Listen as starlight becomes an orchestra.

The post NASA turns spectacular space telescope images into vibey ‘cosmic sonifications’ appeared first on Popular Science.

]]>
R Aquarii binary star system
NASA released three new sonic renderings of galaxies, stars, and quasars. NASA/Chandra X-ray Center

Scientists have translated data from cosmic bodies and events into spectacular audio renditions for years, but NASA’s latest releases may be the first to feature accompanying real-time visual aides. Unveiled on Tuesday, a trio of brief “sonifications” derived from information gleaned by the Chandra X-ray Observatory, James Webb Space Telescope, Hubble Space Telescope, and Spitzer Space Telescope showcase the interplay between infrared light, space gas, and other interstellar materials to create gorgeous ambient soundscapes. Taken as a series, NASA’s “cosmic harmonies” provide new, awe-inspiring ways to view the universe.

“Because different telescopes can detect different types of light, each brings its own pieces of information to whatever is being observed,” NASA explained in its June 21 announcement. “This is similar in some ways to how different notes of the musical scale can be played together to create harmonies that are impossible with single notes alone.” According to NASA, the collaboration was overseen by Chandra X-ray Center visualization scientist Kimberly Arcand, astrophysicist Matt Russo, and musician Andrew Santaguida.

NASA offers three videos with each sonification shown via a moving cursor, rendering the telescopes’ 2D images into something akin to written musical scores. An image depicting the two-star system R Aquarii, for example, is shown with a radar-esque tracker moving clockwise from a central point around the picture. As the cursor passes over Hubble’s visible light and Chandra’s X-ray images, the volume increases. Meanwhile, the music pitch rises and falls depending on the sources’ distance from the image center.

“The ribbon-like arcs captured by Hubble create a rising and falling melody that sounds similar to a set of singing bowls (metal bowls that produce different sounds and tones when struck with a mallet), while the Chandra data are rendered to sound more like a synthetic and windy purr,” explained NASA scientists.

[Related: What we learn from noisy signals from deep space.]

Another image depicts “Stephan’s Quartet,” a cluster of four galaxies moving one another via gravitational pull, along with a fifth galaxy located at a different distance. As a tracking line moves downward across the image, additional background galaxies and stars are punctuated as different glass marimba notes alongside a host of other ambient, representational tones. Finally, the Messier 104 galaxy located within the Virgo cluster received its own sonifications based on multiple light readings—infrared, X-ray, and optical.

Check out the clips below:

The post NASA turns spectacular space telescope images into vibey ‘cosmic sonifications’ appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
JWST’s double take of an Earth-sized exoplanet shows it has no sky https://www.popsci.com/science/trappist-1c-jwst-atmosphere/ Tue, 20 Jun 2023 22:00:00 +0000 https://www.popsci.com/?p=549877
The TRAPPIST system, which has the most Earth-sized planets known yet.
The TRAPPIST system, which is the most studied planetary system outside our own. TRAPPIST-1c is the second planet from the left. NASA/JPL-Caltech

It's unlikely that TRAPPIST-1c has a carbon dioxide atmosphere, unlike what astronomers previously hypothesized.

The post JWST’s double take of an Earth-sized exoplanet shows it has no sky appeared first on Popular Science.

]]>
The TRAPPIST system, which has the most Earth-sized planets known yet.
The TRAPPIST system, which is the most studied planetary system outside our own. TRAPPIST-1c is the second planet from the left. NASA/JPL-Caltech

Earth’s atmosphere is absolutely crucial for life on our blue marble, so it’s no wonder astronomers are eager to peer into the clouds of exoplanets around other stars. One popular far-flung world—TRAPPIST-1c—was so appealing to researchers because it was previously thought to be shrouded in a thick layer of carbon dioxide. But new observations from the James Webb Space Telescope (JWST), however, have revealed that it is more likely to be a barren rock, with no atmosphere in sight. 

When astronomers try to get a handle on how many planets out in space could support life, the first place to look is a rocky world like Earth, where the planet has a sturdy surface for biology to take root. Small planets are abundant in the galaxy,” says Sebastian Zieba, exoplanet researcher at the Max Planck Institute for Astronomy and Leiden Observatory and the lead author of a study published in Nature on the new TRAPPIST-1c observations. “At least 20 to 50 percent of stars host a planet similar in size to the Earth.” Astronomers still don’t know much about these rocky planets’ atmospheres, or whether they have one at all. It’s also an open question whether M dwarf stars, the abundant kind of star TRAPPIST-1c orbits, might destroy those planets’ atmospheres, rendering them uninhabitable. 

JWST is quickly changing that reality. “There is no other observatory right now which can give us precise measurements like these,” Zieba adds—studying infrared light is where the telescope excels. The fingerprints of many molecules important for life show up in those infrared wavelengths, but these are challenging to detect. To make these measurements, JWST has to be far beyond freezing, a meager 7 kelvin (equivalent to -500°F).

“For many years, scientists have been modeling the atmospheres of these worlds,” says Daria Pidhorodetska, an astronomer at the University of California, Riverside not involved in the new research. “To finally get to see the real data come from JWST feels like a dream come true.”

[Related: A whopping seven Earth-size planets were just found orbiting a nearby star]

Observers have focused so much attention on TRAPPIST-1c for a good reason: it’s by far the best target to study rocky, Earth-sized planets in detail, since it’s nearby (about 40 light years away) and easy to see with current tech. “You would obviously start with the lowest-hanging fruit,” says Zieba. TRAPPIST-1c orbits the star TRAPPIST-1, which hosts a family of seven Earth-sized planets. Three of them might be in the star’s habitable zone

That solar system offers a unique chance for astronomers to look at Earth-like planets at different temperatures, getting a glimpse at a spectrum of possibilities for rocky worlds. By determining what molecules surround these worlds, “we may be able to infer whether they could indeed support life,” says University of California, Los Angeles astronomer Judah Van Zandt, who was not involved in the paper. 

[Related: What Earth looks like to far-out celestial bodies]

TRAPPIST-1 isn’t like our sun, though. It’s a small red star called an M dwarf, which happens to be the most common star type in the galaxy. One of the big questions in astronomy right now is: Can planets around M dwarfs keep their atmospheres, or do the brutal flares of these powerful little stars burn the skies away? If astronomers find that most planets around M dwarfs are bare rocks, maybe sun-like stars are necessary for life after all. So far, there are two strikes against M dwarfs—not only does TRAPPIST-1c lack an atmosphere, but a publication from earlier this year showed that TRAPPIST-1b is also barren. 

We will soon find out whether TRAPPIST-1c’s neighbors follow this pattern—or upend it. All seven TRAPPIST-1 planets will be observed with JWST within the year, and it’s yet to be seen if others may have kept their clouds. And even if they don’t, as Zieba says, “this is obviously just one M-type star.” Astronomers will have to observe many more planets to truly judge whether M dwarfs are fit to support life.

The post JWST’s double take of an Earth-sized exoplanet shows it has no sky appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Astronomers unveil a new way to search for extraterrestrial intelligence https://www.popsci.com/science/galactic-beacon-alien-radio-signals/ Sun, 11 Jun 2023 17:00:00 +0000 https://www.popsci.com/?p=547201
The radio telescope at Green Bank.
The 140-foot radio telescope at Green Bank, West Virginia, kicked off the search for galactic beacons. NRAO/AUI/NSF

No one had thought to search for centralized, pulsing beacons. Until now.

The post Astronomers unveil a new way to search for extraterrestrial intelligence appeared first on Popular Science.

]]>
The radio telescope at Green Bank.
The 140-foot radio telescope at Green Bank, West Virginia, kicked off the search for galactic beacons. NRAO/AUI/NSF

The hunt for aliens isn’t as sensational or speculative as you might think. In fact, astronomers are constantly inventing practical ways to search for intelligent life in our universe. Research recently published in the Astronomical Journal describes a pioneering method to look for radio beacons at the center of the Milky Way—a new idea for how extraterrestrials might send us signals. (Spoiler: the study authors didn’t find any beacons…yet!)

Astronomers have been scanning the sky with radio telescopes since the dawn of the Search for Extraterrestrial Intelligence, or SETI, in the 1960s, when they began listening for technological messages from the stars. In particular, they’ve been looking for so-called narrowband signals—blips of radio waves that occur over a very small range of frequencies, which couldn’t be produced by nature. Narrowband messages generally have to target a specific star, whereas a centralized radio beacon could cast a wide net, sweeping across the galaxy.

“This paper is hugely important for the Search for Extraterrestrial Intelligence because it contains the first large survey for radio technosignatures that are periodic,” says SETI Institute astronomer Sofia Sheikh, a co-author on the new work. Periodic means these signals would be “flashing over time like a lighthouse,” she says, “instead of assuming that the signal has to be on continuously like a streetlight.”

[Related: Alien civilizations could send us messages by 2029]

Sheikh and other collaborators, including Cornell University astronomer Akshay Suresh, propose these repeating pulses of radio emission could originate from some sort of rotating beacon. If situated at the center of the galaxy, such a beacon could be a particularly efficient way of communicating across vast distances. The signals from this kind of beacon may also be easier to find while sifting through radio data, which is often contaminated with the omnipresent buzzing of Earth’s technology.

These beacons would be more energy efficient compared to the continuous narrowband signals astronomers previously looked for. What’s more, “their regularly flashing nature makes them easy to detect with algorithms, differentiable from human-based radio interference, and generally obvious as something weird,” Sheikh explains. Looking toward the galactic center is also a great way to increase the odds of spotting something, since the concentration of stars is higher in the middle of the Milky Way. More stars means more planets and more chances for life to arise.

“It’s a logical technique for searching for events or transmissions that we can’t otherwise predict,” agrees Penn State astronomer Macy Huston, who is not affiliated with the findings. But, there’s a catch— although the center of the galaxy is dense with stars, many astronomers predict the radiation there makes it too dangerous for life to arise, putting it outside the so-called Galactic Habitable Zone.

[Related: Why astronomers are blasting Earth’s location to potential intelligent aliens]

That didn’t deter Sheikh, Suresh, and their teammates, who used the world’s largest steerable radio dish, the Green Bank Telescope in West Virginia, to test out their probe for galactic beacons. After looking at the central 600,000 stars in the Milky Way for five hours, nothing extraordinary jumped out of the data. This amount of searching, though, is like exploring  a single drop of water plucked from an entire swimming pool; just because nothing showed up in this first search, it doesn’t mean the theory of galactic beacons is bust. Suresh is particularly excited that the algorithm developed for this search will allow astronomers to easily “explore their data for pulsating signals” in future scans.

“The jury is still out on the general prevalence of technological life in the universe,” says Sheikh. Although the progress may be slow, steadily sifting through the whole pool of stars in the galaxy is the only way “that we’ll ever be able to say anything conclusive about the prevalence of technological life, and this paper brings us one step closer.”

The post Astronomers unveil a new way to search for extraterrestrial intelligence appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A spacecraft engineer’s wisdom from Mars 2020 and a disaster-stricken island https://www.popsci.com/science/the-boy-who-reached-for-the-stars/ Wed, 07 Jun 2023 10:00:00 +0000 https://www.popsci.com/?p=546465
NASA Perseverance rover being readied indoors for launch for the Mars 2020 mission
The Mars 2020 Perseverance rover being prepared for encapsulation in the a payload facility at Kennedy Space Center in Florida on June 18, 2020. NASA/KSC

'The Space Mechanic' illustrates the importance of taking risks, close to home and millions of miles away.

The post A spacecraft engineer’s wisdom from Mars 2020 and a disaster-stricken island appeared first on Popular Science.

]]>
NASA Perseverance rover being readied indoors for launch for the Mars 2020 mission
The Mars 2020 Perseverance rover being prepared for encapsulation in the a payload facility at Kennedy Space Center in Florida on June 18, 2020. NASA/KSC

Excerpt from The Boy Who Reached for the Stars: A Memoir by Elio Morillo. Published by HarperOne. Copyright © 2022 HarperCollins.

On September 20, 2017, Category 5 Hurricane María hit my beloved Puerto Rico, hovering over the island for the next 48 hours, uprooting trees, causing power and phone outages, and inflicting catastrophic devastation throughout the land. It was a terrifying stretch of time when those of us with loved ones in the path of this

destruction could only hope and pray they were okay. As we waited to get any type of news, my fix-it mentality kicked in—I needed to do something to channel my helplessness into action. I joined forces with a Puerto Rican who worked in another team at NASA Jet Propulsion Laboratory to begin collecting donations, so we would be ready to ship them out as soon as it was possible. Relief washed over us both when the worry laden silence was finally broken and we heard from our respective families and friends. More than anything, they had suffered material damage to their homes and surrounding streets, but everyone within our circles was okay otherwise. Rosa and Sonia described the experience as a powered-on jet engine sucking everything up into the air.

As more news was released of the extent of the damage people had suffered, my friend and I continued to organize donation efforts in Los Angeles. It was all we could do at the time. I had to carry my worry while I continued to work. I was assigned to avionics and thermal functions testing. In simple terms, the rover has two brains: its main day-to-day brain and what I call its lizard brain. The lizard brain is always running in the background, ready for fight or flight. It checks to make sure that the main computer, or main brain, is working well. If something goes south with the main brain, then the lizard brain can go through particular states to keep the system at a basic level of safety, putting the rover in a partially autonomous configuration that allows us time to figure out what to input to safely reconfigure its hardware.

The rover’s thermal behaviors are what helps keep it alive overnight, when Mars temperatures can drop to −100°F or lower, depending on the season. There are particular instruments and mechanisms that can only operate within a specific range of temperatures.

If they become too cold, we must be able to heat them up. If they’re too warm, we have to stop using them or actively cool them down to the range we want them to operate in. As we gradually entered an all-hands-on-deck phase ahead of our July 2020 launch date, I knew that if I was going to be an effective and successful member of the team, I needed to make the conscious decision to put my work first, but not before making my all-important pit stop to spend Christmas with my family.

We were developing the capabilities, the hardware, all of it, to fulfill a technology demonstration to test the first powered flight on Mars, but NASA HQ still hadn’t given the okay to add it to the Mars 2020 mission.

This time we met up in Florida. My grandparents, who didn’t travel often, joined us from New York. And I got to reunite with Sonia and Robert, who were temporarily living in the area while they sorted through Hurricane María’s damage back home. While my abuelo made sure the TV and music were set up and ready for our gathering, my abuela got busy in the kitchen, whipping up her famous casuela or caldo de bola together with extra sides to keep us all fed, full, and happy. My tías and tíos would give them a hand while making fun of each other and roasting my cousins. And a round of Telefunken (a game similar to rummy) was always in order, with bets of up to two dollars per person per round.

The highlight of this break wasn’t just spending quality time with my relatives and chosen family; it was also getting the chance to take my 91-year-old grandfather and my brother to the Kennedy Space Center—a first for the three of us. Walking into the center and suddenly being in the presence of all this antiquated hardware took my breath away. The exhibit featuring the Saturn V launch vehicle made me feel so small. I was mesmerized by how the 1950s team was able to design the stunning hardware displayed before me with the limited technology they had access to in comparison to what we have now. Sure, they had a relatively bigger budget and thousands of people working on one problem, which is not a luxury we enjoy, but they didn’t have our software and automated procedures, and they were doing it all for the first time. As if taking all of this in wasn’t enough, being there as a NASA engineer, walking the entire center by my grandfather’s side, with me as our tour guide, explaining each piece before us, was an unparalleled full-circle moment for me. I stopped several times, glanced at my grandfather, and quietly asked, “Abuelo, are you okay? Would you like us to sit down for a little while to rest?” but he outright refused any break, likely pushed forward by a sense of pride for his walking abilities as well as the sense of wonder that had taken hold of us all as we witnessed this history-making equipment. It was an unequivocal reminder of the legacy I was now helping build with the Mars 2020 mission.


Inspired by the history I had witnessed at the Kennedy Center, and with a renewed sense of purpose, I was more eager than ever to dive even deeper into the mission at stake. February 2018 found me interacting with the Ingenuity helicopter for the first time, more specifically its base station, a component of the helicopter system that would live on the rover. This is the piece of hardware that would communicate with the helicopter on Mars. We were developing the capabilities, the hardware, all of it, to fulfill a technology demonstration to test the first powered flight on Mars, but NASA HQ still hadn’t given the okay to add it to the Mars 2020 mission. So we were operating with the hope this green light would eventually be given, and we kept plowing ahead on the rover side, considering how we’d carry the helicopter, how we’d communicate with it, how we’d operate it from this base station. Initially, many of the people on the integration side of the rover were against the idea of integrating the helicopter as a separate system, because that meant it would also have its own separate battery. What if its battery caught fire while cruising through space or on the Mars surface? How would that damage the rover itself? “There’s no way the helicopter will work” was one line of thought. The other: “There’s no way you’ll be able to get all of this work done in time.” And the third: “This helicopter will be a distraction from the rest of the science the rover has to accomplish.” Was it a risk to do this tremendous amount of work for a helicopter that might never launch? Yes, but it was one some of us were willing to take.


As the summer neared, I set my mind on Puerto Rico and the risks and sacrifices they had been forced to take when Hurricane María hit their shores. The island had far from recovered from the damage sustained a little less than a year earlier, and my colleague (turned girlfriend) and I were still eager to help in any way we could. I decided to use my social media to reach out to teachers in Puerto Rico to see how we could help that summer. I quickly received a reply from a University of Michigan friend whose mom had a colleague, Marisa, in need of some help. With the community’s blessing, she and her husband had decided to take over an abandoned school in Los Naranjos, a neighborhood in Vega Baja, located near Dorado, and turn it into a community center. The local residents had lost so much during the hurricane that she was hell-bent on making a difference. Now they were looking for volunteer to get the center off the ground. My girlfriend and I created a three-day STEM program for kids between the ages of eight and 15, called Ingenieros del Futuro (Engineers of the Future). The activities we planned introduced the kids to basic engineering concepts and revolved around three themes: robotics, electricity, and rockets. I set up a GoFundMe to help pay for some of the materials, while we paid for everything else out of pocket.

When we arrived, seeing the devastation firsthand threw me off my orbit and momentarily pushed me into an impotent void. As I painstakingly drove through intersections where the traffic lights had gone dark due to the lack of power, I slowly took in the trees scattered around the area like giant twigs, displaced rooftops, cut-down electricity cables, and attempted to store this harrowing data in a corner of my mind so I could find my way back to our main focus: the kids. I’d give myself time to process this emotional oscillation later, when I returned home.

The Boy who reached for the Stars book cover. Silhouette of a NASA engineer in front of a blue starry sky. Text is in white with Mars replacing the "o" in "boy."
Courtesy of HarperOne

We immediately got the kids working and building several projects—a basic robot, an electric car that used a solar panel to power it, a satellite model, and a wind turbine—to illustrate robotics, sustainable energy, and space exploration. We also scheduled outdoor time to give their brains a break and burn some energy playing soccer with us. For the last project of their three-day journey, I taught them how to build a rocket with a two-liter plastic bottle and a few other readily available components. I had also purchased a bottle launch system that pumped up the rockets and had a trigger that allowed each kid to send their own rocket into the air.

Once it reached a certain height, a parachute they had built into their system with their own hands deployed, safely landing their creation. Their excitement during each launch, descent, and landing, about further engaging with technology and pursuing opportunities in STEM, gave me hope for the people of Puerto Rico. The island currently has to import most of its food, despite once being fully reliant on its own agriculture sector. With agritech becoming more accessible, combined with the development of hydroponics, vertical farming, and more, I see this as a potentially booming sector for Puerto Rico in the future. But they will need dedicated STEM workers to make it happen. The same goes for the ever-controversial power grid. As energy storage and solar, hydro, and wind power become more accessible, microgrids will thrive, and so will the jobs related to those renewable systems.

Sinergia Los Naranjos is still active in the community. Marisa successfully launched a kitchen for folks to run catering businesses, and her husband, Ricardo, runs a reef restoration effort where many of the kids participate and get scuba training. Workshops occur in partnership with local student groups from nearby universities, mostly through grassroots funding and efforts. These kids have the power to build a better future, and I hope to continue to be able to come alongside them and encourage these developments through outreach, philanthropy, and policy influence.


By the spring of 2019, I was working with a few team members to test the capability of our rover to charge the helicopter battery through its base station while traversing space. Batteries, including those in computers and cell phones, left uncharged for a long period of time lose their properties and can’t regain their full charging potential.

Similarly, overcharging a battery and leaving it stored for a long period of time will degrade its lifetime. We had to figure out the sweet spot for the helicopter battery, then find how to measure that charge and, based on that, how to charge it from the rover battery.

Once we figured this out through tests and failures and finally verified what worked, we had to come up with the sequence of steps that needed to be taken to charge the helicopter while flying through space. It was a complicated set of tests that took up a lot of our time but was essential to the helicopter’s functionality and safety.

That summer I began to write and execute integration procedures for the helicopter deployment system, which is the assembly at the bottom of the rover that would hold the helicopter and deploy it. The system consisted of a tiny robotic arm with a motor that would keep the helicopter upright so that it could be successfully dropped onto the Martian surface. After testing this capability and gathering the necessary parameters, we determined that we could indeed deploy it on Mars. A short while after this, JPL finally approved the addition of the helicopter to the Mars 2020 mission. We got the green light. Like most times in my life, the risk proved to be worth taking.

Buy The Boy Who Reached for the Stars by Elio Morillo here.

The post A spacecraft engineer’s wisdom from Mars 2020 and a disaster-stricken island appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
NASA’s journey to a strange metal asteroid should finally begin in October https://www.popsci.com/science/psyche-mission-launch-october/ Tue, 06 Jun 2023 18:00:00 +0000 https://www.popsci.com/?p=546295
NASA's Psyche probe should blast off to an asteroid later in 2023.
A NASA probe approaches giant metal asteroid 16 Psyche in this concept art. NASA/JPL-Caltech

The Psyche mission has a launch date again, after software problems and COVID-era delays.

The post NASA’s journey to a strange metal asteroid should finally begin in October appeared first on Popular Science.

]]>
NASA's Psyche probe should blast off to an asteroid later in 2023.
A NASA probe approaches giant metal asteroid 16 Psyche in this concept art. NASA/JPL-Caltech

NASA’s upcoming Psyche mission will send a small probe to a unique metal asteroid—a curious object that may be the exposed heart of a former planet. But to prepare for the 280-million-mile journey, engineers have had to attend to a million little details over the course of years of planning and construction. Working those out took more time than anticipated: NASA delayed Psyche’s launch last year, prompting concerns about the mission’s future and triggering an investigation into what caused the set back. On Monday, NASA announced that Psyche is thriving and on track for a new launch date in October 2023.

“The 2023 launch date is credible, and the probability of mission success is high,” said A. Thomas Young, chair of the independent review board that assessed Psyche’s missteps, at a news conference. NASA Jet Propulsion Lab (JPL) Director Laurie Leshin confirmed the fall blast-off: Psyche is “green across the board, and on track for October launch.” Of the 18 weeks to go until launch, seven are buffer time—a pretty impressive margin for such an intense engineering project.

Psyche, announced in 2017, was first delayed in June 2022 when issues with its flight software arose during testing. NASA commissioned the review board soon after, which delivered its findings last fall. The review cited issues across the entire laboratory—understaffing, a lack of experienced managerial oversight, budget strain, and the COVID-19 pandemic—as factors contributing to the mission’s woes. JPL’s reckoning with this review had ripple effects, including the controversial indefinite pause of the VERITAS mission to Venus.

[Related: 5 ways we know DART crushed that asteroid (but not literally)]

Now, in May 2023, the review board has reassessed JPL’s readiness. The Psyche debacle may have raised questions about the ability of JPL to juggle building more than a dozen spacecraft, but NASA officials emphasized the concerns plaguing the center’s operations has been addressed. The progress made at JPL is “not only outstanding, but world-class as determined by our review board,” said Nicola Fox, associate administrator for NASA’s Science Mission Directorate.

JPL’s changes include hiring more experienced staff (including luring back talent that left JPL for commercial spaceflight companies), reorganizing the engineering teams to focus on high-priority work, and updating their hybrid work policy to bring more people back in-person to the lab. “We’ve overcome our workforce issues, our missions are staffed,” said Leshin.

[Related: The asteroid that created Earth’s largest crater may have been way bigger than we thought]

If Psyche leaves Earth as scheduled in the fall, it will arrive at the asteroid 16 Psyche in 2029. The mission will hopefully reveal information about how planets form, and will confirm if 16 Psyche is the leftover metal core of a failed planet as hypothesized. Some companies even see the Psyche mission as a potential first step toward mining asteroids for precious metals, as the space rock contains approximately 10 quintillion dollars worth of materials. 

And things are looking up for other missions, too—especially since JPL recently delivered the NISAR Earth-radar satellite on schedule and is making good progress for next year’s launch of Europa Clipper. The laboratory’s strong progress is a good sign for the hopeful restart of VERITAS, which would be a huge win for planetary scientists and a monumental return to our sister planet.

The post NASA’s journey to a strange metal asteroid should finally begin in October appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
An amateur astronomer spotted a new supernova remarkably close to Earth https://www.popsci.com/science/supernova-near-earth-astronomy/ Fri, 26 May 2023 10:00:00 +0000 https://www.popsci.com/?p=543779
M101, also known as the Pinwheel galaxy, captured by the Hubble Space Telescope.
The Messier 101 galaxy, aka the Pinwheel galaxy, is home to the exploded star. Hubble Image: NASA, ESA

A backyard telescope is all you need to spot this nearby exploding star.

The post An amateur astronomer spotted a new supernova remarkably close to Earth appeared first on Popular Science.

]]>
M101, also known as the Pinwheel galaxy, captured by the Hubble Space Telescope.
The Messier 101 galaxy, aka the Pinwheel galaxy, is home to the exploded star. Hubble Image: NASA, ESA

Million of years ago, before land connected Earth’s North and South American continents, about 21 million light years away an aged and bloated star gave up the ghost in dramatic fashion, dying in a cataclysmic supernova explosion.

On Friday, May 19, the light from that massive explosion finally reached the telescope of Japanese amateur astronomer Koichi Itagaki, who alerted the larger astronomical community: The supernova is now officially named SN2023ixf. 

”Those photons that left that exploding star 20 million years ago have just now washed upon our shores from this long, long voyage through the cosmos,” says Grant Tremblay, an astrophysicist at the Harvard and Smithsonian Institute Center for Astrophysics, who has been actively spreading the word of the supernova on social media. “It’s happening now, in that we’re watching this thing finally explode, but the star has been dead for 20 million years.”

SN2023ixf is the closest supernova of its kind to Earth to pop off in five years, and the second closest in the past decade, according to NASA. That makes SN2023ixf a rare opportunity for astronomers to study the fiery death of a star. While too faint to be seen by the naked eye, the supernova should be visible to modest hobbyist telescopes, according to Tremblay. 

Because the supernova will fade rapidly, stargazers have to seize the opportunity to observe it, including at multiple wavelengths.“The whole global community has rallied, from community astronomers to big multibillion-dollar space telescopes,” Tremblay says. 

How to spot supernova SN2023ixf 

SN2023ixf exploded in M101, also known as the Pinwheel galaxy, which is located in the night sky near the constellation Ursa Major. M101 is a bright spiral galaxy that lies face-on from the perspective of Earth and is a member of the Messier catalog of celestial objects, making it a common target for backyard astronomers. A 4.5-inch telescope should be sufficient to view the supernova, which will appear as a bright point of light, according to Sky and Telescope. You can find M101 by first finding Mizar, the star at the bend in Ursa Major’s tail, and following the five stars that lead away from it. Or, to be more precise, you want to point your telescope at a right ascension of 14:03:38.580 and a declination of +54:18:42.10. 

[Related: Astronomers just confirmed a new type of supernova]

Alternatively, the Virtual Telescope Project, a worldwide network of quality amateur telescopes, will livestream an observation of the supernova beginning at 6:30 p.m. Eastern on May 26. 

“M101 is imaged by human beings every single night, all around the world, from hobbyists to all sky observatories like [The Sloan Digital Sky Survey], and so it was inevitable that this thing would be found eventually. But I just loved that Itagaki found yet another supernova,” Tremblay says. Itagaki is not a professional scientist, but he is the co-author of more than a dozen scientific papers based on his supernova observations. Tremblay says Itagaki has a “legendary” ability to spot supernovas, and he’s collecting these “discoveries like Thanos and infinity stones.” Itagaki’s findings include the 2018 supernova SN 2018zd, which proved to be an entirely new type of supernova in the universe. 

Deep Space photo
Astronomer Koichi Itagaki spied the supernova (noted by the two straight lines) in the Pinwheel galaxy. Koichi Itagaki

Catching the bright burst of SN2023ixf on May 19, Itagki submitted his discovery to the International Astronomical Union’s transient name server website. From there, professional astronomers picked up the call, and within a few days, researchers began pointing major ground and space telescopes at the supernova, including the Hubble and James Webb Space Telescopes and the Chandra X-ray observatory.

All those telescopes will be measuring SN2023ixf’s light curve, “meaning the brightening and fading of this target in multiple wavelengths,” Tremblay says, on the spectrum from X-rays to optical light to infrared.

Lessons from an exploded sun

Those observations will help scientists characterize the star that exploded to create SN2023ixf, and more precisely define the type of supernova it is. Astronomers can already tell that SN2023ixf is a Type II, or “core collapse” supernova. This occurs when a massive star exhausts its nuclear fuel. The nuclear fusion reactions in its core can no longer push outward against the force of the star’s own gravity. The star’s core collapses in on itself, and then explodes outward in less than a second. 

“This shock wave propagates outward, and it plows up gas in the ambient surroundings that can light up in all different wavelengths,” Tremblay says. Studying how that afterglow evolves over time will tell scientists about the mass and make up of the late star.

And the makeup of the star is connected to life on Earth—and life anywhere else in the cosmos, if it exists. Stars increase chemical complexity throughout their life cycles: They formed from primordial hydrogen after the Big Bang, fusing it first into helium and then into heavier elements right up to iron. When those stars die in supernovas, the intense heat and pressure form all of the known elements heavier than iron, and seed them throughout the cosmos, providing the raw material for rocky planets and life itself. “The story of life in the universe can be reduced, in many ways, to the story of increasing complexity,” Tremblay says.

The explosion of SN2023ixf is literally shedding light on the process that brought human beings into existence. Though the supernova will rapidly fade, it will remain an object of study for years to come, according to Tremblay. In the meantime, he says, the worldwide excitement around the supernova “is a beautiful illustration of the fact that the global public so effortlessly shares in our wonderment of the cosmos. An exploding star in a distant galaxy just lights up people’s hearts.”

The post An amateur astronomer spotted a new supernova remarkably close to Earth appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This hot Jupiter exoplanet unexpectedly hangs out with a super-Earth https://www.popsci.com/science/gas-giant-hot-jupiter-exoplanet/ Wed, 24 May 2023 10:00:00 +0000 https://www.popsci.com/?p=542886
An illustration of a hot Jupiter planet, based on Hubble observations.
A cloudy Jupiter-like planet orbiting close to a fiery star, in an illustration based on space telescope observations. NASA/JPL-Caltech

Gas giants that orbit very close to stars are normally loners. But this one has a friend.

The post This hot Jupiter exoplanet unexpectedly hangs out with a super-Earth appeared first on Popular Science.

]]>
An illustration of a hot Jupiter planet, based on Hubble observations.
A cloudy Jupiter-like planet orbiting close to a fiery star, in an illustration based on space telescope observations. NASA/JPL-Caltech

Our solar system has a suite of eight planets—rocky Mars and Earth, the ice giants, and massive gas planets—but other stars often have a much smaller group. Some suns have just one exoplanet orbiting around them. These loner worlds are often one specific type: A huge gas giant that orbits very close to its star, known as a hot Jupiter.

A newly discovered exoplanet, however, has challenged this view, showing that maybe not all hot Jupiters go solo. Last week, astronomers announced that a hot Jupiter orbiting a star 400 light years away has a pal: It shares its solar system with WASP-84c, a rocky planet so large it’s known as a super-Earth. This discovery was made public as a preprint, a research paper that has yet to undergo peer review, and submitted to the journal Monthly Notices of the Royal Astronomical Society for official publication.

Hot Jupiters are a weird kind of planet. We don’t have any in our own solar system. Until the first was spotted, astronomers never expected them to exist. Gas giants like Jupiter usually only form far away from their stars, where things are cool enough for gas to stay safe from blazing solar heat. If a Jupiter-like planet has to be born at a distance, then, how can it get so close to its star? 

Astronomers have three main theories for how this happens. Two are gentle, and one is catastrophic. First, a hot Jupiter could move inward from its birthplace due to little gravitational nudges from the protoplanetary disk, a collection of dust and gas used to form planets in a star’s youth. Second, maybe we’re wrong about the theory that Jupiter-like planets must form far from stars. Instead, these planets are simply born where we see them. Both of these scenarios would allow hot Jupiters to have smaller friend planets hanging out nearby.

[Related: Ridiculously hot gas giant exoplanet is about to be swallowed by its dying sun]

But the third option is the most dynamic. Jupiters could form far out, but then encounter other planets that change the gas giants’ orbits. The gravity of the other planets would force a hot Jupiter into a stretched out, elliptical path, and then the gravity of the star would pull the gas giant in close, resulting in a circular, super-short orbit. In this violent dance, any low mass planets would be destroyed—creating the lonely hot Jupiter.

The best theory for the origin of this particular hot Jupiter, named WASP-84b, is the first—that a disk helped shepherd the planet through the solar system. Previous observations showed that the gas giant’s spin is aligned with the star’s, a sign that the large planet migrated within the protoplanetary disk instead of pinballing around with other planets. The discovery of super-Earth WASP-84c now adds more evidence to the case that this hot Jupiter formed with a nudge, not a planet-destroying bang—and that scenario may be more common than previously thought.

WASP-84c joins a growing list of smaller planetary buddies to hot Jupiters: WASP-47 b, Kepler 730 b, and WASP-132 b, to name a few. “The discovery of low-mass planetary companions like WASP-84c suggests that not all hot Jupiter systems formed under violent scenarios, as previously thought,” says lead author Gracjan Maciejewski from the Institute of Astronomy of the Nicolaus Copernicus University in Torun, Poland.

Maciejewski and his colleagues used NASA’s Transiting Exoplanet Survey Satellite (TESS) to spot WASP-84c. TESS hunts for exoplanets using the transit method, where a telescope watches a star for teensy dips in its brightness, caused by a dark planet passing in front. 

[Related: A deep-space telescope spied an exoplanet so hot it can vaporize iron]

WASP-84c “was too small in radius to have been discovered by the original WASP survey, who discovered the hot Jupiter,” according to Caltech astronomer Juliette Becker, who is not affiliated with the new discovery. “It’s a great example of what TESS can do,” she adds.

With the transit method, astronomers can figure out a planet’s dimensions. However, to find out how much it weighs, they need different data, from another exoplanet-detecting technique known as the radial velocity method. When WASP-84c’s discoverers gathered this extra data, they determined that the planet has about 15 times the mass of Earth. Like our Blue Marble, it’s probably made of iron and rocks, too.

Jonathan Brande, a University of Kansas astronomer not involved in the discovery, thinks such discoveries will become even more common as the James Webb Space Telescope brings in new exoplanet data, deepening our understanding of how these planet pairs came to be. “I would not be surprised if we see further results on this system in the near future,” he says.

The post This hot Jupiter exoplanet unexpectedly hangs out with a super-Earth appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A super pressure balloon built by students is cruising Earth’s skies to find dark matter https://www.popsci.com/science/high-altitude-balloons-dark-matter/ Tue, 23 May 2023 10:00:00 +0000 https://www.popsci.com/?p=542439
SuperBIT high-altitude balloon with space telescope in the skies after its launch
The Superpressure Balloon-borne Imaging Telescope after launch. SuperBIT

SuperBIT belongs to a new class of budget space telescopes, ferried by high-altitude balloons rather than rockets.

The post A super pressure balloon built by students is cruising Earth’s skies to find dark matter appeared first on Popular Science.

]]>
SuperBIT high-altitude balloon with space telescope in the skies after its launch
The Superpressure Balloon-borne Imaging Telescope after launch. SuperBIT

High altitude balloons have drawn a lot of fire lately. In February, the US military shot down a spy balloon potentially operated by the Chinese government and an “unidentified aerial phenomenon” that was later revealed to likely be a hobbyist balloon.

So, when people caught sight of another large balloon in the southern hemisphere in early May, there was concern it could be another spy device. Instead, it represents the future of astronomy: balloon-borne telescopes that peer deep into space without leaving the stratosphere.

“We’re looking up, not down,” says William Jones, a professor of physics at Princeton University and head of NASA’s Super Pressure Balloon Imaging Telescope (SuperBIT) team. Launched from Wānaka, New Zealand, on April 15, the nearly 10-foot-tall telescope has already circled the southern hemisphere four times on a football stadium-sized balloon made from polyethylene film. Its three onboard cameras also took stunning images of the Tarantula Nebula and Antennae galaxies to rival those of the Hubble Space Telescope. The findings from SuperBIT could help scientists unravel one of the greatest mysteries of the universe: the nature of dark matter, a theoretically invisible material only known from its gravitational effects on visible objects.

[Related: $130,000 could buy you a Michelin-star meal with a view of the stars]

Scientists can use next-level observatories like the James Webb Space Telescope to investigate dark matter, relying on their large mirrors and positions outside Earth’s turbulent atmosphere to obtain pristine views of extremely distant celestial objects. But developing a space telescope and launching it on a powerful rocket is expensive. Lofting Hubble into orbit cost around $1.5 billion, for instance, and sending JWST to Lagrange point 2 cost nearly $10 billion.

SuperBIT took just $5 million to launch—a price cut stemming from the relative cheapness of balloons versus rockets and the lower barrier of entry for skilled workers to build the system.

“The whole thing is run by students. That’s what makes projects such as these so nimble and able to do so much with limited resources,” Jones says, referring to the SuperBIT collaborative between Princeton, the University of Durham in the UK, and the University of Toronto in Canada. “We have no professional engineers or technicians working on this full time—only the grad students have the luxury of being able to devote their full-time attention to the project.”

SuperBIT is not the first telescope carried aloft with a balloon: That honor goes to Stratoscope I, which was built in 1957 by another astronomy group at Princeton. But SuperBIT is one of a handful of new observatories made possible by 20 years of NASA research into so-called super pressure balloons. That work finally culminated in tests flights beginning in 2015 and the groundbreaking launch of SuperBIT.

Traditional balloons contain a lifting gas that expands as the sun heats it and as atmospheric pressure changes with altitude. That changes the volume of the envelope and, in turn, the balloon’s buoyancy, making it impossible to maintain a constant altitude over time.

Superpressure balloons keep the lifting gas, typically helium, pressurized inside a main envelope so that volume and buoyancy remain constant across day and night. The balloon then uses a smaller balloon—a ballonet—inside or beneath the main envelope as a ballast, filling or emptying the pocket of compressed air to change altitude and effectively steer the ship.

The super pressure balloon carrying SuperBIT can maintain an altitude of 108,000 feet (higher than 99.2 percent of Earth’s atmosphere) while carrying the 3,500-pound payload of scientific instruments. Unlike JWST and other missions, the purpose of the SuperBIT telescope isn’t to see farther or wider swaths of the universe or to detect exoplanets. Instead, it’s hunting for signs of a more ubiquitous and enigmatic entity.  

Space Telescope photo

“Dark matter is not made of any of the elements or particles that we are familiar with through everyday observations,” Jones says. That said, there’s a lot of it around us: It might make up about 27 percent of the universe. “We know this through the gravitational influence that it has on the usual matter—stars and gas, and the like—that we can see,” which make up around 5 percent of the universe, Jones explains.

Scientists estimate that the remaining 67 percent of the cosmos is made of dark energy, another largely mysterious material not to be confused with dark matter. Whereas the gravity of dark matter may help pull galaxies together and structure the way they populate the cosmos, dark energy may be responsible for the accelerating expansion of the entire universe.

Researchers probe extreme forces where dark matter might exist and calculate its presence by observing galactic clusters so massive their gravity bends the light that passes by them from more distant objects—a technique known as gravitational lensing. Astronomers can use this approach to turn galaxies into a sort of magnifying lens to see more distant objects than they normally could (something JWST excels at). It can also reveal the mass of the galactic clusters that make up the “lens,” including the amount of dark matter around them.

“After measuring how much dark matter there is, and where it is, we’re trying to figure out what dark matter is,” says Richard Massey, a member of the SuperBIT science team and a professor of physics at Durham University. “We do this by looking at the few special places in the universe where lumps of dark matter happen to be smashing into each other.”

Those places include the two large Antennae galaxies, which are in the process of colliding about 60 million light-years from Earth. Massey and others have studied the Antennae galaxies using Hubble, but it “gives it a field of view too small to see the titanic collisions of dark matter,” Massey says. “So, we had to build SuperBIT.”

Antennae galaxies in NASA SuperBIT imahe
The Antennae galaxies, cataloged as NGC 4038 and NGC 4039, are two large galaxies colliding 60 million light-years away toward the southerly constellation Corvus. The galaxies have previously been captured by the Hubble Space Telescope, Chandra X-ray Observatory, and now-retired Spitzer Space Telescope. NASA/SuperBIT

Like Hubble, SuperBIT sees light in the visible to ultraviolet range, or 300- to 1,000-nanometer wavelengths. But while Hubble’s widest field of view is less than a tenth of degree, SuperBIT’s field of view is wider at half a degree, allowing it to image wider swaths of the sky at once. That’s despite it having a smaller mirror (half a meter in diameter compared to Hubble’s 1.5 meters).

SuperBIT has another advantage over space telescopes. With less time from development to deployment and without complex accessories needed to protect it from radiation, extreme temperatures, and space debris, the SuperBIT team was able to use far more advanced camera sensors than those on existing space telescopes. Where Hubble’s Wide Field Camera 3 contains a pair of 8-megapixel sensors, Jones says, SuperBIT contains a 60-megapixel sensor. The balloon-carried telescope is also designed to float down on a parachute after the end of each flight, which means scientists can update the technology regularly from the ground.

“We’re currently communicating with SuperBIT live, 24 hours a day, for the next 100 days,” Massey says. “It has just finished its fourth trip around the world, experiencing the southern lights, turbulence over the Andes, and the quiet cold above the middle of the Pacific Ocean.” The team expects to retrieve the system sometime in late August, likely in southern Argentina, according to Jones.

[Related on PopSci+: Alien-looking balloons might be the next weapon in the fight against wildfires]

SuperBIT may just be the beginning. NASA has already funded the development of a Gigapixel class Balloon Imaging Telescope (GigaBIT), which will sport a mirror as wide as Hubble’s. Not only is it expected to be cheaper than any space telescope sensing the same spectrum of light, GigaBIT would also be “much more powerful than anything likely to be put into space in the near term,” Jones says.

As to whether SuperBIT will crack the mystery of just what dark matter is, it’s too early to tell. After a few flights, the grad students will have to pore over the project’s findings.

“What will the [data] tell us? Who knows! That’s the excitement of it—and also the guilty secret,” Massey says. “After 2,000 years of science, we still have absolutely no idea what the two most common types of stuff in the universe are, or how they behave.”

The post A super pressure balloon built by students is cruising Earth’s skies to find dark matter appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A gassy black hole might have burped out the largest cosmic explosion ever https://www.popsci.com/science/largest-explosion-cosmos-supermassive-black-hole/ Thu, 18 May 2023 16:00:00 +0000 https://www.popsci.com/?p=541906
A supermassive black hole with a mass many times that of our sun.
A supermassive black hole (like the one illustrated here) was thought to have feasted on gas, emitting a mammoth bang. NASA/JPL-Caltech

This fault in the stars lit up the universe with extraordinary brightness.

The post A gassy black hole might have burped out the largest cosmic explosion ever appeared first on Popular Science.

]]>
A supermassive black hole with a mass many times that of our sun.
A supermassive black hole (like the one illustrated here) was thought to have feasted on gas, emitting a mammoth bang. NASA/JPL-Caltech

Humans might fear the nuclear bomb, but it is not even a blip against what the cosmos can unleash. Take, for example, the gamma ray burst: a stark flash of light and radiation erupting from a colossal star in its death throes. Earlier this year, astronomers spotted a gamma ray burst that they’ve labeled “the brightest of all time.”

Yet a gamma ray burst is only a single exploding star. When far more mass is involved, the universe can set off even larger bangs. In a paper published May 11 in the journal Monthly Notices of the Royal Astronomical Society, astronomers announced what, in their words, is the most energetic astronomical event ever seen.

Still ongoing, this event isn’t as bright as a gamma ray burst—but, lasting far longer, it has unleashed far more energy into the universe. Although this explosion, an event named AT2021lwx, defies easy explanation, the astronomers who found it have an idea involving lucky black holes. If they’re right, their observatories may have sighted something like this event more than once before.

In a bit of irony, this “largest explosion ever seen” evaded astronomers’ detection for nearly a year. The Samuel Oschin Telescope, nestled at Palomar Observatory in the mountains northeast of San Diego, California, first picked up a brightening blip in June 2020. But as often happens in astronomy, a field inundated with data from a sky constantly bursting with activity, the event remained unnoticed.

Only in April 2021 did an automated system called Lasair bring AT2021lwx to human astronomers’ attention. By then, the blip in the sky had been steadily brightening for more than 300 days. While the blip was peculiar, astronomers thought little of it, until they estimated the object’s brightness by calculating how far away the event was: 8 billion light-years.

“That’s, suddenly, when we realized: ‘Hang on, this is something very, very unusual,’” says study author Philip Wiseman, an astronomer at the University of Southampton in the UK.

[Related: Astronomers now know how supermassive black holes blast us with energy]

“I haven’t seen anything changing brightness and becoming this bright on such a short timescale,” says Tonima Ananna, a black hole astrophysicist at Dartmouth College, who wasn’t an author.

At first, the authors didn’t know what to make of AT2021lwx. They asked their colleagues. Some thought it was a tidal disruption event, where a black hole violently tears apart a captured star. But this event was far, far brighter than any known star-eating episode. Others thought it was a quasar, a young galaxy with an active nucleus: a supermassive black hole churning out bright jets of radiation. But this event’s hundredfold surge in brightness was far greater than anything astronomers had seen in quasars.

“You have the tidal disruption people saying, ‘No, I don’t think it’s one of ours.’ You’ve got the quasar people saying, ‘No, I don’t think it’s one of ours.’ That’s where you have to start coming up with a new scenario,” Wiseman says.

Their new scenario also involves a black hole: a supermassive one, more than a million times the mass of the sun, at the heart of a galaxy. Normally, a supermassive black hole is surrounded by a gas accretion disc, drawn in by the immense gravity. Some supermassive black holes, like those in quasars, actively devour that gas; as they do, they glow in response. Others, like the one in the center of the Milky Way, are dormant, quiet, and dark.

“You have the tidal disruption people saying, ‘No, I don’t think it’s one of ours.’ You’ve got the quasar people saying, ‘No, I don’t think it’s one of ours.’ That’s where you have to start coming up with a new scenario.”

 Philip Wiseman, University of Southampton astronomer

Wiseman and his colleagues believe that, abruptly, a dormant black hole might suddenly find itself inundated by a very large quantity of gas—potentially thousands of times the mass of the sun. The black hole would respond to its newfound banquet by brilliantly awakening, bursting far more brightly than even an active counterpart.. 

Wiseman and his colleagues believe that such a windfall triggered AT2021lwx, causing a dormant supermassive black hole to light up the night.

“I think they make a compelling case that this is a supermassive black hole … suddenly being ‘switched on,’” says Ananna.

Astronomers might have seen accretion events like AT2021lwx before. Wiseman and his colleagues pored through past observations and found multiple needles in the haystack of astronomical data that resembled the record event. None of them were even close to this one’s brightness, but they also increased in luminosity along a similar pattern. These events occurred in galaxies known to have black holes at their centers, showering in streams of gas that fall inward.

[Related: Astronomers just caught a ‘micronova’—a small but mighty star explosion]

“There’s a chance that [the record event] is the same, but just the amount of gas that has been dumped on is much, much, much, much larger,” says Wiseman.

Wiseman and his colleagues plan to put their ideas to the test in the form of computer simulations. By doing this, they can learn if accretion events could have caused this record explosion and the other bright patterns they’d found.

Meanwhile, they’re planning to follow the trail they’ve found. AT2021lwx’s brightness has peaked and begun to steadily decline. They’ve begun watching the object’s X-ray emissions and plan to follow up with radio waves. Once the object has faded to black, they plan to zoom in with something like the Hubble Space Telescope, which can see if there’s a galaxy behind the burst—and what it looks like.

The need for more observations underscores that astronomers still have many unanswered questions about some of the universe’s most extreme events.

“There may be things out there already that have been larger and brighter, but because they are so slow, our detection algorithms never actually flagged them as being an explosion themselves—and they kind of just got lost,” Wiseman says.

The post A gassy black hole might have burped out the largest cosmic explosion ever appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How hundreds of college students are helping solve a centuries-old mystery about the sun https://www.popsci.com/science/solar-flare-coronal-heating-college-study/ Wed, 17 May 2023 10:00:00 +0000 https://www.popsci.com/?p=541468
Magnetic arches and solar flares emerging from the upper half of the sun's corona
Coronal loops on the sun are captured in ultraviolet light using the Atmospheric Imaging Assembly (AIA) instrument on NASA’s Solar Dynamics Observatory. NASA/SDO

Astronomers-in-training spent thousands of hours peering at tiny solar flares that space telescopes missed.

The post How hundreds of college students are helping solve a centuries-old mystery about the sun appeared first on Popular Science.

]]>
Magnetic arches and solar flares emerging from the upper half of the sun's corona
Coronal loops on the sun are captured in ultraviolet light using the Atmospheric Imaging Assembly (AIA) instrument on NASA’s Solar Dynamics Observatory. NASA/SDO

A team of more than 1,000 astronomers and college students just took a step closer to solving one of the long-lasting mysteries of astronomy: Why is the sun’s outer layer, known as the corona, so ridiculously hot? The solar surface is 10,000°F, but a thousand miles up, the sun’s corona flares hundreds of times hotter. It’s like walking across the room to escape an overzealous space heater, but you feel warmer far away from the source instead of cooler, totally contrary to expectations.

The research team used hundreds of observations of solar flares—huge ejections of hot plasma from our star’s surface—to determine what’s heating up the sun’s corona, in results published May 9 in The Astrophysical Journal. What’s really striking about this result, though, is how they did it: with the help of hundreds of undergrads taking physics classes at the University of Colorado, totaling a whopping 56,000 hours of work over multiple years.

Lead author James Paul Mason, research scientist and engineer at the Johns Hopkins Applied Physics Laboratory, calls this a “win-win-win scenario.” He adds, “We were able to harness a ton of brainpower and apply it to a real scientific challenge, the students got to learn firsthand what the scientific process looks like.”

[Related: Volunteer astronomers bring wonders of the universe into prisons]

The classroom project began in 2020, when University of Colorado physics professor Heather Lewandowski found herself teaching a class on experimental physics, which suddenly had to pivot online due to the COVID-19 pandemic—quite the challenge, especially for a hands-on science course. Luckily, Mason had an idea for a solar flare project that needed a lot of hands, and Lewandowski, who usually researches a totally different topic in quantum mechanics, saw that as an opportunity for her students. 

“The question of why the sun’s corona is so much hotter than the ‘surface’ of the sun is one of the main outstanding questions in solar physics,” says Lewandowski. There are two leading explanations for this dilemma, known as the coronal heating problem. One theory suggests that waves in the sun’s mega-sized magnetic field push heat into the corona. The other claims that small, unseen solar flares called nanoflares heat it up, like using a thousand matches instead of one big blow torch. 

Nanoflares are too small for our telescopes to spot, but by studying the sizes of other larger flares, scientists can estimate the prevalence of these little radiation bursts. And, although artificial intelligence is improving every day, automated programs can’t yet do the kind of analysis that Mason and Lewandowski needed. Groups of students in Lewandowski’s class each used data on a different solar flare, getting into nitty-gritty detail to measure how much energy each one dumped into the corona. Together, their results suggest nanoflares might not be powerful enough to heat up the corona to the wild temperatures we see.

[Related: Small ‘sparks’ on the sun could be key to forecasting dramatic solar weather]

The scientific result is only half of the news, though. Lewandowski and Mason pioneered a new way to bring real research into the classroom, giving students a way to not only learn about science, but do it themselves. This type of large-scale student research effort is more common in biology and chemistry, but was pretty much unheard of in physics—until now. “The students participated in all aspects of the research from literature review, meetings with the principal investigator, a proposal phase, data analysis, and peer review of their analysis,” says Lewandowski. The involvement of many students, and their work in groups, is also a reminder that “science is inherently a collaborative endeavor,” she adds.

“I hope that we inspire some professors out there to try this with their classes,” says Mason. “I’m excited to see what kinds of results they’re able to achieve.”

The post How hundreds of college students are helping solve a centuries-old mystery about the sun appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Asteroid belt circling star 25 light-years away hints at a hidden planet https://www.popsci.com/science/asteroid-belt-fomalhaut-jwst/ Mon, 08 May 2023 18:00:00 +0000 https://www.popsci.com/?p=539742
Fomalhaut, a star system 25-light-years away, showing a dust cloud and rocky belts.
Fomalhaut, a 440-million-year-old star, has a debris disk and two rings, akin to our asteroid and Kuiper belts. Adam Block

JWST's observations of the young star can help reveal how solar systems like ours formed.

The post Asteroid belt circling star 25 light-years away hints at a hidden planet appeared first on Popular Science.

]]>
Fomalhaut, a star system 25-light-years away, showing a dust cloud and rocky belts.
Fomalhaut, a 440-million-year-old star, has a debris disk and two rings, akin to our asteroid and Kuiper belts. Adam Block

Our asteroid belt is home to more than a million space rocks, varying in size from a dwarf planet to dust particles, which float between Jupiter and Mars. Astronomers have just discovered another such belt—but this one circles a different star, not our sun.

NASA’s James Webb Space Telescope (JWST) detected this asteroid belt around the star Fomalhaut, only 25 light-years away. For years, scientists have studied Fomalhaut’s debris disk, a collection of rocky, icy, dusty bits from all the collisions that happen while planets are being created. This new data, published today in Nature Astronomy, shows the system in unprecedented detail, uncovering fingerprints of hidden worlds and evidence for planets smashing together.

Many telescopes have pointed to Fomalhaut over the years: the Spitzer Space Telescope, the Atacama Large Millimeter Array (ALMA) in the high desert of Chile, and even the Hubble Space Telescope. Fomalhaut, which is much younger than our sun, may be a good likeness of our solar system near birth; since astronomers can’t time travel back to our sun’s formation, they instead observe other young stars, using these still-forming planetary systems as examples of what the process of making planets can look like.

Fomalhaut is an appealing choice to astronomers because it’s nearby, meaning it’s easier for astronomers to notice fine details. “This system was definitely one of the first we wanted to observe with JWST,” says co-author Marie Ygouf, research scientist at NASA’s Jet Propulsion Lab.

A schematic of several features of the Fomalhaut system.
The Fomalhaut debris disk system, highlighting key parts of its architecture. The insets, at right, show details of the Great Dust Cloud.  András Gáspár

Before JWST, other observations revealed that Fomalhaut is surrounded by a ring of dust analogous to our own solar system’s Kuiper Belt, which contains all the little bits of ice and rock beyond Neptune. The new data from NASA’s superlative space telescope spot not only this outer ring, but also an inner ring more analogous to the asteroid belt. There’s a third feature, too—a giant clump of dust, lovingly referred to as the Great Dust Cloud. 

[Related: These 6 galaxies are so huge, they’ve been nicknamed ‘universe breakers’]

Between Fomalhaut’s outer Kuiper-Belt-like ring and its inner asteroid-belt-like ring is a gap. “The new gap that we see hints at the presence of an ice-giant mass planet, which would be an analog of what we see in the solar system,” like Neptune or Uranus, says lead author András Gáspár, astronomer at the University of Arizona. This unseen planet could be “carving out the gaps” via gravity, explains fellow Arizona astronomer and co-author Schuyler Wolff.

Fomalhaut’s asteroid belt has a curious tilt, appearing at a different angle from the outer ring, as though something knocked it off kilter. A knock, in fact, might explain the misalignment, the researchers say—a major collision could have tilted the asteroid belt, creating the massive dust cloud, too. 

All signs in Fomalhaut “point to a solar system that is alive and active, full of rocky bodies smashing into each other,” says co-author Jonathan Aguilar, staff scientist at Space Telescope Science Institute, home of JWST’s mission control.

JWST was uniquely suited to take these photos of Fomalhaut’s dust. The dust glows brightest in the mid-infrared, at long wavelengths unreachable by most other observatories. A particularly powerful telescope is necessary, too, to resolve enough details—and JWST is the only scope with both these features. The space telescope’s Mid-Infrared Instrument (MIRI) also has a coronagraph, a small dot to block out a bright star and reveal the surrounding dust.

“Mid-infrared wavelengths are so important for debris disk observations because that’s where you observe dust emission, and the distribution of dust tells you a lot about what’s going on,” says Aguilar. The new view of Fomalhaut “showcases the scientific power of JWST and MIRI even just a year into operations,” he adds.

[Related: NASA sampled a ‘fluffy’ asteroid that could hold clues to our existence]

It’s certainly interesting to see what our solar system may have looked like in its infancy—but Fomalhaut isn’t an exact clone. Fomalhaut’s Kuiper Belt and asteroid belt doppelgangers are more spread out and contain more material than those features in our solar system. Although Fomalhaut has more movement and smashing than our solar system does now, our planets had a similar phase in the distant past, known as the Late Heavy Bombardment. Astronomers hope debris disks seen by JWST will help them figure out the details of how solar systems are born, and how they grow up to look like our own set of planets.

“We are at this frontier of unexplored territory, and I’m especially excited to see what JWST finds towards planet-forming disks,” says University of Michigan astronomer Jenny Calahan, who was not involved in the new findings. “Looking at these JWST images I was reminded of the moment that I got glasses for the first time,” adds Calahan. “It just changes your whole perspective when the world (or a debris disk) comes into focus at a level that you aren’t used to.”

The post Asteroid belt circling star 25 light-years away hints at a hidden planet appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How many planets can form one conga line around a star? https://www.popsci.com/science/exoplanets-share-one-orbit/ Wed, 03 May 2023 10:00:00 +0000 https://www.popsci.com/?p=538426
Exoplanet LHS 475 b, with a mass 99 percent of Earth, orbits its sun solo, like ours. No co-orbiting planets have been confirmed.
This illustrated Earth-sized exoplanet, LHS 475 b, isn't known to have a twin. But astronomers say it's possible co-orbiters are out there. NASA, ESA, CSA, L. Hustak (STScI)

Astronomers simulated 24 planets following the same orbit, like ‘pearls on a necklace.’

The post How many planets can form one conga line around a star? appeared first on Popular Science.

]]>
Exoplanet LHS 475 b, with a mass 99 percent of Earth, orbits its sun solo, like ours. No co-orbiting planets have been confirmed.
This illustrated Earth-sized exoplanet, LHS 475 b, isn't known to have a twin. But astronomers say it's possible co-orbiters are out there. NASA, ESA, CSA, L. Hustak (STScI)

Our Earth has siblings—the seven other planets in our solar system—but it doesn’t have a twin with which to share its ring of space. Earth sails through its orbit all alone. Other solar systems, though, might have zanier families that chase each other around a sun: twins, triplets, or even quattuorvigintuplets (that’s 24 Earth-sized planets in a single orbit!). 

Computer simulations by an international team of astronomers illustrated how two dozen planets can share the same orbit, in research published this spring in the Monthly Notices of the Royal Astronomical Society. These wacky configurations can be stable for billions of years, even outliving the stars they’re around. It’s pretty unlikely that nature would create packed planetary orbits, though, which is why researchers suggest a detection of such a system could be a sign of intelligent alien life—possibly even an interstellar message that could exist for eons.

“Our paper explores one additional branch of possible planetary systems that could potentially exist,” says lead author Sean Raymond, CNRS Researcher at the Laboratoire d’Astrophysique de Bordeaux. “I love that it’s so unexpected and weird, and that so many planets can end up sharing the same orbit.”

Multiple planet systems, like our solar system, are often referred to as peas in a pod. But these co-orbiting planets could be “pearls on a necklace,” says University of Kansas astronomer Jonathan Brande, who was not affiliated with the new research.

Nobody had proposed observing two planets in the same orbit, though, until an article posted to the preprint server arXiv last week—but most exoplanet astronomers are skeptical, especially since the signal wasn’t seen in data from other major exoplanet-hunting telescopes like TESS. This paper was written by a group of amateur astronomers who captured observations with small, commercially-available telescopes. “I don’t think it’s the sort of thing you’d be able to pull off in your backyard,” says Brande, regarding the supposed detection. 

[Related: These 6 exoplanets somehow orbit their star in perfect rhythm]

There are a few known examples of co-orbits that involve smaller objects. Our solar system actually has a few such strange orbits, known as horseshoe or tadpole orbits, depending on their shapes. Jupiter’s Trojan asteroids—soon to be visited for the first time by the spacecraft Lucy—share the gas giant’s orbital path as tadpoles, oscillating around points before and after Jupiter in its track around the sun. Two of Saturn’s moons, Janus and Epimethus, orbit the ringed planet together in a horseshoe, periodically swapping places. 

Since objects in our solar system share orbits, it seems reasonable that there might be exoplanets out there that share paths as well. “There are plenty of exoplanet systems in which the planets seem to fill every available niche of stable real estate,” says Raymond. This new research pushes this concept to the extreme, seeing how many planets can cram into the same orbit and remain stable. 

The research team’s simulations also reveal that such co-orbiting planets would have distinct signals for astronomers here on Earth to observe. The Kepler Space Telescope and other space observatories can reveal so-called transit timing variations (TTVs), where the gravitational tug between nearby planets ever-so-slightly changes when a planet passes in front of its star. The TTVs from a system of 24 planets with the mass of Earth sharing an orbit would be large enough for astronomers to see, but it would take months to years of regular monitoring to notice the effect, according to NASA Jet Propulsion Lab astronomer Rob Zellem.

Although academics haven’t been persuaded by the latest observation of supposed co-orbiting planets, there is certainly an important role for amateur astronomers in exoplanet science, Zellem adds.“Given the capability of the observers..we could definitely use their expertise,” he says, especially through citizen science projects such as NASA’s Exoplanet Watch

[Related: This alien world could help us find Planet Nine in our own solar system]

A robust detection of co-orbiting planets could be truly exciting, though—not only an observation of nature’s extreme diversity, but possibly even a sign of alien life. “Something like an engineered co-orbiting planetary might not be unambiguously artificial, but would be weird enough to prompt intensive further study,” says Brande.

The study authors think these odd orbits would actually be a perfect technosignature, or sign of intelligent life beyond Earth. Co-author David Kipping, an astronomer at Columbia University, explains that once an advanced civilization constructs an unnatural ring of co-orbiting planets, it wouldn’t require any power to maintain and would be visible for billions of years—a perfect combo for an interstellar message. “The likelihood of this happening really comes down to whether anyone is out there with the capability and will to do this,” he says. “We have no idea. But if we don’t look, we’ll never know.”

The post How many planets can form one conga line around a star? appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This supermassive black hole sucks big time https://www.popsci.com/science/m87-black-hole-jets/ Wed, 26 Apr 2023 22:41:45 +0000 https://www.popsci.com/?p=537095
Closeup of vent horizon around M87, a supermassive black hole and the first black hole image
An image of the shadow of the supermassive black hole M87 (inset) and a powerful jet of matter and energy being projected away from it. R.-S. Lu (SHAO) and E. Ros (MPIfR), S.Dagnello (NRAO/AUI/NSF)

We knew M87, the first black hole to be seen by humans, was powerful. But not this powerful.

The post This supermassive black hole sucks big time appeared first on Popular Science.

]]>
Closeup of vent horizon around M87, a supermassive black hole and the first black hole image
An image of the shadow of the supermassive black hole M87 (inset) and a powerful jet of matter and energy being projected away from it. R.-S. Lu (SHAO) and E. Ros (MPIfR), S.Dagnello (NRAO/AUI/NSF)

Black holes remain among the most enigmatic objects in the universe, but the past few years have seen astronomers develop techniques to directly image these powerful vacuums. And they keep getting better at it.

The Event Horizon Telescope (EHT) collaboration, the international team that took the first picture of a black hole in 2017, followed up that work with observations highlighting the black hole’s magnetic field. And just this month, another team of astronomers created an AI-sharpened version of the same image.

Now a new study published today in the journal Nature describes how images of that black hole, named after its galaxy, Messier 87 (M87), has a much larger circle of debris around it than the 2017 observations would suggest. 

Though long hypothesized to exist in theory, for many decades astronomers could only find indirect evidence of black holes in the sky. For instance, they would look for signs of the immense gravity of a black hole influencing other objects, such as when stars follow especially tight or fast orbits that imply the presence of another massive, but invisible partner.

But that all changed in 2017, when the EHT’s global network of radio telescopes captured the first visible evidence of a black hole, the supermassive black hole at the heart of a galaxy 57 million light-years away from Earth. When the image was released in 2019, the orange ring of fire around a central black void drew comparisons to “The Eye of Sauron” from Lord of the Rings.

EHT would go on to directly image Sagittarius A*, the supermassive black hole at the heart of the Milky Way galaxy, releasing another image of a fiery orange doughnut around a black center in May 2022.

Such supermassive black holes, which are often billions of times more massive than our sun—M87 is estimated to be 6.5 billion times bigger and Sagittarius A*  4 million times bigger—are thought to exist at the centers of most galaxies. The intense gravity of all that mass pulls on any gas, dust, and other excess material that comes too close, accelerating it to incredible speeds as it falls toward the lip of the black hole, known as the event horizon.

[Related: What would happen if you fell into a black hole?]

Like water circling a drain, the falling material spirals and is condensed into a flat ring known as an accretion disk. But unlike water around a drain, the incredible speed and pressures in the accretion disk heat the inflating material to the point where it emits powerful X-ray radiation. The disk propels jets of radiation and gas out and away from the black hole at nearly the speed of light.  

The EHT team already figured that M87 produced forcible jets. But the second set of results show that the ring-like structure of collapsing material around the black hole is 50 percent larger than they originally estimated.

“This is the first image where we are able to pin down where the ring is, relative to the powerful jet escaping out of the central black hole,” Kazunori Akiyama, an MIT Haystack Observatory research scientist and EHT collaboration member, said in a statement. “Now we can start to address questions such as how particles are accelerated and heated, and many other mysteries around the black hole, more deeply.”

The new observations were made in 2018 using the Global Millimeter VLBI Array, a network of a dozen radio telescopes running east to west across Europe and the US. To get the resolution necessary for more accurate measurements, however, the researchers also included observatories in the North and South: the Greenland Telescope along with the Atacama Large Millimetre/submillimetre Array, which consists of 66 radio telescopes in the Chilean high desert.

“Having these two telescopes [as part of] the global array resulted in a boost in angular resolution by a factor of four in the north-south direction,” Lynn Matthews, an EHT collaboration member at the MIT Haystack Observatory, said in a media statement. “This greatly improves the level of detail we can see. And in this case, a consequence was a dramatic leap in our understanding of the physics operating near the black hole at the center of the M87 galaxy.”

[Related: Construction starts on the world’s biggest radio telescope]

The more recent study focused on radio waves around 3 millimeters long, as opposed to 1.3 millimeters like the original 2017 one. That may have brought the larger, more distant ring structure into focus in a way the 2017 observations could not.

“That longer wavelength is usually associated with lower energies of the emitting electrons,” says Harvard astrophysicist Avi Loeb, who was not involved with the new study. “It’s possible that you get brighter emission at longer wavelengths farther out from the black hole.”

Going forward, astronomers plan to observe the black hole at other wavelengths to highlight different parts and layers of its structure, and better understand how such cosmic behemoths form at the hearts of galaxies and contribute to galactic evolution.

Just how supermassive black holes generate jets is “not a well-understood process,” Loeb says. “This is the first time we have observations of what may be the base of the jet. It can be used by theoretical physicists to model how the M87 jet is being launched.” 

He adds that he would like to see future observations capture the sequence of events in the accretion disk. That is, to essentially make a movie out of what’s happening at M87.

“There might be a hotspot that we can track that is moving either around or moving towards the jet,” Loeb says, which in turn, could explain how a beast like a black hole gets fed.

The post This supermassive black hole sucks big time appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
JWST captures an unprecedented ‘prequel’ to a galaxy https://www.popsci.com/science/jwst-early-universe-large-galaxy-cluster/ Tue, 25 Apr 2023 15:00:00 +0000 https://www.popsci.com/?p=536550
The seven galaxies highlighted in this James Webb Space Telescope image have been confirmed to be at a distance that astronomers refer to as redshift 7.9, which correlates to 650 million years after the Big Bang.
The seven galaxies highlighted in this James Webb Space Telescope image have been confirmed to be at a distance that astronomers refer to as redshift 7.9, which correlates to 650 million years after the Big Bang. IMAGE CREDITS: NASA, ESA, CSA, Takahiro Morishita (IPAC). IMAGE PROCESSING CREDITS: Alyssa Pagan (STScI)

The data brings us just a little bit closer to finally understanding the question of how we got here.

The post JWST captures an unprecedented ‘prequel’ to a galaxy appeared first on Popular Science.

]]>
The seven galaxies highlighted in this James Webb Space Telescope image have been confirmed to be at a distance that astronomers refer to as redshift 7.9, which correlates to 650 million years after the Big Bang.
The seven galaxies highlighted in this James Webb Space Telescope image have been confirmed to be at a distance that astronomers refer to as redshift 7.9, which correlates to 650 million years after the Big Bang. IMAGE CREDITS: NASA, ESA, CSA, Takahiro Morishita (IPAC). IMAGE PROCESSING CREDITS: Alyssa Pagan (STScI)

Even the tallest trees, biggest blue whales, and even giant gleaming stars were once babies. Protostars are the hot core of energy that will one day become stars and galaxies. The formative years of our universe’s history, when billions of stars and galaxies formed and assembled after the Big Bang, have so far been beyond our understanding.

[Related: These 6 galaxies are so huge, they’ve been nicknamed ‘universe breakers’]

Now, NASA’s James Webb Space Telescope (JWST) confirmed the distance of a protocluster of seven galaxies that formed only 650 million years after the Big Bang, or what astronomers call redshift 7.9. The findings were published April 24 in the Astrophysical Journal Letters and are the “earliest galaxies yet to be spectroscopically confirmed as part of a developing cluster.”

Based on the data collected, a team of astronomers calculated the nascent cluster’s future development. It will likely grow in size and mass to resemble the Coma Cluster, one of the densest group of galaxies of the modern universe. 

“This is a very special, unique site of accelerated galaxy evolution, and Webb gave us the unprecedented ability to measure the velocities of these seven galaxies and confidently confirm that they are bound together in a protocluster,” co-author and IPAC-California Institute of Technology astronomer Takahiro Morishita said in a statement.

JWST’s Near-Infrared Spectrograph (NIRSpec) captured the key measurements to confirm both the galaxies’ collective distance and the high velocities at which they are moving within a halo of dark matter. They’re moving through space at more than two million miles per hour, or over 600 miles per second. 

Having this spectral data in hand allowed the astronomers to model and map the future development of the gathering group all the way up to the modern universe. If it does follow the prediction and eventually resemble the Coma Cluster, it could eventually be among the densest known galaxy collections.

“We can see these distant galaxies like small drops of water in different rivers, and we can see that eventually they will all become part of one big, mighty river,” co-author and National Institute of Astrophysics in Italy astronomer Benedetta Vulcani said in a statement.

According to NASA, galaxy clusters are the greatest concentrations of mass in the known universe. They can dramatically warp the fabric of spacetime itself. This warping is called gravitational lensing and can have a magnifying effect for the objects located beyond the cluster. This allows astronomers to see through the cluster as if it were a giant cosmic magnifying glass. The team in this study was able to utilize this enlarging effect and look through Pandora’s Cluster to view the protocluster.

[Related: JWST’s latest new galaxy discoveries mirror the Milky Way.]

Exploring how big clusters like Pandora and Coma first came together has historically been difficult because the expansion of the universe stretches light beyond visible wavelengths into the infrared. JWST’s sophisticated infrared instruments were developed to fill in these gaps at the beginning of the universe’s story. 

The team anticipates that future collaboration between JWST and a high-resolution, wide-field survey mission from NASA’s Nancy Grace Roman Space Telescope will allow for even  more results on early galaxy clusters. Roman will be able to identify more protocluster galaxy candidates, while JWST can follow up to confirm these findings with its spectroscopic instruments. Currently, the Roman mission is targeted to launch by May 2027.

“It is amazing the science we can now dream of doing, now that we have Webb,” co-author and University of California, Los Angeles astronomer Tommaso Treu said in a statement. “With this small protocluster of seven galaxies, at this great distance, we had a one hundred percent spectroscopic confirmation rate, demonstrating the future potential for mapping dark matter and filling in the timeline of the universe’s early development.”

Correction (August 25, 2023): The story previously stated that the Coma Cluster is a single galaxy, when it is in fact a cluster of almost 1,000 galaxies.

The post JWST captures an unprecedented ‘prequel’ to a galaxy appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How is Voyager’s vintage technology still flying? https://www.popsci.com/science/voyager-1-and-2-still-active/ Tue, 25 Apr 2023 11:00:00 +0000 https://www.popsci.com/?p=533112
engineers working on voyager 2
NASA engineers work on Voyager 2 back in 1977. NASA

Vintage tech has extended the crafts’ lifespan—but it’s unclear how much juice they’ve got left.

The post How is Voyager’s vintage technology still flying? appeared first on Popular Science.

]]>
engineers working on voyager 2
NASA engineers work on Voyager 2 back in 1977. NASA

In 1989, Chuck Berry and Carl Sagan partied it up at one of the biggest bashes of the summer—a celebration honoring the two Voyager spacecrafts, who were about to make a dramatic exit from our solar system. 

The twin probes, Voyager 1 and Voyager 2, launched back in 1977, with only a five-year mission to take a gander at Jupiter and Saturn’s rings and moons, hauling the Golden Record containing messages and cultural snapshots from Earth (including Chuck Berry’s music). 

Obviously, the Voyager spacecrafts have persisted a lot longer than five years: 46 years, to be exact. They’re still careening through space at a distance between 12 and 14 billion miles from Earth. So how have they lasted four decades longer than expected? Much of it has to do with a bit of vintage hardware and a handful of software updates. You can find out more (and when the crafts’ expected death dates) by subscribing to PopSci+ and reading the full story by Tatyana Woodall, and by listening to our new episode of Ask Us Anything

The post How is Voyager’s vintage technology still flying? appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Alien civilizations could send us messages by 2029 https://www.popsci.com/science/aliens-contact-earth-2029/ Tue, 25 Apr 2023 10:00:00 +0000 https://www.popsci.com/?p=536305
NASA Deep Space Network radiotelescope sending radio waves to spacecraft, stars, and maybe aliens
NASA's Deep Space Network helps Earth make long-distance calls. NASA

NASA sends powerful radio transmissions into space. Who's listening, and when will they respond?

The post Alien civilizations could send us messages by 2029 appeared first on Popular Science.

]]>
NASA Deep Space Network radiotelescope sending radio waves to spacecraft, stars, and maybe aliens
NASA's Deep Space Network helps Earth make long-distance calls. NASA

Humans have used radio waves to communicate across Earth for more than 100 years. Those waves also leak out into space, a fingerprint of our presence propagating through the cosmos. In more recent years, humans have also sent out a stronger signal beyond our planet: communications with our most distant probes, like the famous Voyager spacecraft.

Scientists recently traced the paths of these powerful radio transmissions from Earth to multiple far-away spacecraft and determined which stars—along with any planets with possible alien life around them—are best positioned to intercept those messages. 

The research team created a list of stars that will encounter Earth’s signals within the next century and found that alien civilizations (if they’re out there) could send a return message as soon as 2029. Their results were published on March 20 in the journal Publications of the Astronomical Society of the Pacific.

“This is a famous idea from Carl Sagan, who used it as a plot theme in the movie Contact,” explains Howard Isaacson, a University of California, Berkeley astronomer and co-author of the new work. 

[Related: UFO research is stigmatized. NASA wants to change that.]

However, it’s worth taking any study involving extraterrestrial life with a grain of salt. Kaitlin Rasmussen, an astrobiologist at the University of Washington not affiliated with the paper, calls this study “an interesting exercise, but unlikely to yield results.” The results, in this case, would be aliens contacting Earth within a certain timeframe.

As radio signals travel through space, they spread out and become weaker and harder to detect. Aliens parked around a nearby star probably won’t notice the faint leakage from TVs and other small devices. However, the commands we send to trailblazing probes at the edge of the solar system—Voyager 1, Voyager 2, Pioneer 10, Pioneer 11, and New Horizons—require a much more focused and powerful broadcast from NASA’s Deep Space Network (DSN), a global array of radio dishes designed for space communications.

NASA Deep Space Network radiotelescopes on a grassy hill
The DSN can receive signals if it’s pointed in the right direction. NASA

The DSN signals don’t magically stop at the spacecraft they’re targeting: They continue into interstellar space where they eventually reach other stars. But electromagnetic waves like radio transmissions and light can only travel so fast—that’s why we use light-years to measure distances across the universe. The researchers used this law of physics to estimate how long it will take for DSN signals to reach nearby stars, and for alien life to return the message. 

The process revealed several insights. For example, according to their calculations, a signal sent to Pioneer 10 reached a dead star known as a white dwarf around 27 light-years away in 2002. The study team estimates a return message from any alien life near this dead star could reach us as soon as 2029, but no earlier. 

[Related: Nothing can break the speed of light]

More opportunities for return messages will pop up in the next decade. Signals sent to Voyager 2 around 1980 and 1983 reached two stars in 2007: one that’s 26 light-years away and a brown dwarf that’s 24 light-years away, respectively. If aliens sent a message right back from either, it could reach Earth in the early 2030s.

This work “gives Search for Extraterrestrial Intelligence researchers a more narrow group of stars to focus on,” says lead author Reilly Derrick, a University of California, Los Angeles engineering student.  

Derrick and Isaacson propose that radio astronomers could use their star lists to listen for return messages at predetermined times. For example, in 2029 they may want to point some of Earth’s major radio telescopes towards the white dwarf that received Pioneer 10’s message.

But other astronomers are skeptical. “If a response were to be sent, our ability to detect it would depend on many factors,” says Macy Huston, an astronomer at Penn State not involved in the new study. These factors include “how long or often we monitor the star for a response, and how long or often the return signal is transmitted.”

Our radio transmissions have only reached one-millionth of the volume of the Milky Way. 

There are still many unknowns when considering alien life. In particular, astronomers aren’t certain the stars in this study even have planets—although based on other exoplanet studies, it’s likely that at least a fraction of them do. The signals from the DSN are also still incredibly weak at such large distances, so it’s unclear how plausible it is for other stars to detect our transmissions.

“Our puny and infrequent transmissions are unlikely to yield a detection of humanity by extraterrestrials,” says Jean-Luc Margot, a University of California, Los Angeles radio astronomer who was not involved in the recent paper. He explains that our radio transmissions have only reached one-millionth of the volume of the Milky Way. 

“The probability that another civilization resides in this tiny bubble is extraordinarily small unless there are millions of civilizations in the Milky Way,” he says. But if they’re out there, there might be a time and place to capture the evidence.

The post Alien civilizations could send us messages by 2029 appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
An Einstein-backed method could help us find smaller exoplanets than ever before https://www.popsci.com/science/exoplanets-gravitational-microlensing/ Tue, 18 Apr 2023 16:34:47 +0000 https://www.popsci.com/?p=534889
Exoplanet KMT-2021-BLG-1898L b is a gas giant that looks like Jupiter but orbits a separate star. Illustration.
KMTNet astronomers identified exoplanet KMT-2021-BLG-1898L b in 2022. An artist's concept of the gas giant shows it completing a 3.8-year-long orbit around its star in a solar system far from ours. NASA/KMTNet

Astronomy is entering the golden age of exoplanet discoveries.

The post An Einstein-backed method could help us find smaller exoplanets than ever before appeared first on Popular Science.

]]>
Exoplanet KMT-2021-BLG-1898L b is a gas giant that looks like Jupiter but orbits a separate star. Illustration.
KMTNet astronomers identified exoplanet KMT-2021-BLG-1898L b in 2022. An artist's concept of the gas giant shows it completing a 3.8-year-long orbit around its star in a solar system far from ours. NASA/KMTNet

Since 1995 scientists have found more than 5,000 exoplanets—other worlds beyond our solar system. But while space researchers have gotten very good at discovering big planets, smaller ones have evaded detection.

However, a novel astronomy detection technique known as microlensing is starting to fill in the gaps. Experts who are a part of the Korea Microlensing Telescope Network (KMTNet) recently used this method to locate three new exoplanets about the same sizes as Jupiter and Saturn. They announced these findings in the journal Astronomy & Astrophysics on April 11. 

How does microlensing work?

Most exoplanets have been found through the transit method. This is when scientists use observatories like the Kepler Space Telescope and the James Webb Space Telescope to look at dips in the amount of light coming from a star. 

Meanwhile, gravitational microlensing (usually just called microlensing) involves searching for increases in brightness in deep space. These brilliant flashes are from a planet and its star bending the light of a more distant star, magnifying it according to Einstein’s rules for relativity. You may have heard of gravitational lensing for galaxies, which pretty much relies on the same physics, but on a much bigger scale.

Credit: NASA Scientific Visualization Studio

The new discoveries were particularly unique because they were found in partial data, where astronomers only observed half the event.

“Microlensing events are sort of like supernovae in that we only get one chance to observe them,” says Samson Johnson, an astronomer at the NASA Jet Propulsion Lab who was not affiliated with the study. 

Because astronomers only have one chance and don’t always know when events will happen, they sometimes miss parts of the show. “This is sort of like making a cake with only half of the recipe,” adds Johnson.

[Related: Sorry, Star Trek fans, the real planet Vulcan doesn’t exist]

The three new planets have long serial-number-like strings of letters and numbers for names: KMT-2021-BLG-2010Lb, KMT-2022-BLG-0371Lb, and KMT-2022-BLG-1013Lb. Each of these worlds revolves around a different star. They weigh as much as Jupiter, Saturn, and a little less than Saturn, respectively. 

Even though the researchers only observed part of the microlensing events for each of these planets, they were able to rule out other scenarios that could confidently explain the signals. This work “does show that even with incomplete data, we can learn interesting things about these planets,” says Scott Gaudi, an Ohio State University astronomer who was not involved in the published paper.

The exoplanet search continues

Microlensing is “highly complementary” to other exoplanet-hunting techniques, says Jennifer Yee, a co-author of the new study and researcher at The Center for Astrophysics | Harvard & Smithsonian. It can scope out planets that current technologies can’t, including worlds as small as Jupiter’s moon Ganymede or even a few times the mass of Earth’s moon, according to Gaudi.

The strength of microlensing is that “it’s a demographics machine, so you can detect lots of planets,” says Gaudi. This ability to detect planets of all sizes is crucial for astronomers as they complete their sweeping exoplanet census to determine the most common type of planet and the uniqueness of our own solar system. 

Credit: NASA Scientific Visualization Studio

Astronomers are honing their microlensing skills with new exoplanet discoveries like those from KTMNet, ensuring that they know how to handle this kind of data before new space telescopes come online in the next few years. For example, microlensing will be a large part of the Roman Space Telescope’s planned mission when it launches mid-decade

“We’ll increase the number of planets we know by several thousand with Roman, maybe even more,” says Gaudi. “We went from Kepler being the star of the show to TESS [NASA’s Transiting Exoplanet Survey Satellite] being the star of the show … For its time period, Roman [and microlensing] will be the star of the show.”

The post An Einstein-backed method could help us find smaller exoplanets than ever before appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Jupiter’s icy ocean worlds could be cool travel destinations in the future https://www.popsci.com/science/jupiter-moons-water-nasa-juice/ Sat, 15 Apr 2023 16:15:13 +0000 https://www.popsci.com/?p=534247
Callisto Jupiter moon in colorized NASA Galileo image
The picture, taken in May 2001, is the only complete global color image of Callisto obtained by Galileo. Callisto's surface is uniformly cratered but is not uniform in color or brightness. Scientists believe the brighter areas are mainly ice and the darker areas are highly eroded, ice-poor material. NASA/JPL/DLR

Callisto and Ganymede are among the biggest moons in the solar system. NASA’s JUICE mission will reveal some of their secrets.

The post Jupiter’s icy ocean worlds could be cool travel destinations in the future appeared first on Popular Science.

]]>
Callisto Jupiter moon in colorized NASA Galileo image
The picture, taken in May 2001, is the only complete global color image of Callisto obtained by Galileo. Callisto's surface is uniformly cratered but is not uniform in color or brightness. Scientists believe the brighter areas are mainly ice and the darker areas are highly eroded, ice-poor material. NASA/JPL/DLR

It’s time for JUICE to get to work. The European Space Agency’s JUpiter ICy moons Explorer blasted off on an Ariane 5 rocket yesterday to begin its eight-year journey to the Jovian system to study Europa, Ganymede, and Callisto, three of the largest moons in the entire solar system.

Together with NASA’s Europa Clipper, which will launch in October 2024 but arrive at its destination a year earlier than JUICE, the missions will get the first close-ups of Jupiter’s icy moons since NASA’s Galileo probe visited the gas giant from 1995 and 2003.

“We learned about Europa having a subsurface ocean as a result of the Galileo mission,” says Emily Martin, a research geologist in the Center for Earth and Planetary Studies at the Smithsonian’s National Air And Space Museum. The Galileo finding ignited interest in so-called  “ocean worlds” that have liquid water under their thick surface ice and might be the best place to look for alien life in our solar system. Ganymede and Callisto are likely ocean worlds too.

[Related: Astronomers find 12 more moons orbiting Jupiter]

While Galileo captured some images of the lesser-known siblings, it couldn’t analyze their surfaces as well as originally plannedspacecraft was hamstrung from the beginning, when its high-gain antenna, necessary for sending back large amounts of data, failed to fully deploy. Consequently, when JUICE arrives at Jupiter in 2031, it will begin providing the first truly high-resolution studies of Ganymede and Callisto, and add to the data on Europa collected by the Europa Clipper. JUICE will use its laser altimeter to build detailed topographic maps of all three moons and use measurements of their magnetic and gravitational fields, along with radar, to probe their internal structures.

“Galileo did the reconnaissance,” Martin says, “and now JUICE gets to go back and really dig deep.”

Is there water on Jupiter’s moons?

If people know one Jovian moon, it’s likely Europa: The icy moon’s subsurface ocean has been the focus of science fiction books and movies. But Martin is particularly excited about what JUICE might find at Callisto. Jupiter’s second largest moon, it orbits farther out than Europa or Ganymede. It appears to be geologically inactive and may not be differentiated, meaning Callisto’s insides haven’t separated into the crust-mantle-core layers seen in other planets and moons.

Despite the low-key profile, data from the Galileo mission suggests Callisto could contain a liquid ocean like Europa and Ganymede. Understanding just how that could be possible, and getting a look at what Callisto’s interior really looks like, could help space researchers better understand how all of Jupiter’s moons evolved.

“In some ways, Callisto is a proto-Ganymede,” Martin says.

What comes after Mars?

It’s not just Callisto’s interior that is interesting, according to Scott Sheppard, an astronomer at the Carnegie Institution for Science. It’s the only large moon that orbits outside the belts of intense radiation trapped in Jupiter’s colossal magnetic field—radiation that can fry spacecraft electrics and human explorers alike. “If humanity is to build a base on one of the Jupiter moons, Callisto would be by far the first choice,” Sheppard says. “It could be the gateway moon to the outer solar system.”      

JUICE will fly by Europa, then Callisto, and then enter orbit around Ganymede, the largest moon in the solar system. With a diameter of around 3,270 miles, it’s larger than the planet Mercury, which comes in at 2,578 miles in diameter.

Jupiter moon Ganymede closeup
This image of the Jovian moon Ganymede was obtained by the JunoCam imager aboard NASA’s Juno spacecraft during its June 7, 2021, flyby of the icy moon. At the time of closest approach, Juno was within 645 miles of its surface, closer to Jupiter’s largest moon than any other spacecraft has come in more than two decades. NASA/JPL-Caltech/SwRI/MSSS

Geoffrey Collins, a professor of geology, physics and astronomy at Wheaton College, says he’s most excited about the Ganymede leg of the mission. “It will be the first time we’ve orbited a world like this, and I know we will be surprised by what we find.” 

If Ganymede hosts a liquid water ocean beneath its frozen shell how deep its crust is, and whether its suspected subsurface ocean is one vast cistern or consists of liquid layered with an icy or rocky mantle. JUICE will be the first mission to give scientists some real answers about to those questions.

“Even if JUICE just lets us reach a level of understanding of Ganymede like we had for Mars 20 or 30 years ago, it would be a massive leap forward from what we know now,” Collins says. “This will be the kind of thing that rewrites textbooks.”

[Related: A mysterious magma ocean could fuel our solar system’s most volcanic world]

Any clues that JUICE gathers from Ganymede and Callisto could apply to more than just Jupiter and its icy moons. They can tell us more about what to expect when we look further out from our own solar system, according to Martin.

“It contextualizes different kinds of ocean world systems and that has even broader implications to exoplanet systems,” she says. “The more we can understand the differences and the similarities between the ocean world systems that we have here in our solar system, the more prepared we’re going to be for understanding the planetary systems that we’re continuing to discover in other solar systems.”

The post Jupiter’s icy ocean worlds could be cool travel destinations in the future appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
You saw the first image of a black hole. Now see it better with AI. https://www.popsci.com/science/first-black-hole-image-ai/ Fri, 14 Apr 2023 17:00:00 +0000 https://www.popsci.com/?p=534170
M87 black hole Event Horizon Telescope image sharpened by AI with PRIMO algorithm. The glowing event horizon is now clearer and thinner and the black hole at the center darker.
AI, enhance. Medeiros et al., 2023

Mix general relativity with machine learning, and an astronomical donut starts to look more like a Cheerio.

The post You saw the first image of a black hole. Now see it better with AI. appeared first on Popular Science.

]]>
M87 black hole Event Horizon Telescope image sharpened by AI with PRIMO algorithm. The glowing event horizon is now clearer and thinner and the black hole at the center darker.
AI, enhance. Medeiros et al., 2023

Astronomy sheds light on the far-off, intangible phenomena that shape our universe and everything outside it. Artificial intelligence sifts through tiny, mundane details to help us process important patterns. Put the two together, and you can tackle almost any scientific conundrum—like determining  the relative shape of a black hole. 

The Event Horizon Telescope (a network of eight radio observatories placed strategically around the globe) originally captured the first image of a black hole in 2017 in the Messier 87 galaxy. After processing and compressing more than five terabytes of data, the team released a hazy shot in 2019, prompting people to joke that it was actually a fiery donut or a screenshot from Lord of the Rings. At the time, researchers conceded that the image could be improved with more fine-tuned observations or algorithms. 

[Related: How AI can make galactic telescope images ‘sharper’]

In a study published on April 13 in The Astrophysical Journal Letters, physicists from four US institutions used AI to sharpen the iconic image. This group fed the observatories’ raw interferometry data into an algorithm to produce a sharper, more accurate depiction of the black hole. The AI they used, called PRIMO, is an automated analysis tool that reconstructs visual data at higher resolutions to study gravity, the human genome, and more. In this case, the authors trained the neural network with simulations of accreting black holes—a mass-sucking process that produces thermal energy and radiation. They also relied on a mathematical technique called Fourier transform to turn energy frequencies, signals, and other artifacts into information the eye can see.

Their edited image shows a thinner “event horizon,” the glowing circle formed when light and accreted gas crosses into the gravitational sink. This could have “important implications for measuring the mass of the central black hole in M87 based on the EHT images,” the paper states.

M87 black hole original image next to M87 black hole sharpened image to show AI difference
The original image of M87 from 2019 (left) compared to the PRIMO reconstruction (middle) and the PRIMO reconstruction “blurred” to EHT’s resolution (right). The blurring occurs such that the image can match the resolution of EHT and the algorithm doesn’t add resolution when it is filling in gaps that the EHT would not be able to see with its true resolution. Medeirois et al., 2023

One thing’s for sure: The subject at the center of the shot is extremely dark, potent, and powerful. It’s even more clearly defined in the AI-enhanced version, backing up the claim that the supermassive black hole is up to 6.5 billion times heftier than our sun. Compare that to Sagittarius A*—the black hole that was recently captured in the Milky Way—which is estimated at 4 million times the sun’s mass.

Sagittarius A* could be another PRIMO target, Lia Medeiros, lead study author and astrophysicist at the Institute for Advanced Study, told the Associated Press. But the group is not in a rush to move on from the more distant black hole located 55 million light-years away in Messier 87. “It feels like we’re really seeing it for the first time,” she added in the AP interview. The image was a feat of astronomy, and now, people can gaze on it with more clarity.

Watch an interview where the researchers discuss their AI methods more in-depth below:

The post You saw the first image of a black hole. Now see it better with AI. appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Why is the sun’s corona 200 times hotter than its surface? https://www.popsci.com/science/how-hot-is-the-suns-surface-corona/ Wed, 12 Apr 2023 10:00:00 +0000 https://www.popsci.com/?p=533392
Magnetic field around sun's corona with NASA's Parker Solar Probe touching the edge. Illustrated.
In 2021, NASA’s Parker Solar Probe flew through the sun’s corona and sampled particles and magnetic fields there. NASA's Goddard Space Flight Center/Joy Ng

The paradox has astronomers scratching their heads over magnetic waves, nanoflares, and the now-debunked element coronium.

The post Why is the sun’s corona 200 times hotter than its surface? appeared first on Popular Science.

]]>
Magnetic field around sun's corona with NASA's Parker Solar Probe touching the edge. Illustrated.
In 2021, NASA’s Parker Solar Probe flew through the sun’s corona and sampled particles and magnetic fields there. NASA's Goddard Space Flight Center/Joy Ng

Few places in the solar system get hotter than the surface of the sun. But contrary to expectations, the tenuous tendrils of plasma in the outermost layer of its atmosphere—known as the corona—are way more searing than its surface.

“It is very confusing why the solar corona is farther away from the sun’s core, but is so much hotter,” says University of California, Berkeley space sciences researcher Jia Huang

The solar surface lingers around 10,000 degrees Fahrenheit, while the thin corona can get as hot as 2 million degrees. This conundrum is known as the coronal heating problem, and astronomers have been working on solving it since the mid-1800s.

“Simply speaking, solving this problem could help us understand our sun better,” says Huang. A better understanding of solar physics is also “crucial for predicting space weather to protect humans,” he adds. Plus, the sun is the only star we can send probes to—the others are simply too far away. “Thus, knowing our sun could help understand other stars in the universe.”

Sun's plasma boiling in a closeup by NASA and JAXA
A closeup of the sun’s convective, or boiling, motion, with a small sunspot forming on the right, from Hinode, a collaboration between NASA and the Japan Aerospace Exploration Agency. The outer layers of the sun are constantly boiling and roil with mechanical energy. This fluid motion generates complex magnetic fields that extend far up into the corona. NASA/JAXA/Hinode

A brief history of the coronal heating problem

During the 1869 total solar eclipse—an alignment of the sun, moon, and Earth that blocks out the bulk of the sun’s light—scientists were able to observe the faint corona. Their observations revealed a feature in the corona that they took as evidence of presence of a new element: coronium. Improved theories of quantum mechanics over 60 years later revealed the “new element” to be plain old iron, but heated to a temperature that was higher than the sun’s surface.

[Related: We still don’t really know what’s inside the sun—but that could change very soon]

This new explanation for the puzzling 1869 measurement was the first evidence of the corona’s extreme temperature, and kicked off decades of study to understand just how the plasma got so hot. Another way of phrasing this question is, where is the energy in the corona coming from, and how is it getting there? 

“We know for sure that this problem hasn’t yet been resolved, though we have many theories, and the whole [astronomy] community is still enthusiastically working on it,” says Huang. There are currently two main hypotheses for how energy from the sun heats the corona: the motion of waves and an explosive phenomenon called nanoflares.

Theory 1: Alfvén waves

The surface of the sun roils and bubbles like a pot of boiling water. As the plasma convects—with hotter material rising and cooler material sinking down—it generates the sun’s immense magnetic field. This magnetic field can move and wiggle in a specific kind of wave, known as Alfvén waves, which then push around protons and electrons above the sun’s surface. Alfvén waves are a known phenomenon—plasma physicists have even seen them in experiments on Earth. Astronomers think the charged particles stirred up by the phenomenon might carry energy into the corona, heating it up to shocking temperatures.

Nanoflares rising off the sun's convection zone in four looped frames
In 2020, space physics researcher Shah Bahauddin zoomed in on satellite images of the sun’s corona and convection zone to reveal the first complete sequence of a nanoflare. NASA/SDO/IRIS/Shah Bahauddin

Theory 2: Nanoflares

The other possible explanation is a bit more dramatic, and is kind of like the sun snapping a giant rubber-band. As the sun’s plasma tumbles and circulates in its upper layer, it twists the star’s magnetic field lines into knotted, messy shapes. Eventually, the lines can’t take that stress anymore; once they’ve been twisted too far, they snap in an explosive event called magnetic reconnection. This sends charged particles flying around and heats them up, a happening referred to as a nanoflare, carrying energy to the corona. Astronomers have observed a few examples of nanoflares with modern space telescopes and satellites.

Coronal streamers from the sun captured by NASA's Parker Solar Probe in black and white
As the Parker Solar Probe passed through the corona on its ninth flyby, it recorded structures called coronal streamers. These structures can be seen as bright features moving upward in the upper images and angled downward in the lower row. They are visible from Earth during total solar eclipses. NASA/Johns Hopkins APL/Naval Research Laboratory

The coronal heating mystery continues

As is usually the case with nature, it seems that the sun isn’t simply launching Alfvén waves or creating nanoflares—it’s more than likely doing both. Astronomers just don’t know how often either of these events happen.

[Related: Hold onto your satellites: The sun is about to get a lot stormier]

But they might get some straightforward answers soon. The Parker Solar Probe, launched in 2018, is on a mission to touch the sun, dipping closer to our star than ever before. It’s currently flying through some outer parts of the corona, providing the first up-close look at the movements of particles that may be responsible for the extreme temperatures. The mission has already passed through the solar atmosphere once, and will keep swinging around for a few more years—providing key information to help scientists settle the coronal heating problem once and for all.

“I would be very confident that we could make big progress in the upcoming decade,” says Huang.

The post Why is the sun’s corona 200 times hotter than its surface? appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Super-thin ‘mirror membranes’ could lead the way to bigger space telescopes https://www.popsci.com/technology/space-telescope-mirror-membrane/ Tue, 11 Apr 2023 18:00:00 +0000 https://www.popsci.com/?p=533270
Illustration of space telescope array using mirror membranes above Earth
Space telescopes with 'mirror membranes' could one day orbit above Earth. ebastian Rabien, Max Planck Institute for Extraterrestrial Physics

The lightweight, flexible material could one day produce telescope mirrors even larger than JWST's.

The post Super-thin ‘mirror membranes’ could lead the way to bigger space telescopes appeared first on Popular Science.

]]>
Illustration of space telescope array using mirror membranes above Earth
Space telescopes with 'mirror membranes' could one day orbit above Earth. ebastian Rabien, Max Planck Institute for Extraterrestrial Physics

It took years of design and engineering toil to successfully get the largest-ever telescope mirror into space. Now, the James Webb Space Telescope’s trademark, 6.5-meter-in-diameter, gold-coated array orbits the sun 1.5 million kilometers above Earth, routinely providing stunning, previously inaccessible views of the universe. As incredible as its results are, however, a new, promising “mirror membrane” breakthrough is already in the works that could one day show scientists space in a new way.

According to a recent announcement from Germany’s Max Planck Institute for Extraterrestrial Physics, researcher Sebastian Rabien has reportedly designed a lighter, thinner, more cost-efficient reflective material that is hypothetically capable of producing telescope mirrors 15-20 meters wide. Detailed in a paper published with the journal Applied Optics, Rabien first evaporated a currently unspecified liquid within a vacuum chamber, which slowly deposits on interior surfaces before combining to form a polymer that eventually forms the mirror’s base.

[Related: Ice giant Uranus shows off its many rings in new JWST image.]

Telescope mirrors require a parabola shape to concentrate light towards a single spot. To achieve this, Rabien and his team positioned a rotating container containing additional liquid inside the vacuum chamber. That newly introduced liquid forms a “perfect parabolic shape,” which the polymer then grows upon to form the mirror’s base. As Space.com notes, “a reflective metal layer is applied to the top via evaporation and the liquid is washed away.”

“Utilizing this basic physics phenomenon, we deposited a polymer onto this perfect optical surface, which formed a parabolic thin membrane that can be used as the primary mirror of a telescope once coated with a reflecting surface such as aluminum,” explained Rabien in the announcement. 

At this stage, although the material in the study could be easily folded or rolled up to pack away for delivery to space, that optimal parabolic shape would be “nearly impossible” to reform. To solve this issue, researchers developed a new thermal method utilizing localized, light-derived temperature changes to gain an adaptive shape control which could bring the membrane back into its necessary optical shape.

[Related: NASA reveals James Webb Space Telescope first finds.]

In addition to its telescopic applications, the new mirror membranes could be used for adaptive optic systems. These systems rely upon deformable mirrors to compensate for incoming light distortion. Given the new material’s extreme malleability, the mirrors could be shaped via electrostatic actuators in a way that is less expensive than existing methods.

Looking ahead, Rabien’s team hopes to conduct further experiments to improve the membrane’s malleability, as well as improve how much initial distortion it can handle. There are also plans for even larger final products—a goal that could be integral to getting the new advancement into space.

The post Super-thin ‘mirror membranes’ could lead the way to bigger space telescopes appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Ice giant Uranus shows off its many rings in new JWST image https://www.popsci.com/science/jwst-uranus-rings-moons/ Fri, 07 Apr 2023 17:00:00 +0000 https://www.popsci.com/?p=532551
Pale blue Uranus with clearly detailed rings captured by NASA's James Webb Space Telescope
This zoomed-in image of Uranus, captured by Webb’s Near-Infrared Camera (NIRCam) reveals stunning views of the planet’s rings. SCIENCE: NASA, ESA, CSA, STScI. IMAGE PROCESSING: Joseph DePasquale (STScI)

The seventh planet boasts 13 known rings and a unique polar cap.

The post Ice giant Uranus shows off its many rings in new JWST image appeared first on Popular Science.

]]>
Pale blue Uranus with clearly detailed rings captured by NASA's James Webb Space Telescope
This zoomed-in image of Uranus, captured by Webb’s Near-Infrared Camera (NIRCam) reveals stunning views of the planet’s rings. SCIENCE: NASA, ESA, CSA, STScI. IMAGE PROCESSING: Joseph DePasquale (STScI)

In a sequel to its image of the planet Neptune’s rings in September 2022, the James Webb Space Telescope (JWST) has taken a new image of the ice giant Uranus. The new view of the seventh planet from the sun was taken on February 6 and released to the public on April 6. It shows off Uranus’ rings and some of the bright features in its atmosphere.

[Related: Expect NASA to probe Uranus within the next 10 years.]

The image was taken with NIRCam as a short 12-minute exposure and combines data from two filters, one shown in blue and one in orange. Uranus typically displays a blue hue naturally

Of the planet’s 13 known rings, 11 are visible in the image. According to NASA, some of these rings are so bright that they appear to merge into a larger ring when close together while observed with JWST. Nine are classed as the main rings of the planet, and two are the fainter dusty rings. These dusty rings have only ever been imaged by the Voyager 2 spacecraft as it flew past the planet in 1986 and with the Keck Observatory’s advanced adaptive optics in the early 2000s. Scientists expect that future images will also reveal the two even more faint outer rings that the Hubble Space Telescope discovered in 2007.

A wide view of the Uranian system with JWST's NIRCam instrument features the planet Uranus as well as six of its 27 known moons (most of which are too small and faint to be seen in this short exposure). A handful of background objects, including many galaxies, are also seen.
This wider view of the Uranian system with JWST’s NIRCam instrument features the planet Uranus as well as six of its 27 known moons (most of which are too small and faint to be seen in this short exposure). A handful of background objects, including many galaxies, are also seen. CREDITS:  SCIENCE: NASA, ESA, CSA, STScI IMAGE PROCESSING: Joseph DePasquale (STScI).

The new image also captured many of Uranus’ 27 known moons. Many of the moons are too small and faint to be seen in this image, but six can be seen in the wide-view. Uranus is categorized as an ice giant due to the chemical make-up of its interior. The majority of Uranus’ mass is believed to be a hot, dense, fluid of water, methane, and ammonia above a small and rocky core.

Among the planets in our solar system, Uranus has a unique rotation. It rotates on its side at a roughly 90-degree angle, which causes extreme seasons. The planet’s poles experience multiple years of constant sunlight, and then an equal number of years in total darkness. It takes the planet 84 years to orbit the sun and its northern pole is currently in its late spring. Uranus’ next northern summer isn’t until 2028

[Related: Uranus’s quirks and hidden features have astronomers jazzed about a direct mission.]

Uranus also has a unique polar cap on the right side of the planet. It’s visible as a brightening at the pole facing the sun, and seems to appear when the pole enters direct sunlight during the summer and vanishes in the autumn. JWST’s data is expected to help scientists understand what’s behind this mechanism and has already noticed a subtle brightening at the cap’s center. NASA believes that JWST’s Near-Infrared Camera NIRCam’s sensitivity to longer wavelengths may be why they can see this enhanced Uranus polar feature, since it has not been seen as clearly with other powerful telescopes.

Additionally, a bright cloud lies at the edge of the polar cap and another can be seen on the planet’s left limb. The JWST team believes that these clouds are likely connected to storm activity

More imaging and additional studies of the planet are currently in the works by multiple space agencies, after the National Academies of Sciences, Engineering, and Medicine identified Uranus science as a priority in its 2023-2033 Planetary Science and Astrobiology decadal survey. This 10 year-long study will likely include a study of Saturn’s moons and sending a probe to Uranus. 

“Sending a flagship to Uranus makes a lot of sense,” because Uranus and Neptune “are fairly unexplored worlds,” Mark Marley, a planetary scientist at the University of Arizona and director of the Lunar and Planetary Laboratory, told PopSci last year. Marley also called the future study it “clear-eyed,” and said that learning more about Uranus will help scientists understand both the formation of our solar system and even some exoplanets. 

The post Ice giant Uranus shows off its many rings in new JWST image appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Quantum computers can’t teleport things—yet https://www.popsci.com/technology/wormhole-teleportation-quantum-computer-simulation/ Fri, 07 Apr 2023 12:28:09 +0000 https://www.popsci.com/?p=532454
Google Sycamore processor for quantum computer hanging from a server room with gold and blue wires
Google's Sycamore quantum computer processor was recently at the center of a hotly debate wormhole simulation. Rocco Ceselin/Google

It's almost impossible to simulate a good wormhole without more qubits.

The post Quantum computers can’t teleport things—yet appeared first on Popular Science.

]]>
Google Sycamore processor for quantum computer hanging from a server room with gold and blue wires
Google's Sycamore quantum computer processor was recently at the center of a hotly debate wormhole simulation. Rocco Ceselin/Google

Last November, a group of physicists claimed they’d simulated a wormhole for the first time inside Google’s Sycamore quantum computer. The researchers tossed information into one batch of simulated particles and said they watched that information emerge in a second, separated batch of circuits. 

It was a bold claim. Wormholes—tunnels through space-time—are a very theoretical product of gravity that Albert Einstein helped popularize. It would be a remarkable feat to create even a wormhole facsimile with quantum mechanics, an entirely different branch of physics that has long been at odds with gravity. 

And indeed, three months later, a different group of physicists argued that the results could be explained through alternative, more mundane means. In response, the team behind the Sycamore project doubled down on their results.

Their case highlights a tantalizing dilemma. Successfully simulating a wormhole in a quantum computer could be a boon for solving an old physics conundrum, but so far, quantum hardware hasn’t been powerful or reliable enough to do the complex math. They’re getting there very quickly, though.

[Related: Journey to the center of a quantum computer]

The root of the challenge lies in the difference of mathematical systems. “Classical” computers, such as the device you’re using to read this article, store their data and do their computations with “bits,” typically made from silicon. These bits are binary: They can be either zero or one, nothing else. 

For the vast majority of human tasks, that’s no problem. But binary isn’t ideal for crunching the arcana of quantum mechanics—the bizarre rules that guide the universe at the smallest scales—because the system essentially operates in a completely different form of math.

Enter a quantum computer, which swaps out the silicon bits for “qubits” that adhere to quantum mechanics. A qubit can be zero, one—or, due to quantum trickery, some combination of zero and one. Qubits can make certain calculations far more manageable. In 2019, Google operators used Sycamore’s qubits to complete a task in minutes that they said would have taken a classical computer 10,000 years.

There are several ways of simulating wormholes with equations that a computer can solve. The 2022 paper’s researchers used something called the Sachdev–Ye–Kitaev (SYK) model. A classical computer can crunch the SYK model, but very ineffectively. Not only does the model involve particles interacting at a distance, it also features a good deal of randomness, both of which are tricky for classical computers to process.

Even the wormhole researchers greatly simplified the SYK model for their experiment. “The simulation they did, actually, is very easy to do classically,” says Hrant Gharibyan, a physicist at Caltech, who wasn’t involved in the project. “I can do it in my laptop.”

But simplifying the model opens up new questions. If physicists want to show that they’ve created a wormhole through quantum math, it makes it harder for them to confirm that they’ve actually done it. Furthermore, if physicists want to learn how quantum mechanics interact with gravity, it gives them less information to work with.

Critics have pointed out that the Sycamore experiment didn’t use enough qubits. While the chips in your phone or computer might have billions or trillions of bits, quantum computers are far, far smaller. The wormhole simulation, in particular, used nine.

While the team certainly didn’t need billions of qubits, according to experts, they should have used more than nine. “With a nine-qubit experiment, you’re not going to learn anything whatsoever that you didn’t already know from classically simulating the experiment,” says Scott Aaronson, a computer scientist at the University of Texas at Austin, who wasn’t an author on the paper.

If size is the problem, then current trends give physicists reason to be optimistic that they can simulate a proper wormhole in a quantum computer. Only a decade ago, even getting one qubit to function was an impressive feat. In 2016, the first quantum computer with cloud access had five. Now, quantum computers are in the dozens of qubits. Google Sycamore has a maximum of 53. IBM is planning a line of quantum computers that will surpass 1,000 qubits by the mid-2020s.

Additionally, today’s qubits are extremely fragile. Even small blips of noise or tiny temperature fluctuations—qubits need to be kept at frigid temperatures, just barely above absolute zero—may cause the medium to decohere, snapping the computer out of the quantum world and back into a mundane classical bit. (Newer quantum computers focus on trying to make qubits “cleaner.”)

Some quantum computers use individual particles; others use atomic nuclei. Google’s Sycamore, meanwhile, uses loops of superconducting wire. It all shows that qubits are in their VHS-versus-Betamax era: There are multiple competitors, and it isn’t clear which qubit—if any—will become the equivalent to the ubiquitous classical silicon chip.

“You need to make bigger quantum computers with cleaner qubits,” says Gharibyan, “and that’s when real quantum computing power will come.”

[Related: Scientists eye lab-grown brains to replace silicon-based computer chips]

For many physicists, that’s when great intangible rewards come in. Quantum physics, which guides the universe at its smallest scales, doesn’t have a complete explanation for gravity, which guides the universe at its largest. Showing a quantum wormhole—with qubits effectively teleporting—could bridge that gap.

So, the Google users aren’t the only physicists poring over this problem. Earlier in 2022, a third group of researchers published a paper, listing signs of teleportation they’d detected in quantum computers. They didn’t send a qubit through a simulated wormhole—they only sent a classical bit—but it was still a promising step. Better quantum gravity experiments, such as simulating the full SYK model, are about “purely extending our ability to build processors,” Gharibyan explains.

Aaronson is skeptical that a wormhole will ever be modeled in a meaningful form, even in the event that quantum computers do reach thousands of qubits. “There’s at least a chance of learning something relevant to quantum gravity that we didn’t know how to calculate otherwise,” he says. “Even then, I’ve struggled to get the experts to tell me what that thing is.”

The post Quantum computers can’t teleport things—yet appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A powerful explosion rocked space so hard, NASA called it the ‘brightest of all time’ https://www.popsci.com/science/nasa-detects-gamma-ray-burst/ Tue, 04 Apr 2023 13:30:00 +0000 https://www.popsci.com/?p=524915
Circled is the infrared afterglow of the BOAT gamma-ray burst and its host galaxy. Taken by NASA space telescopes.
The Hubble Space Telescope captured the infrared afterglow of the very bright gamma-ray burst. NASA, ESA, CSA, STScl, A. Levan, Gladys Kober

'A burst this bright arrives at Earth only once every 10,000 years.'

The post A powerful explosion rocked space so hard, NASA called it the ‘brightest of all time’ appeared first on Popular Science.

]]>
Circled is the infrared afterglow of the BOAT gamma-ray burst and its host galaxy. Taken by NASA space telescopes.
The Hubble Space Telescope captured the infrared afterglow of the very bright gamma-ray burst. NASA, ESA, CSA, STScl, A. Levan, Gladys Kober

Astronomers recently detected an explosion so large they dubbed it the BOAT—the brightest of all time. This explosion—known now as GRB 221009A—was a gamma-ray burst (GRB), a flash of extremely high-energy light that resulted from the death of a colossal star.

This detonation is the brightest burst at X-ray and gamma-ray energies since human civilization began. It is 70 times brighter than any observed before. Papers describing this result and others related to the burst were published in a focus issue of The Astrophysical Journal Letters in March.

“A burst this bright arrives at Earth only once every 10,000 years,” says Eric Burns, a Louisiana State assistant professor and astronomer involved in the detection. 

[Related: Black hole collisions could possibly send waves cresting through space-time]

So-called long GRBs—gamma-ray bursts that last longer than two seconds—materialize when a massive star runs out of fuel and collapses into a black hole. This catastrophic collapse causes powerful jets of material to stream out, collide with gas around the former star, and produce high-energy gamma rays. We can see this explosion from Earth if the jet is pointed directly at our planet. 

X-rays rippling from gamma-ray burst caught on NASA telescope
X-rays from the initial flash of GRB 221009a were captured by a telescope. NASA/Swift/A. Beardmore

Astronomers are constantly monitoring the sky for GRBs and other bright, short-lived bursts of light—and that’s how they found the BOAT. The research team that works with NASA’s Neil Gehrels Swift Observatory, is notified each time a certain camera, known as the Burst Alert Telescope (BAT), spots a new GRB.

“This one was bright enough to trigger BAT twice,” says Maia Williams, a Penn State astronomer and lead author of one of the GRB 221009A papers. 

The initial detection of the burst was based on data gathered from the Ultraviolet/Optical Telescope onboard SWIFT and NASA’s Fermi Gamma-ray Space Telescope. After “it was seen by instruments on more than two dozen satellites,” explains Burns. These include the NICER x-ray telescope on the International Space Station, NASA’s NuSTAR x-ray telescope, NASA’s new Imaging X-ray Polarimetry Explorer (IXPE) satellite, and even one of the Voyager spacecraft.

With this vast trove of information on the BOAT, astronomers realized it was a “more-complicated-than-usual GRB,” says Huei Sears, a Northwestern University astronomer and graduate student not involved in the discovery.

The gamma-ray burst's location in the Milky Way galaxy. Illustration.
This is an illustration of the GRB’s location seen from Earth and our line of sight to it through the Milky Way. NASA’s Goddard Space Flight Center

Why was the BOAT so bright? First, it’s nearby (in cosmic terms, about 1.9 billion light-years away), which adds to its extreme shine—just like a light bulb appears brighter to your eyes closer up than across a room. But its brightness isn’t just a quirk of its proximity. It’s also “intrinsically the most energetic burst ever seen,” says Burns. 

Astronomers suspect the jets blasted out of the black hole that created the BOAT were narrower  than usual. Imagine the jet setting on a garden hose—and by lucky coincidence this particular hose was aimed directly at Earth. However, why these jets behaved like this is not understood. 

Scientifically, the BOAT has proven most of our existing models for these events to be incomplete,” says Burns.

[Related: Astronomers now know how supermassive black holes blast us with energy]

Gamma-ray bursts are at their brightest in their first moments but continue with an afterglow for much longer—possibly several years in the case of the BOAT. Williams and her team plan to continue observing the BOAT once a week with SWIFT as long as they can. They’ll also use NASA’s powerhouse James Webb and Hubble space telescopes to get a look at other wavelengths, capturing as much as they can from this rare happening.

“The BOAT is so important because it is one of those events that breaks what we know,” says Sarah Dalessi, a University of Alabama astrophysicist and graduate student involved in the detection. “This is truly a once-in-a-lifetime event.”

The post A powerful explosion rocked space so hard, NASA called it the ‘brightest of all time’ appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Meet the first 4 astronauts of the ‘Artemis Generation’ https://www.popsci.com/science/artemis-2-astronauts/ Mon, 03 Apr 2023 17:14:45 +0000 https://www.popsci.com/?p=525007
Artemis II astronauts in orange NASA and Canadian Space Agency spacesuits
Official crew portrait for Artemis II. Clockwise from left: NASA Astronauts Christina Koch and Victor Glover, Canadian Space Agency Astronaut Jeremy Hansen, and NASA astronaut and Artemis II commander Reid Wiseman. Josh Valcarcel/NASA

Scheduled to launch in November 2024, these American and Canadian astronauts will be the first humans to visit the moon in more than 50 years.

The post Meet the first 4 astronauts of the ‘Artemis Generation’ appeared first on Popular Science.

]]>
Artemis II astronauts in orange NASA and Canadian Space Agency spacesuits
Official crew portrait for Artemis II. Clockwise from left: NASA Astronauts Christina Koch and Victor Glover, Canadian Space Agency Astronaut Jeremy Hansen, and NASA astronaut and Artemis II commander Reid Wiseman. Josh Valcarcel/NASA

Years after Apollo 17 commander Eugene Cernan returned from NASA’s last crewed mission to the moon, he still felt the massive weight of the milestone. “I realize that other people look at me differently than I look at myself, for I am one of only 12 human beings to have stood on the moon,” he wrote in his autobiography. “I have come to accept that and the enormous responsibility it carries, but as for finding a suitable encore, nothing has ever come close.”

Cernan, who died in 2017, and his crewmates will soon be joined in their lonely chapter of history by four new astronauts, bringing the grand total of people who’ve flown to the moon to 28. Today, NASA and the Canadian Space Agency announced the crew for Artemis II, the first mission to take humans beyond low-Earth orbit since Apollo 17 in 1972. The 10-day mission will take the team on a gravity-assisted trip around the moon and back.

The big reveal occurred at Johnson Space Center in Houston, Texas, in front of an audience of NASA partners, politicians, local students, international astronauts, and Apollo alums. NASA Director of Flight Operations Norman Knight, NASA Chief Astronaut Joe Acaba, and Johnson Space Center Director Vanessa White selected the crew. They were joined on stage during the announcement by NASA Administrator Bill Nelson and Canada’s Minister of Innovation, Science, and Industry Francois-Philippe Champagne. 

“You are the Artemis generation,” Knight said after revealing the final lineup. “We are the Artemis generation.” These are the four American and Canadian astronauts representing humanity in the next lunar launch.

Christina Koch – Mission Specialist, NASA

Koch has completed three missions to the International Space Station (ISS) and set the record for the longest spaceflight for a female astronaut in 2020. Before that, the Michigan native conducted research at the South Pole and tinkered on instruments at the Goddard Flight Space Center. She will be the only professional engineer on the Artemis II crew. “I know who mission control will be calling when it’s time to fix something on board,” Knight joked during her introduction.

Koch relayed her anticipation of riding NASA’s Space Launch System (SLS) on a lunar flyby and back to those watching from home: “It will be a four-day journey [around the moon], testing every aspect of Orion, going to the far side of the moon, and splashing down in the Atlantic. So, am I excited? Absolutely. But one thing I’m excited about is that we’re going to be carrying your excitement, your dreams, and your aspirations on your mission.”

[Related: ‘Phantom’ mannequins will help us understand how cosmic radiation affects female bodies in space]

After the Artemis II mission, Koch will officially be the first woman to travel beyond Earth’s orbit. Koch and her team will circle the moon for 6,400 miles before returning home.

Jeremy Hansen – Mission Specialist, Canada

Hansen’s training experience has brought him to the ocean floor off Key Largo, Florida, the rocky caves of Sardinia, Italy, and the frigid atmosphere above the Arctic Circle. The Canadian fighter pilot led ISS communications from mission control in 2011, but this will mark his first time in space. Hansen is also the only Canadian who’s ever flown on a lunar mission.

“It’s not lost on any of us that the US could go back to the moon by themselves. Canada is grateful for that global mindset and leadership,” he said during the press conference. He also highlighted Canada’s can-do attitude in science and technology: “All of those have added up to this step where a Canadian is going to the moon with an international partnership. Let’s go.”

Victor Glover – Pilot, NASA

Glover is a seasoned pilot both on and off Earth. Hailing from California, he’s steered or ridden more than 40 different types of craft, including the SpaceX Crew Dragon Capsule in 2020 during the first commercial space flight ever to the ISS. His outsized leadership presence in his astronaut class was mentioned multiple times during the event. “In the last few years, he has become a mentor to me,” Artemis II commander Reid Wiseman said.

[Related on PopSci+: Victor J. Glover on the cosmic ‘relay race’ of the new lunar missions]

In his speech, Glover looked into the lofty future of human spaceflight. “Artemis II is more than a mission to the moon and back,” he said. “It’s the next step on the journey that gets humanity to Mars. We have a lot of work to do to get there, and we understand that.” Glover will be the first Black astronaut to travel to the moon.

G. Reid Wiseman – Commander, NASA

Wiseman got a lot done in his single foray into space. During a 2014 ISS expedition, he contributed to upwards of 300 scientific experiments and conducted two lengthy spacewalks. The Maryland native served as NASA’s chief astronaut from 2020 to 2022 and led diplomatic efforts with Roscosmos, Russia’s space agency. 

“This was always you,” Knight said while talking about Wiseman’s decorated military background. “It’s what you were meant to be.”

Flight commanders are largely responsible for safety during space missions. As the first astronauts to travel on the SLS rocket and Orion spacecraft, the Artemis II crew will test the longevity and stability of NASA and SpaceX’s new flight technology as they exit Earth’s atmosphere, slingshot into the moon’s gravitational field, circumnavigate it, and attempt a safe reentry. Wiseman will be in charge of all that with the support of his three fellow astronauts and guidance from mission control.

The post Meet the first 4 astronauts of the ‘Artemis Generation’ appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How AI can make galactic telescope images ‘sharper’ https://www.popsci.com/technology/ai-algorithm-space-telescope/ Fri, 31 Mar 2023 18:00:00 +0000 https://www.popsci.com/?p=524579
Comparison images of galaxy gaining better resolution via AI program
Before and after, all thanks to AI clarification. Emma Alexander/Northwestern University>

Accuracy is everything when studying deep space, and this open-source AI is here to help.

The post How AI can make galactic telescope images ‘sharper’ appeared first on Popular Science.

]]>
Comparison images of galaxy gaining better resolution via AI program
Before and after, all thanks to AI clarification. Emma Alexander/Northwestern University>

Even the most advanced ground-based telescopes struggle with nearsighted vision issues. Often this isn’t through any fault of their own, but a dilemma of having to see through the Earth’s constantly varying atmospheric interferences. As undesirable as that is to the casual viewer, it can dramatically frustrate researchers’ abilities to construct accurate images of the universe—both literally and figuratively. By applying an existing, open-source computer vision AI algorithm to telescope tech, however, researchers have found they are able to hone our cosmic observations.

As detailed in a paper published this month with the Monthly Notices of the Royal Astronomical Society, a team of scientists from Northwestern University and Beijing’s Tsinghua University recently trained an AI on data simulated to match imaging parameters for the soon-to-be opened Vera C. Rubin Observatory in north-central Chile. As Northwestern’s announcement explains, while similar technology already exists, the new algorithm produces blur-free, high resolution glimpses of the universe both faster and more realistically.

“Photography’s goal is often to get a pretty, nice-looking image. But astronomical images are used for science,” said Emma Alexander, an assistant professor of computer science at Northwestern and the study’s senior author. Alexander explained that cleaning up image data correctly helps astronomers obtain far more accurate data. Because the AI algorithm does so computationally, physicists can glean better measurements.

[Related: The most awesome aerospace innovations of 2022.]

The results aren’t just prettier galactic portraits, but more reliable sources of study. For example, analyzing galaxies’ shapes can help determine gravitational effects on some of the universe’s largest bodies. Blurring that image—be it through low-resolution tech or atmospheric interference—makes scientists’ less reliable and accurate. According to the team’s work, the optimized tool generated images with roughly 38 percent less error than compared to classic blur-removal methods, and around 7 percent less error compared to existing modern methods.

What’s more, the team’s AI tool, coding, and tutorial guidelines are already available online for free. Going forward, any interested astronomers can download and utilize the algorithm to improve their own observatories’ telescopes, and thus obtain better and more accurate data.

“Now we pass off this tool, putting it into the hands of astronomy experts,” continued Alexander. “We think this could be a valuable resource for sky surveys to obtain the most realistic data possible.” Until then, astronomy fans can expect far more detailed results from the Rubin Observatory when it officially opens in 2024 to begin its deep survey of the stars.

The post How AI can make galactic telescope images ‘sharper’ appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How the Hubble telescope is keeping a 265-year-old stargazing project alive https://www.popsci.com/science/stargazing-hubble-messier-catalog/ Fri, 24 Mar 2023 10:00:00 +0000 https://www.popsci.com/?p=522434
Colorful M19 star cluster in NASA Hubble Space Telescope image
This image of M19 includes Hubble observations taken in ultraviolet, visible, and near-infrared wavelengths of light. A small gap in Hubble data (horizontal line at center right) is instead filled in with observations from the ground-based Victor M. Blanco 4-meter Telescope. NASA, ESA, and C. Johnson (STScI); Image Processing: Gladys Kober

Vintage amateur astronomy meets high-res NASA technology.

The post How the Hubble telescope is keeping a 265-year-old stargazing project alive appeared first on Popular Science.

]]>
Colorful M19 star cluster in NASA Hubble Space Telescope image
This image of M19 includes Hubble observations taken in ultraviolet, visible, and near-infrared wavelengths of light. A small gap in Hubble data (horizontal line at center right) is instead filled in with observations from the ground-based Victor M. Blanco 4-meter Telescope. NASA, ESA, and C. Johnson (STScI); Image Processing: Gladys Kober

When NASA’s Hubble Space Telescope takes an image of a star field, it usually looks more like an abstract painting than a real piece of the universe. In the case of globular cluster M14, those drops of white, blue, and orange paint are more than 150,000 stars packed at the periphery of a spiral galaxy 29,000 light-years away from Earth.

Of course, NASA has shared many stunning views of the universe since Hubble was launched in 1990, but this newly processed image has another claim to fame—it’s known as Messier 14, one of the dozens of celestial objects cataloged by French astronomer and comet hunter Charles Messier beginning in 1758. The objects are bright and relatively easy to see with small ground telescopes, and so are popular with the amateur astronomy community.

Star-filled Andromeda galaxy in stitched-together Hubble image
Assembled from a total of 7,398 exposures taken over 411 individual pointings of the telescope, this image of our nearest major galactic neighbor, M31, is the largest Hubble mosaic to date. The 1.5 billion pixels in the mosaic reveal over 100 million stars and thousands of star clusters embedded in a section of the pancake-shaped disk of M31, also known as the Andromeda galaxy.  NASA, ESA, J. Dalcanton, B.F. Williams and L.C. Johnson (University of Washington), the PHAT team and R. Gendler

But five years ago, the NASA Hubble team decided to begin posting the legendary space telescope’s observations of the vintage catalog online “to give people a chance to view the Messier objects in a way that they might not otherwise be able to do, especially since in many cases we can see colors of light that don’t get through the atmosphere,” says Hubble Operations Project Scientist Kenneth Carpenter. “People can’t see the ultraviolet, for instance, when they look with their ground telescopes.”

Messier was born in 1730 and developed a fascination with comets, ultimately discovering the “Great Comet” of 1769, which exhibited an extremely long tail as it passed near Earth. His catalog grew out of his notes on sightings from the Northern Hemisphere that could be confused as streaking balls of ice and dust to keep other comet seekers from wasting their time. The series includes globular star clusters like M14, nebulae such as the Eagle Nebula (M16) and Crab Nebula (M1), and even the Andromeda galaxy (M31). The numbers indicate the order in which Messier discovered the objects, though he only found 103 of the current 110—additions were made by other astronomers in the mid-20th century.

[Related: Your guide to the types of stars, from their dusty births to violent deaths]

The Hubble Messier Catalog is much newer, according to James Jeletic, NASA’s deputy project manager for Hubble. In 2017, his team was brainstorming ways to get the amateur astronomy community involved and feeling more connected with Hubble science. ”So we said, ‘Well, let’s go back to that Messier catalog,” he recalls. “That way, amateur astronomers can look at an object in their telescope, and then compare it to what Hubble sees.”

The scavenger hunt is not yet complete—the Hubble Messier Catalog currently exhibits images of 84 of the 110 Messier objects and plots them on an interactive map—but that’s partly because of the way in which the Hubble team has gone about building out the collection. They don’t purposefully take new images of Messier objects to add to the catalog; rather they wait for a scientific proposal that overlaps with the targets. That, or they comb through the Hubble archive looking for suitable scenes that haven’t been published yet and process them (as was the case with M14). “We think we found all the ones, for the most part, that are worthy of creating an image out of,” Jelectic explains. “We’re going to search one more time, you know, just to make sure.”

Bright white galaxy with black hole in middle in Hubble image mosaic
This stunning Hubble image mosaic is of M104, also known as the Sombrero galaxy. The hallmark of the nearly edge-on galaxy is a brilliant, white, bulbous core encircled by thick dust lanes comprising the spiral structure of the galaxy. The center of M104 is thought to be home to a massive black hole. NASA and the Hubble Heritage Team (STScI/AURA)

The Hubble team shared the image of M14 on March 19 as part of what’s called a Messier Marathon, an attempt by amateur astronomers to observe all 110 objects in a short time frame; the skygazing conditions in March and early April are considered particularly conducive to Messier Marathons because all of the objects can be seen in a single night around the spring equinox. “If you can view all 110, no matter how long it takes, you become a member of the [official Messier club] and get a certificate and pin,” Jelectic says.

For those in the Southern Hemisphere, the NASA Hubble website also includes images from the Caldwell Catalog, a collection of 109 objects visible compiled in the 1980s by English amateur astronomer Patrick Moore as a counterweight to the Messier Catalog.

[Related: Researchers found what they believe is a 2,000-year-old map of the stars]

Reflecting on the fact that astronomers, both professional and amateur, and the general public are still fascinated by objects first cataloged more than 200 years ago, Carpenter says it illustrates how science progresses over time.

“Every time you build a new telescope, whether it be on the ground or in space, that’s either larger in size so it’s more sensitive, or sensitive to a different color of light than we’ve had previously, you make wonderful new discoveries,” he says. Even after years in the field it still astonishes him what telescopes can seek. “It is just absolutely incredible, both in terms of the science and just in terms of the sheer beauty. I think a telescope is really as much a tool of art, of the creation of art, as it is of the creation and interpretation of science.”

The post How the Hubble telescope is keeping a 265-year-old stargazing project alive appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
‘Oumuamua isn’t an alien probe, but it might be the freakiest comet we’ve ever seen https://www.popsci.com/science/oumuamua-alien-comet-explanation/ Thu, 23 Mar 2023 18:00:00 +0000 https://www.popsci.com/?p=522369
Oumuamua, which is either a comet or an alien spaceship, giving off hydrogen gas as it passes through the sun's cosmic rays. Illustrated.
An artist's depiction of the interstellar comet 'Oumuamua, as it warmed up in its approach to the sun and outgassed hydrogen (white mist), which slightly altered its orbit. NASA, ESA and Joseph Olmsted and Frank Summers of STScI

A new explanation for the space pancake's eccentric orbit has astronomers buzzing.

The post ‘Oumuamua isn’t an alien probe, but it might be the freakiest comet we’ve ever seen appeared first on Popular Science.

]]>
Oumuamua, which is either a comet or an alien spaceship, giving off hydrogen gas as it passes through the sun's cosmic rays. Illustrated.
An artist's depiction of the interstellar comet 'Oumuamua, as it warmed up in its approach to the sun and outgassed hydrogen (white mist), which slightly altered its orbit. NASA, ESA and Joseph Olmsted and Frank Summers of STScI

Since its discovery in 2017, the interstellar object ‘Oumuamua has been a point of fascination—and sometimes obsession—for astronomy fans. As the first object we’ve seen from another solar system, it’s naturally drawn a lot of interest, with its strange tube-like shape and surprisingly small size. It even accelerated at one point in its orbit, which happens regularly with comets—but ‘Oumuamua didn’t have the usual gassy tail, leading some to even propose it may be an alien ship.

A new hypothesis, published on March 22 in the journal Nature, proposes a different explanation for ‘Oumuamua’s anomalous orbit. Astronomers Jennifer Bergner and Darryl Seligman say the half-mile-long object is just a comet after all, but that its time in interstellar space changed its chemistry. Instead of water causing the extra propulsion, ‘Oumuamua released nearly invisible hydrogen.

“It’s exciting that we can explain the strange behavior of ‘Oumuamua without needing to resort to any exotic physics,” says Bergner, an astrochemist at the University of California, Berkeley and lead author on the new paper.

“Hopefully this discovery will put to rest any outlandish ideas about ‘Oumuamua being an alien probe,” adds University of Washington astrobiologist Kaitlin Rasmussen, author of the upcoming book Life in Seven Numbers: The Drake Equation Revealed.

Comets are chunks of ice and debris left over from the process of planet formation, lurking at the edge of our solar system. On their extremely long and stretched out orbits, they occasionally dive in towards the sun. There, the sun’s bright rays vaporize some of the comet’s ice and dust to make the fuzzy coma and the sweeping tails we see. 

[Related: Scientists finally solve the mystery of why comets glow green]

‘Oumuamua may have begun its life as a typical comet around another star—rich with water ice—before being thrust out into open space by the chaos of a young solar system. (Our solar system likely spewed out similar chunks of detritus in its early days.) On its voyage between the stars, Bergner and Seligman propose that ‘Oumuamua was bombarded with energetic particles known as cosmic rays. These high-energy particles broke the bonds between hydrogen and oxygen in water molecules, creating molecular hydrogen (H2) trapped in the crystalline structure of the ice.

Once ‘Oumuamua swung by the sun, the heat rearranged the crystals of its ice, releasing the molecular hydrogen to propel the interstellar interloper and cause its observed acceleration, almost like a rocket booster. “It’s more plausible than the other ideas,” says UCLA astronomer David Jewitt, “including those relying on carbon monoxide (which was not detected), nitrogen ice (which is relatively hard to find), and, of course, the spaceship idea.”

“I think the authors have a very interesting hypothesis,” agrees Caltech planetary scientist Qicheng Zhang, who is not affiliated with the research team. The real significance of this result, though, will come with further observations, he adds. 

‘Oumuamua was only invisible for a short time when it passed within 15 million miles of Earth in 2017; now on Pluto’s fringes, it’s far beyond the reach of even our largest telescopes. As an alternative to direct data, Bergner and Seligman suggest studying a similar effect on ‘Oumuamua-sized comets from our own solar system. But there’s one catch—we haven’t spotted any solar system comets that small yet. Astronomers hope the next generation of telescopes, including NASA’s recently launched James Webb Space Telescope, will spot the first of those objects.

[Related: The Milky Way could have dozens of alien civilizations capable of contacting us]

Casey Lisse, an astronomer at Johns Hopkins Applied Physics Lab, also suggests that a comet’s H2 may be observable if it splits apart into two hydrogen atoms under the influence of the sun’s ultraviolet rays. The signal on a ‘Oumuamua look-alike could be picked up by certain satellites like SOHO, NASA’s long-running solar space telescope, “which are known to measure bright comets,” he says.

Astronomers also expect to root out many more interstellar objects in the coming years; they recorded the second one, known as comet 2I/Borisov, in 2019. “There’s approximately one similar object in the inner solar system at any given time,” says Seligman, Cornell astronomer and co-author on the Nature study. “When we get the Rubin Observatory and the NEO [Near-Earth Object] Surveyor going, we’ll be discovering way more.”

Astronomers think of these interstellar objects as a window into other solar systems: the closest peek we’ll get at the building blocks of other planets. “Any object of interstellar origin is incredibly valuable to us because it’s bringing clues about the processes going on beyond our solar system,” says Bergner.

The post ‘Oumuamua isn’t an alien probe, but it might be the freakiest comet we’ve ever seen appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Gritty, swirling clouds of silica surround exoplanet VHS 1256 b https://www.popsci.com/science/jwst-exoplanet-sand-clouds-nasa/ Thu, 23 Mar 2023 16:00:00 +0000 https://www.popsci.com/?p=522271
This illustration conceptualizes the swirling clouds identified by the James Webb Space Telescope in the atmosphere of exoplanet VHS 1256 b. The planet is about 40 light-years away and orbits two stars that are locked in their own tight rotation.
This illustration conceptualizes the swirling clouds identified by the James Webb Space Telescope in the atmosphere of exoplanet VHS 1256 b. The planet is about 40 light-years away and orbits two stars that are locked in their own tight rotation. ILLUSTRATION: NASA, ESA, CSA, Joseph Olmsted (STScI)

The 150-million-year-old planet's skies demonstrate the turbulence of its young age.

The post Gritty, swirling clouds of silica surround exoplanet VHS 1256 b appeared first on Popular Science.

]]>
This illustration conceptualizes the swirling clouds identified by the James Webb Space Telescope in the atmosphere of exoplanet VHS 1256 b. The planet is about 40 light-years away and orbits two stars that are locked in their own tight rotation.
This illustration conceptualizes the swirling clouds identified by the James Webb Space Telescope in the atmosphere of exoplanet VHS 1256 b. The planet is about 40 light-years away and orbits two stars that are locked in their own tight rotation. ILLUSTRATION: NASA, ESA, CSA, Joseph Olmsted (STScI)

If you’ve ever been to the beach on a windy day, you’ve likely been treated to the not so fun feeling grains of sand hitting your face. That unpleasant experience would a walk in the park compared to what scientists have now discovered is happening in the atmosphere of the exoplanet VHS 1256 b.

A team of researchers using the James Webb Space Telescope (JWST) found that the planet’s clouds are made up of silicate particles that range in size from tiny specks to small grains.  The silicates in the clouds are swirling in nearly constant cloud cover. Silicates are common in our solar system and make up about 95 percent of Earth’s crust and upper mantle.

[Related: These 6 galaxies are so huge, they’ve been nicknamed ‘universe breakers.’]

During VHS 1256 b’s 22-hour day, the atmosphere is continuously rising, mixing, and moving. This motion brings hotter material up and pushes colder material down, the way hot air rises  and cool air sinks on Earth. The brightness that results from this air shifting is so dramatic that the team on the study say it is the most variable planetary-mass object known to date. 

The findings were published March 22 in the The Astrophysical Journal Letters. The team also found very clear detections of carbon monoxide, methane, and water using JWST’s data and even evidence of carbon dioxide. According to NASA, it is the largest number of molecules ever identified all at once on a planet outside our solar system.

VHS 1256 b is about 40 light-years away from Earth and orbits two stars over a 10,000-year period. “VHS 1256 b is about four times farther from its stars than Pluto is from our Sun, which makes it a great target for Webb,” said study co-author and University of Arizona astronomer Brittany Miles, in a statement. “That means the planet’s light is not mixed with light from its stars.” 

The temperature in the higher parts of its atmosphere where the silicate clouds churn daily reach about 1,500 degrees Fahrenheit. JWST detected both larger and smaller silicate dust grains within these clouds that are shown on a spectrum

A chart of the emission spectrum on exoplanet VHS 1256 b.
There is likely a layer of very small grain silicate clouds higher up in the atmosphere. These silicates are finer, more like smoke particles, and are responsible for creating the plateau near 10 microns. Somewhat larger grain clouds are likely a bit deeper. Some particles in these clouds may be about the size of small grains of silt. CREDITS: IMAGE: NASA, ESA, CSA, Joseph Olmsted (STScI) SCIENCE: Brittany Miles (University of Arizona), Sasha Hinkley (University of Exeter), Beth Biller (University of Edinburgh), Andrew Skemer (UC Santa Cruz).

“The finer silicate grains in its atmosphere may be more like tiny particles in smoke,” said astronomer and co-author Beth Biller of the University of Edinburgh in Scotland, in a statement. “The larger grains might be more like very hot, very small sand particles.”

[Related: JWST has changed the speed of discovery, for better or for worse.]

Compared to more massive brown dwarfs, VHS 1256 b has low gravity, so its silicate clouds can appear and remain higher up in its atmosphere where JWST can detect them. It is also quite young as far as planets are concerned, at only 150 million years old. As with most young humans, it’s going through some turbulent times as it ages. 

The team says that these findings are similar to the first “coins” pulled out of a treasure chest of data that they are only beginning to rummage through. “We’ve identified silicates, but better understanding which grain sizes and shapes match specific types of clouds is going to take a lot of additional work,” said Miles. “This is not the final word on this planet – it is the beginning of a large-scale modeling effort to fit Webb’s complex data.”

While these features have been spotted on other planets in the Milky Way by other telescopes, only one at a time was typically identified, according to the team. They used JWST’s Near-Infrared Spectrograph (NIRSpec) and the Mid-Infrared Instrument (MIRI) to collect the data and says that there will be much more to learn about VHS 1256 b as scientists sift through the data.

The post Gritty, swirling clouds of silica surround exoplanet VHS 1256 b appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The secret to Voyagers’ spectacular space odyssey https://www.popsci.com/science/voyager-1-and-2-engineering/ Tue, 21 Mar 2023 13:00:00 +0000 https://www.popsci.com/?p=521007
Deep Space photo
Christine Rösch

'Simple' hardware and software from the 1970s pushed the Voyager mission to the solar system's edge. But how long can it keep going?

The post The secret to Voyagers’ spectacular space odyssey appeared first on Popular Science.

]]>
Deep Space photo
Christine Rösch

IN 1989, rock-and-roll legend Chuck Berry attended one of the biggest parties of the summer. The bash wasn’t a concert, but a celebration of two space probes about to breach the edge of our solar system: NASA’s Voyager mission

Launched from Cape Canaveral, Florida, in 1977, identical twins Voyager 1 and 2 embarked on a five-year expedition to observe the moons and rings of Jupiter and Saturn, carrying with them Golden Records preserving messages from Earth, including Berry’s smash single “Johnny B. Goode.” But 12 years later, out on the grassy “Mall” of NASA’s Jet Propulsion Laboratory, scientists celebrated as Voyager 2 made a previously unscheduled flyby of Neptune. Planetary scientist Linda Spilker remembers the bittersweet moment: the sight of the eighth planet’s azure-colored atmosphere signaled the end of the mission’s solar system grand tour.

“We kind of thought of it as a farewell party, because we’d flown by all the planets,” says Spilker. “Both of them were well past their initial lifetimes.”

Many in the scientific community expected the spacecrafts to go dark soon after. But surprisingly, the pair continued whizzing beyond the heliopause into interstellar space, where they’ve been wandering ever since, for more than three decades. Spilker, now the Voyager mission project scientist, says the probes’ journeys have shed light on the universe we live in—and ourselves. “It’s really helped shape and change the way we think about our solar system,” she says. 

Currently traveling at a distance between 12 and 14 billion miles from Earth, Voyager 1 and 2 are the oldest, farthest-flung objects ever forged by humanity. Nearly five decades on, the secret to Voyager’s apparent immortality is most likely the spacecrafts’ robust design—and their straightforward, redundant technology. By today’s standards, each machine’s three separate computer systems are primitive, but that simplicity, as well as their construction from the best available materials at the time, has played a large part in allowing the twins to survive. 

For example, the spacecrafts’ short list of commands proved versatile as they hopped from one planet to the next, says Candice Hansen-Koharcheck, a planetary scientist who worked with the mission’s camera team. This flexibility of its operations allowed engineers to turn the Voyagers into scientific chameleons, adapting to one new objective after another.

As the machines puttered far from home, new discoveries, like active volcanoes on Jupiter’s moon Io and a possible subsurface ocean on neighboring Europa, helped us realize that “we weren’t in Kansas anymore,” says Hansen-Koharcheck. Since then, many of the tools that have contributed to Voyagers’ success, such as optics and multiple fail-safes, have been translated to other long-term space missions, like the Saturn Cassini space probe and the Mars Reconnaissance Orbiter. 

Both Voyagers are expected to transmit data back to Earth until about 2025—or until the spacecrafts’ plutonium “batteries” are unable to power critical functions. But even if they do cease contact, it’s unlikely they will crash into anything or ever be destroyed in the cosmic void. 

Instead, the Voyagers may travel the Milky Way eternally, both alone and together in humanity’s most spectacular odyssey. 

Read more PopSci+ stories.

The post The secret to Voyagers’ spectacular space odyssey appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Your guide to the types of stars, from their dusty births to violent deaths https://www.popsci.com/science/types-of-stars/ Sun, 19 Mar 2023 17:00:00 +0000 https://www.popsci.com/?p=518519
A type of star known as a luminous blue variable.
The Hubble Space Telescope captured this blue star shedding outer layers of gas and dust. NASA, ESA, STScI

The most massive stars are often the hottest, brightest suns—and they burn out the fastest.

The post Your guide to the types of stars, from their dusty births to violent deaths appeared first on Popular Science.

]]>
A type of star known as a luminous blue variable.
The Hubble Space Telescope captured this blue star shedding outer layers of gas and dust. NASA, ESA, STScI

On a clear, moonless night, you might be able to see thousands of stars sparkling like jewels above. But a keen eye will notice that they don’t all look alike. Some glow brighter than others, and some display warm red hues.

Astronomers have identified several different types of stars in the universe, as diverse as small brown dwarfs and red supergiants. Stars in the prime of their lives, known as main sequence stars, are typically classified by how hot they are. Since most star temperatures can’t be directly measured, explains Natalie Gosnell, an assistant professor in physics at Colorado College, astronomers need to look at another signal: temperature. This is largely inferred by the color of the light a star emits, which is reflected in many names given to star types.  

Each category, however, is connected. A star moves through various designations throughout its lifetime, an evolution shaped by its original mass and the reactions that occur within the roiling stellar body. 

In the beginning…

All stars form from a cloud of dust and gas when turbulence pushes enough of that material together, pressed into one body by gravity. As that clump collapses in on itself, it starts to spin. The material in the middle heats up, forming a dense core known as a protostar. Gravity draws even more material toward the developing star as it spins, making it bigger and bigger. Some of that stuff may eventually form planets, asteroids, and comets in orbit around the new star.

The stellar body remains in the protostar phase as long as material still collapses inward and the object can grow. This process can take hundreds of thousands of years.

The amount of mass that is gathered during that stellar formation process determines the ultimate trajectory of the star’s life—and what types of stars it will become throughout its existence.

Protostars, baby stars—and failures

As a protostar amasses more and more gas and dust, its spinning core gets hotter and hotter. Once it accumulates enough mass and reaches millions of degrees, nuclear fusion begins in the core. A star is born.

For this to occur, a protostar has to accumulate more than 0.08 times the mass of our sun. Anything less and there won’t be enough gravitational pressure on the protostar to trigger nuclear fusion. 

Those failed stars are called brown dwarfs, and they remain in that state for their lifetime, progressively cooling down without nuclear fusion to help release new energy. Despite their name, brown dwarfs can be orange, red, or black due to their cool temperatures. They tend to be slightly larger than Jupiter, but are much more dense.

Protostars that do acquire enough mass to become a star sometimes go through an interim phase. During a roughly 10 million-year period, these young stars collapse under the pressure of gravity, which heats up their cores and sets off nuclear fusion. 

In this stage, a star can fall into two categories: If it has a mass two times that of our sun, it is considered a T Tauri star. If it has two to eight solar masses, it’s a Herbig Ae/Be star. The most massive stars skip this early stage, because they contract too quickly. 

Once a sufficiently massive star begins to undergo nuclear fusion, a balancing act begins. Gravity still exerts an inward force on the newborn star, but nuclear fusion releases outward energy. For as long as those forces balance each other out, the star exists in its main sequence stage. 

Red dwarf star blasting a nearby planet with hot gas. Illustration.
The most common stars in the galaxy are red dwarfs, such as the one illustrated here blasting a nearby world with hot gas. NASA, ESA, and D. Player (STScI)

Fueling main sequence stars

Main sequence stars, which can last for millions to billions of years, are the vast majority of stars in the universe—and what we can see unaided on dark, clear nights. These stars burn hydrogen gas as fuel for nuclear fusion. Under the super-hot conditions in the core of a star, colliding hydrogen fuses, generating energy. This process produces the chemical ingredients for a reaction that makes helium. 

Mass dictates what type of star an object will be during the main sequence stage. The more mass a star has, the stronger the force of gravity pushing inward on the core and therefore the hotter the star gets. With more heat, there is faster fusion and that generates more outward pressure against the inward gravitational force. That makes the star appear brighter, bigger, hotter, and bluer.

[Related: The Milky Way’s oldest star is a white-hot pyre of dead planets]

Many main sequence stars are also often referred to as “dwarf” stars. They can range greatly in luminosity, color, and size, from a tenth to 200 times the sun’s mass. The biggest stars are blue stars, and they are particularly hot and bright. In the middle are yellow stars, which includes our sun. Somewhat smaller are orange stars, and the smallest, coolest stars are red stars. 

The hottest stars are O stars, with surface temperatures over 25,000 Kelvin. Then there are B stars (10,000 to 25,000K), A stars (7,500 to 10,000K), F stars (6,000 to 7,500K), G stars (5,000 to 6,000K—our sun, with a surface temperature around 5,800K is one of these), K stars (3,500 to 5,000K), and M stars (less than 3,500K). 

Upsetting the balance to grow a giant star

As a star runs out of fuel, its core contracts and heats up even more. This makes the remaining hydrogen fuse even faster: It produces extra energy, which radiates outward and pushes more forcefully against the inward force of gravity, causing the outer layers of the star to expand.

As those layers spread out, they cool down, and that makes the star appear redder. The result is either a red giant or a red supergiant, depending on if it’s a low mass star (less than 8 solar masses) or a high mass star (greater than 8 solar masses). This phase typically lasts up to around a billion years.

Appearing more orange than red, some red giants are visible to the naked eye, such as Gamma Crucis in the southern constellation Crux (aka the Southern Cross).

The Southern Cross constellation, showing the bright blue Epsilon Crucis, a K-type star.
The bright blue star on the right of this image is Epsilon Crucis, a K-type star in the constellation Crux. NASA/JPL-Caltech/UCLA

The death and afterlife of a low-mass star

Stars die in remarkably different ways, depending on their masses. For a low-mass star, once all the hydrogen is nearly gone, the core contracts even more, getting even hotter. It becomes so scorching that the star can even fuse helium—which, because it’s an element heavier than hydrogen, requires more heat and pressure for nuclear fusion. 

As a red giant burns through its helium, producing carbon and other elements, it becomes unstable and begins to pulsate. Its outer layers are ejected and blow away into the interstellar medium. Eventually, when all of these layers have been shed, all that remains is the small, hot, dense core. That bare remnant is called a white dwarf.

[Related: Wiggly space waves show neutron stars on the edge of becoming black holes]

About the size of Earth, though hundreds of thousands of times more massive, a white dwarf no longer produces new heat of its own. It gradually cools over billions of years, emitting light that appears anywhere from blue white to red. These dense stellar remnants are too dim to see with a naked eye, but some are visible with a telescope in the southern constellation Musca. Van Maanen’s star, in the northern constellation Pisces, is also a white dwarf. 

The explosive stellar death of a high-mass star

Stars with mass eight times that of our sun typically follow a similar pattern, at least in the beginning of this phase. As the star runs low on helium, it contracts and heats up, which allows it to convert the resulting carbon into oxygen. That process repeats itself with the oxygen, converting it to neon, then the neon into silicon, and finally into iron. When no fuel remains for this fusion sequence, and energy is no longer being released outward from those reactions, the inward force of gravity quickly wins. 

Within a second, the outer layers of the star collapse inward. The core collapses and then rebounds, sending a shock wave through the rest of the star: a supernova. 

Life after a supernova for a star takes one of two paths. If the star had between eight and 20 times the sun’s mass during its main sequence stage, it will leave behind a superdense core called a neutron star. Neutron stars are even smaller in diameter than white dwarfs, at about the size of New York City’s length, and contain more mass than our sun.

But for the most massive stars, that remnant core will continue collapsing under the pressure of its own gravity. The result is a black hole, which can be as small as an atom but contain the mass of a supermassive star.

Not all stars fit into neat categories

The progression from protostar to white dwarf, neutron star, or black hole might seem straightforward. But, Gosnell says, a closer look can yield surprises. The European Space Agency’s Global Astrometric Interferometer for Astrophysics mission, which is creating a detailed 3D map of all our galaxy’s stars, has been revealing many of these oddball suns. 

One such example is a star in a binary or multi-star system that accretes mass from a companion. With all that extra mass to burn, it can seem younger than its true age, appearing bluer and brighter. That, Gosnell says, is called a blue straggler star, because it seems to be “straggling behind its expected evolution.” 

Another odd type of star is sub-subgiant, Gosnell says. These stars also are found in binary systems, and are transitioning from the main sequence to the red giant branch, though they stay dimmer. This kind of subgiant star has “really active magnetic fields with lots of star spots on the surface,” she says. “And so you have these really magnetically active, visually dynamic stars as the star spots rotate in and out of view.” 

The ongoing ESA mission, she adds, is reviewing stars with a “much finer-toothed comb”—which may reveal the true variety and complexity of stars that have existed all along. As such missions “peel back the layers,” Gosnell says, “We start to see really interesting stories come out that challenge the edges of these categories.”

The post Your guide to the types of stars, from their dusty births to violent deaths appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
James Webb Space Telescope captures the beauty of a rare, violent phenomena https://www.popsci.com/science/james-webb-space-telescope-supernova-dust/ Wed, 15 Mar 2023 19:43:03 +0000 https://www.popsci.com/?p=519882
WR 145 star in pre-supernova state with white bright core and red and purple dust and matter clouding around it. Taken by NASA's James Webb Space Telescope.
Wolf-Rayet stars are known to be efficient dust producers, and the Mid-Infrared Instrument (MIRI) on NASA’s James Webb Space Telescope shows this to great effect. Cooler cosmic dust glows at the longer mid-infrared wavelengths, displaying the structure of WR 124’s nebula. The 10 light-years-wide nebula is made of material cast off from the aging star in random ejections, and from dust produced in the ensuing turbulence. This brilliant stage of mass loss precedes the star’s eventual supernova, when nuclear fusion in its core stops and the pressure of gravity causes it to collapse in on itself and then explode. Red marks the longest infrared wavelengths, green mid-length, and blue the shortest. NASA, ESA, CSA, STScI, Webb ERO Production Team

Why does the universe have a 'dust surplus'? A pre-supernova star holds a clue.

The post James Webb Space Telescope captures the beauty of a rare, violent phenomena appeared first on Popular Science.

]]>
WR 145 star in pre-supernova state with white bright core and red and purple dust and matter clouding around it. Taken by NASA's James Webb Space Telescope.
Wolf-Rayet stars are known to be efficient dust producers, and the Mid-Infrared Instrument (MIRI) on NASA’s James Webb Space Telescope shows this to great effect. Cooler cosmic dust glows at the longer mid-infrared wavelengths, displaying the structure of WR 124’s nebula. The 10 light-years-wide nebula is made of material cast off from the aging star in random ejections, and from dust produced in the ensuing turbulence. This brilliant stage of mass loss precedes the star’s eventual supernova, when nuclear fusion in its core stops and the pressure of gravity causes it to collapse in on itself and then explode. Red marks the longest infrared wavelengths, green mid-length, and blue the shortest. NASA, ESA, CSA, STScI, Webb ERO Production Team

In the grand scheme of the universe and its stars, our sun isn’t all that powerful or special. While its death will certainly wreak havoc on the solar system, it isn’t big enough to trigger a supernova—one of the most violent cosmic phenomena we know of.

So, to understand what a star’s demise truly entails, astronomers have to zoom around to other parts of the galaxy with tools such as GAIA and the James Webb Space Telescope (JWST). One of the fascinating subjects they’ve keyed in on is WR 124, a “runaway star” that’s speeding away from home as it sheds gas, dust, and other stellar matter. Located at a distance of 15,000 light-years from Earth, it’s churning through a pre-supernova state that experts want to study up close.

A new JWST infrared image, captured last summer but shared publicly this week, exposes some of the explosive details scientists have been looking for. The telescope used a spectrograph and two of its advanced cameras to record the halo of dust emanating from WR 124. The star is currently in the “Wolf-Rayet phase,” in which it loses much of its mass to surrounding space. The bright white spot at the center shows the burning stellar core; the pink and purple ripples represent a nebula of hydrogen and other ejecta.

Stars of a certain magnitude will go through the Wolf-Rayet transformation as their lifespan winds down. WR 124 is one of the mightiest stars in the Milky Way, with 3,000 percent more mass than our sun. But its end is nye—it will collapse into a supernova in a few hundred thousand years

[Related: This could be a brand new type of supernova]

In the meantime, astronomers will use images and other data from JWST to measure WR 124’s contribution to the universe’s “dust budget.” Dust is essential to the universe’s workings, as NASA explains. The stuff protects young stars and forms a foundation for essential molecules—and planets. But much more of it exists than we can account for, the space agency notes: “The universe is operating with a dust budget surplus.”

The spectacular cloud around WR 124 might explain why that is. “Before Webb, dust-loving astronomers simply did not have enough detailed information to explore questions of dust production in environments like WR 124, and whether the dust grains were large and bountiful enough to survive the supernova and become a significant contribution to the overall dust budget. Now those questions can be investigated with real data,” NASA shared.

As JWST enters its second year of exploration, the observatory will take a sweeping look at galaxies far and near to reconstruct a timeline of the early universe. But individual stars can add to that cosmological understanding, too, even if they aren’t all on a glorious death march like WR 124.

The post James Webb Space Telescope captures the beauty of a rare, violent phenomena appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
DART left an asteroid crime scene. This mission is on deck to investigate it. https://www.popsci.com/science/hera-asteroid-deflection-space-mission/ Tue, 14 Mar 2023 10:00:00 +0000 https://www.popsci.com/?p=519198
Hera asteroid space probe radio antenna in ESA lab
This is the antenna that will transmit back the first close-up images of the distant Dimorphos asteroid since its orbit was shifted by a collision with NASA’s DART spacecraft. Last December, the High Gain Antenna of ESA’s Hera mission went through a week-long test campaign at the Compact Antenna Test Range in the Netherlands. ESA-SJM Photography

Hera will retrace history's first asteroid-deflection test and piece together the crash from every angle.

The post DART left an asteroid crime scene. This mission is on deck to investigate it. appeared first on Popular Science.

]]>
Hera asteroid space probe radio antenna in ESA lab
This is the antenna that will transmit back the first close-up images of the distant Dimorphos asteroid since its orbit was shifted by a collision with NASA’s DART spacecraft. Last December, the High Gain Antenna of ESA’s Hera mission went through a week-long test campaign at the Compact Antenna Test Range in the Netherlands. ESA-SJM Photography

What happens when a dart hits the bullseye? In a game among amateurs, it sends everybody home. But professional players will want to analyze the shot in preparation to fire again. 

In this case, that dart is NASA’s Double Asteroid Redirection Test (DART), the spacecraft that crashed last November into the asteroid Dimorphos in hopes of redirecting its course. On March 2, a quintet of papers in the journal Nature confirmed what DART’s controllers had already guessed: The mission’s impact was a smashing success.

But DART won’t be the last human mission to visit Dimorphos or the larger asteroid which it orbits, Didymos. The European Space Agency’s Hera will soon follow in DART’s trail to appraise its aftermath—in far more detail than scientists, with their combination of instruments from Earth and the DART mission’s own sensors, have managed so far.

Now scheduled for an October 2024 departure, Hera is slated to lift off from Cape Canaveral on the wings of a SpaceX Falcon 9 rocket. According to the mission’s current itinerary, it will arrive at Dimorphos and Didymos in late 2026 for around six months of sightseeing. Then, if conditions allow, Hera—a car–sized probe outfitted with a large radio antenna and a pair of solar panels—will try to make a full landing on Didymos.

Hera will also carry two passengers: a pair of CubeSats named Milani and Juventas. Milani will study the asteroids’ exteriors; Juventas will probe the asteroids’ interiors. With three spacecraft, scientists can get three different views of the crash site on Dimorphos. The mission’s chief purpose is to follow in DART’s shadow and understand what damage humanity’s first asteroid strike actually left on its target.

[Related: NASA has major plans for asteroids. Could Psyche’s delay change them?]

Between DART’s now-destroyed cameras, its companion LICIACube, and telescopes watching from Earth’s ground and orbit, we already know quite a bit about the planetary defense test. We can see Dimorphos’ orbit, both before and after DART’s impact; we know that DART altered it, cutting Dimorphos closer to Didymos and shortening its orbital period; and we can home in on where on the asteroid’s surface that DART struck, down to a patch the size of a vending machine.

But there’s still a lot we don’t know—most critically, Dimorphos’s mass before and after it was infiltrated. Scientists can’t calculate the measurement from Earth, but Hera’s instruments will have that ability. Without knowing the mass, we have no way of knowing why, precisely, DART’s impact pushed Dimorphos into its new orbit.

“We want to determine, accurately, how much momentum was transferred to Dimorphos,” says Patrick Michel, astronomer at the Côte d’Azur Observatory in France and Hera’s mission principal investigator.

Hera might also tell us what cosmetic scars DART left from the crash. It’s possible that the impactor simply left a crater, or that it violently shook up the asteroid, rearranging a large chunk of its exterior. “A lot of us are wondering how much of the surface we’ll even be able to recognize,” says Andy Cheng, an astronomer at the Johns Hopkins Applied Physics Laboratory who worked on DART.

The problem is that, until humans send an observer to the asteroid, we don’t know what the surface holds in wait for us, Michel says. What the asteroid’s exterior looks like now depends on what Dimorphos’s interior looked like when DART struck it. If the spacecraft dramatically reshaped the asteroid, it’s a sign that the target’s insides were weakly held together. And right now, “we have no clue, really, what’s happening inside,” says Terik Daly, an astronomer at the Johns Hopkins Advanced Physics Laboratory and DART team member. Hera, along with the radar-packing Juventas, will try to scan below the rocky surface.

Hera space probe flying by Dimorphos asteroid in animation
Hera will be equipped with automated guidance, navigation and control to allow it to safely navigate the double-asteroid system, akin in function to a self-driving car. Its desk-sized body will carry instruments including an optical Asteroid Framing Camera, supplemented by thermal and spectral imagers, as well as a laser altimeter for surface mapping. ESA-Science Office

Of course, Hera won’t be able to observe everything. Many astronomers have focused on Dimorphos’s ejecta—the material kicked up from the asteroid upon DART’s impact—to understand how exactly the strike nudged the asteroid. By the time of Hera’s arrival, at least four years after the crash, most of that ejecta will have long dissipated.

Still, knowing more about the asteroid’s innards can help astronomers understand where that ejecta came from—and what would happen if we crossed paths with a space rock again. “For example, in the future, if we had to use this technique to divert some asteroid, then we could do a more precise prediction [to hit it],” says Jian-Yang Li, an astronomer at Pennsylvania State University who worked on DART.

There are also other reasons why Dimorphos might not look the same way in 2026. Just as the moon pulls and pushes the tides around Earth’s oceans, Didymos’ gravity might play with its smaller companion. Scientists think it’s possible that those forces might cause Dimorphos to wobble in its orbit. But again, they won’t be able to observe any of this until Hera actually gets up close.

As the mission progresses, they might at least be able to set a baseline. Michel says that astronomers on Earth can simulate many of Dimorphos’s possible future orbits on their computers. “It’s not really a problem that we arrive four years later,” says Michel. “We have the tools to understand if something evolved.”

[Related: This speedy space rock is the fastest asteroid in our solar system]

The data from DART’s impact and Hera’s eyes certainly will help astronomers understand asteroids in their pre- and post-collision states. But they’ll also help us prevent the specter of death from above. Humans have long feared destruction from space in line with the dinosaurs, and with DART, planetary defense—the science of stemming that fear—made its first step into real-world strategies. 

It’s hard to say when we’ll need the ability to deflect a space rock; astronomers’ projections show that no object larger than a kilometer is set to pass Earth in the next century. But, according to Michel, space agencies haven’t identified 60 percent of the objects flying by that are at least 40 meters long—large enough to devastate a region or a small country.

“We know that, eventually, such an impact [with Earth] will happen again,” Michel says, “and we cannot improvise.”

The post DART left an asteroid crime scene. This mission is on deck to investigate it. appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Clouds of ancient space water might have filled Earth’s oceans https://www.popsci.com/science/water-origin-theory-space/ Fri, 10 Mar 2023 11:00:00 +0000 https://www.popsci.com/?p=518688
Protoplanetary disk and water formation around star V883 Orionis in the Orion constellation. Illustrated in gold, white, and black.
This artist’s impression shows the planet-forming disc around the star V883 Orionis. The inset image shows the two kinds of water molecules studied in this disc: normal water, with one oxygen atom and two hydrogen atoms, and a heavier version where one hydrogen atom is replaced with deuterium, an isotope. ESO/L. Calçada

The molecules that made Earth wet were probably older than our sun.

The post Clouds of ancient space water might have filled Earth’s oceans appeared first on Popular Science.

]]>
Protoplanetary disk and water formation around star V883 Orionis in the Orion constellation. Illustrated in gold, white, and black.
This artist’s impression shows the planet-forming disc around the star V883 Orionis. The inset image shows the two kinds of water molecules studied in this disc: normal water, with one oxygen atom and two hydrogen atoms, and a heavier version where one hydrogen atom is replaced with deuterium, an isotope. ESO/L. Calçada

Water is an essential ingredient for life as we know it, but its origins on Earth, or any other planet, have been a long-standing puzzle. Was most of our planet’s water incorporated in the early Earth as it coalesced out of the material orbiting the young sun? Or was water brought to the surface only later by comet and asteroid bombardments? And where did that water come from originally

A study published on March 7 in the journal Nature provides new evidence to bolster a theory about the ultimate origins of water—namely, that it predates the sun and solar system, forming slowly over time in vast clouds of gas and dust between stars.

”We now have a clear link in the evolution of water. It actually seems to be directly inherited, all the way back from the cold interstellar medium before a star ever formed,” says John Tobin, an astronomer studying star formation at the National Radio Astronomy Observatory and lead author of the paper. The water, unchanged, was incorporated from the protoplanetary disk, a dense, round layer of dust and gas that forms in orbit around newborn stars and from which planets and small space bodies like comets emerge. Tobin says the water gets drawn into comets “relatively unchanged as well.”

Astronomers have proposed different origins story for water in solar systems. In the hot nebular theory, Tobin says, the heat in a protoplanetary disk around a natal star will break down water and other molecules, which form afresh as things start to cool.  

The problem with that theory, according to Tobin, is that when water emerges at relatively warm temperatures in a protoplanetary disk, it won’t look like the water found on comets and asteroids. We know what those molecules look like: Space rocks, such as asteroids and comets act as time capsules, preserving the state of matter in the early solar system. Specifically, water made in the disk wouldn’t have enough deuterium—the hydrogen isotope that contains one neutron and one proton in its nucleus, rather than a single proton as in typical hydrogen. 

[Related: Meteorites older than the solar system contain key ingredients for life]

An alternative to the hot nebular theory is that water forms at cold temperatures on the surface of dust grains in vast clouds in the interstellar medium. This deep chill changes the dynamics of water formation, so that more deuterium is incorporated in place of typical hydrogen atoms in H2O molecules, more closely resembling the hydrogen-to-deuterium ratio seen in asteroids and comets.  

“The surface of dust grains is the only place where you can efficiently form large amounts of water with deuterium in it,” Tobin says. “The other routes of forming water with deuterium and gas just don’t work.” 

While this explanation worked in theory, the new paper is the first time scientists have found evidence that water from the interstellar medium can survive the intense heat during the formation of a protoplanetary disk. 

The researchers used the European Southern Observatory’s Atacama Large Millimeter/submillimeter Array, a radio telescope in Chile, to observe the protoplanetary disk around the young star V883 Orionis, about 1,300 light-years away from Earth in the constellation Orion. 

Radio telescopes such as this one can detect the signal of water molecules in the gas phase. But dense dust found in  protoplanetary disks very close to young stars often turns water into ice, which sticks to grains in ways telescopes cannot observe. 

But V883 Orionis is not a typical young star—it’s been shining brighter than normal due to material from the protoplanetary disk falling onto the star. This increased intensity warmed ice on dust grains farther out than usual, allowing Tobin and his colleagues to detect the signal of deuterium-enriched water in the disk. 

“That’s why it was unique to be able to observe this particular system, and get a direct confirmation of the water composition,” Tobin explains. ”That signature of that level of deuterium gives you your smoking gun.” This suggests Earth’s oceans and rivers are, at a molecular level, older than the sun itself. 

[Related: Here’s how life on Earth might have formed out of thin air and water]

“We obviously will want to do this for more systems to make sure this wasn’t just that wasn’t just a fluke,” Tobin adds. It’s possible, for instance, that water chemistry is somehow altered later in the development of planets, comets, and asteroids, as they smash together in a protoplanetary disk. 

But as an astronomer studying star formation, Tobin already has some follow up candidates in mind. “There are several other good candidates that are in the Orion star-forming region,” he says. “You just need to find something that has a disk around it.”

The post Clouds of ancient space water might have filled Earth’s oceans appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Sorry, Star Trek fans, the real planet Vulcan doesn’t exist https://www.popsci.com/science/exoplanet-vulcan-does-not-exist/ Tue, 07 Mar 2023 17:00:00 +0000 https://www.popsci.com/?p=517537
A variety of illustrated exoplanets.
An illustration showing what exoplanets might look like. A new analysis rules out the suspected planet Vulcan. NASA/JPL-Caltech

The earlier discovery of an exoplanet inspired by Star Trek turned out to be a false alarm.

The post Sorry, Star Trek fans, the real planet Vulcan doesn’t exist appeared first on Popular Science.

]]>
A variety of illustrated exoplanets.
An illustration showing what exoplanets might look like. A new analysis rules out the suspected planet Vulcan. NASA/JPL-Caltech

Star Trek fans knew they would lose the planet Vulcan someday in a fiery implosion at the hands of the Romulans—but they probably didn’t expect it to lose the planet in real life, too. Now reality is once again following fiction: The exoplanet once considered to be the real Vulcan has been erased, based on a new analysis of old data.

The 2018 discovery of the exoplanet known as 40 Eri b, which is located around the real-life star canonically orbited by Spock’s fictional homeworld, has turned out to be a false alarm. In a new research paper accepted for publication in the Astronomical Journal, astronomers used years of observations to re-analyze many previous exoplanet detections, including that of 40 Eri b. Unfortunately, astronomers hadn’t actually found Vulcan after all.

“As we continue to study objects with better and more precise instruments, reevaluating things we thought we already knew can lead to new conclusions about what’s really going on,” says Ohio State University astronomer Katherine Laliotis, lead author on the new work. In the case of 40 Eri b, the signal previously thought to be a planet turned out to be activity on the star’s surface. This work, she adds, is “a reminder that re-studying and reproducing already published results is a very valuable use of time.”

40 Eri b was originally detected using the radial velocity method, in which astronomers analyze the different wavelengths of light coming from a star. As a planet orbits a star, it’ll tug on its sun ever so slightly. When this tug pushes the star away from Earth, the star appears redder—thanks to the Doppler effect—and if it moves toward us, it appears bluer. With this method, astronomers believed they found 40 Eri b: A Neptune-sized planet 16 light-years away, so close to its star that a year would last only 42 days. This wouldn’t have been a particularly pleasant or habitable planet, but it made waves thanks to its sci-fi ties.

[Related: Newly discovered exoplanet may be a ‘Super Earth’ covered in water]

Some astronomers, such as NASA astronomer Eric Mamajek, immediately expressed doubts about the supposed detection. That’s because the time it took for this planet to complete one orbit was suspiciously close to the time the star takes to rotate. His suspicions were right. By tracing a feature of the light spectrum known to be part of the star, Laliotis and collaborators confirmed the star’s rotation rate, marking the end of the possible planet 40 Eri b. 

They didn’t specifically set out on a mission to kill Vulcan, though. This work was part of a bigger analysis, looking into all of NASA’s top picks for future exoplanet exploration—and 40 Eridani just happened to be on the list. Astronomers are always collecting new data, observing different stars, but “​​many planetary systems haven’t been officially updated since they were published in the early 2000s,” according to Laliotis.

Astronomers are already starting preparation for the next big space telescope, known as the Habitable Worlds Observatory. This future NASA mission aims to take photos of Earth-like planets around sun-like stars, allowing scientists to directly look into these exoplanets’ atmospheres for oxygen and other signs of life. Laliotis’s work fits right into this plan—she says this study aimed to figure out “what [planetary] systems we already understand well, what systems we have a misunderstanding of, and what systems need to be observed a lot more in the coming years.” This review will help make sure the future telescope’s precious observing time is used wisely.

“NASA is planning to spend billions of dollars on future missions to fly telescopes to study planets,” says Jessie Christiansen, project scientist at NASA’s Exoplanet Archive. “Imagine if this had been one of the targets! It’s not real!”

Although astronomers are, of course, glad to see rigorous scientific work being done, they’ll also admit that they are a bit sad about losing an exoplanet with such a cool sci-fi crossover. “I’m sad whenever any planet gets disproven, but this one hit especially hard because I’ve been using it for a few years now as a provocative, intriguing tie between the real worlds we’re discovering and the fictional worlds we know and love,” says Christiansen, who also started a lively Twitter conversation on the topic.

[Related: In a first, James Webb Space Telescope reveals distant gassy atmosphere is filled with carbon dioxide]

This doesn’t completely rule out a real-world equivalent of Vulcan, though. The Neptune-sized planet discovered in 2018 isn’t there, but it’s possible a smaller planet—one we haven’t seen yet—still exists around the star 40 Eridani. With current technology and observations, astronomers simply can’t detect any planet smaller than 12 times Earth’s mass on an orbit similar to Earth’s. “This means there’s still a chance that Vulcan exists. In fact, there’s even a chance that Vulcan could be in the habitable zone for the star,” says Laliotis.

Even if Vulcan is gone for now, Trekkie astronomers will still find ways to have fun with sci-fi and outer space. “There are still many other planets in the Star Trek universe that haven’t been disproven,” adds Louisiana State University astronomer Alison Crisp. One potential planet orbiting Wolf 359, for example, could still exist—the site of a major Star Trek battle. 

UCLA astronomer Isabella Trierweiler actually sees a way this saga fits into Star Trek canon. “Until 2063, Vulcans are just observing Earth and waiting for us to develop warp capabilities,” Trierweiler says. “Maybe they were able to adjust our observations to hide the planet, maybe they found super strong cloaking devices, or maybe Vulcan was briefly one of those planets that phases in and out of dimensions!” Whatever Vulcan’s fate, humanity has a few more years of technological development ahead of us until we reach these sci-fi dreams. And perhaps those lofty goals will help us find a real planet around 40 Eridani.

The post Sorry, Star Trek fans, the real planet Vulcan doesn’t exist appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
5 ways we know DART crushed that asteroid (but not literally) https://www.popsci.com/science/dart-asteroid-impact-analysis/ Thu, 02 Mar 2023 19:05:34 +0000 https://www.popsci.com/?p=516562
DART spacecraft impact on Dimorphos asteroid in a computer model with yellow, gray, and black
When the DART spacecraft slammed into asteroid Dimorphos, the spacecraft body hit between two large boulders while its two solar panels impacted those boulders. The yellow surface is a digital terrain model of the impact site made from DART images, and the rendering of the DART spacecraft depicts its position a few tens of microseconds before impact. The white line extending from the back of the spacecraft shows the spacecraft’s trajectory. NASA/Johns Hopkins APL

Space experts dove deeper into the dramatic aftermath of NASA's big asteroid-redirection mission.

The post 5 ways we know DART crushed that asteroid (but not literally) appeared first on Popular Science.

]]>
DART spacecraft impact on Dimorphos asteroid in a computer model with yellow, gray, and black
When the DART spacecraft slammed into asteroid Dimorphos, the spacecraft body hit between two large boulders while its two solar panels impacted those boulders. The yellow surface is a digital terrain model of the impact site made from DART images, and the rendering of the DART spacecraft depicts its position a few tens of microseconds before impact. The white line extending from the back of the spacecraft shows the spacecraft’s trajectory. NASA/Johns Hopkins APL

On September 26, 2022, NASA’s Double Asteroid Redirection Test (DART) spacecraft slammed into the asteroid moonlet Dimorphos at 13,000 miles per hour, altering the extraterrestrial rock’s orbit around its larger companion asteroid, Didymos. A triumphant success of planning, targeting and autonomous flight that covered 7 million miles, the impact served as the first proof of concept for kinetic impactors—spacecraft that could be used to redirect any future asteroids on a collision course with Earth.

But to understand how a DART-like mission would work in a real apocalyptic scenario, astronomers and national security experts need lots of data and detailed analysis. Data they had almost immediately, as just about every telescope and sensor that could be trained on Dimorphos, was, prior to impact. And now, detailed analyses of what happened are going public, starting with five papers published in the journal Nature on March 1.

1. Kinetic impactors like DART can make a real splash

In a study of Dimophos’s orbit led by Northern Arizona University Astronomer Cristina Thomas, an international team calculated just how much DART’s crash landing changed the asteroid’s orbital period. Using radar and light curves, measured from changes in Dimorphos’s brightness over time, they showed the space rock slowed down in its orbit by 33 minutes, give or take about three minutes.

“To serve as a proof-of-concept for the kinetic impactor technique of planetary defense, DART needed to demonstrate that an asteroid could be targeted during a high-speed encounter and that the target’s orbit could be changed,” Thomas and her colleagues write in the paper. “DART has successfully done both.”

The researchers note, however, that there were probably several reasons why DART was able to slow Dimorphos down by a full half hour. If the only factor were the spacecraft’s mass, the asteroid’s orbit should have changed by no more than seven minutes. Any other explanations would “require modeling beyond the scope of this paper,” they explained.

DART spacecraft impact site on Dimorphos asteroid face
This image depicts the footprint of the DART spacecraft and its two long solar panels over the spot where it impacted asteroid Dimorphos. The largest boulder near the impact site is about 21 feet across. DART took the underlying image three seconds before impact. NASA/Johns Hopkins APL

2. DART got a big assist from the asteroid itself

A second paper led by Andy Cheng, chief scientist for planetary defense and the Johns Hopkins Applied Physics Laboratory, dug into why Dimorphos’s orbit shifted so dramatically.

His team’s research found that the “ejecta,” the material shaken loose from Dimorphos by the force of DART’s impact, amplified the transfer of kinetic energy from the spacecraft and the change in the asteroid’s orbit by 2.2 to 4.9 times. In fact, the authors write in the paper, “significantly more momentum was transferred to Dimorphos” from the escaping ejecta than DART itself.

[Related: NASA sampled a ‘fluffy’ asteroid that could hold clues to our existence]

Determining how much momentum a spacecraft can transfer to an asteroid and how that affects the asteroid’s orbit were key questions the DART mission sought to answer, and this study gives scientists the parameters they were waiting for. It illustrates the range of effectiveness kinetic impactors might have on hazardous asteroids given their makeup. Asteroids that respond to a strike with more ejecta may allow a DART-type spacecraft to deflect larger asteroids than it could otherwise, or to deflect an asteroid with less warning time.

3. Planning ahead is key to saving the planet

The key takeaway of the third paper, led by Terik Daly, Carolyn Ernst, and Olivier Barnouin of the Johns Hopkins Applied Physics Laboratory, is that despite DART’s successful strike and the helpful amplification by the impact ejecta, planetary protection remains a game of observation and early warning. “Kinetic impactor technology for asteroid deflection requires having sufficient warning time—at least several years but preferably decades—to prevent an asteroid impact with the Earth,” the researchers write in the paper.

Early warning, thankfully, is something NASA has been investing in since long before the DART mission. The NASA Authorization Act of 2005 directed the space agency to catalog 90 percent of all near-Earth asteroids of 460 feet in diameter or greater, a task that is now complete. NASA is now building an infrared space telescope scheduled for launch in 2028 that will help scan the skies for unseen asteroids.

“NEO Surveyor represents the next generation for NASA’s ability to quickly detect, track, and characterize potentially hazardous near-Earth objects,” Lindley Johnson, NASA’s planetary protection officer, said in a statement.

Dimorphos asteroid moving through night sky with tail after DART impact
This GIF is constructed of images taken on November 30, 2022 by astronomers at Magdalena Ridge Observatory in New Mexico, USA. It shows the motion of the Didymos system across the sky over the course of roughly 80 minutes, and features a long, linear tail stretching to the right from the asteroid system to the edge of the frame. The animation is roughly 32,000 kilometers across the field of view at the distance of Didymos. Magdalena Ridge Observatory/NM Tech

4. DART was also secretly a planetary-science mission

Dimorphos’s ejecta not only affected the orbit of the asteroid, they gave it a dust tail that strutted more than 900 miles from the asteroid within three hours of the impact, according to a fourth study led Jian-Yang Li, a senior scientist at the Planetary Science Institute.

Thought comets are better known for their brilliant tails, asteroids can also become “active,” as scientists put it, and form a little train on their backsides. It’s thought that this happens after some kind of impact, though the idea has never been put to the test. 

The September mission gave scientists a “detailed characterization” of the ejecta-to-tail-making process serving double duty as a planetary-protection and a planetary-science mission. “DART will continue to be the model for studies of newly discovered asteroids that show activity caused by natural impacts,” the researchers write.

Dimorphos asteroid ejecta seen in blue and red after DART impact
Astronomers using the NSF’s NOIRLab’s SOAR telescope in Chile captured the vast plume of dust and debris blasted from the surface of the asteroid Dimorphos by NASA’s DART spacecraft when it impacted on 26 September 2022. In this image, the more than 10,000 kilometer long dust trail—the ejecta that has been pushed away by the Sun’s radiation pressure, not unlike the tail of a comet—can be seen stretching from the center to the right-hand edge of the field of view. CTIO/NOIRLab/SOAR/NSF/AURA/T. Kareta (Lowell Observatory), M. Knight (US Naval Academy)

5. DART really lit Dimorphos up

The last paper also falls into the planetary-science bucket with a close look at Dimorphos in its post-DART hangover. A study with ground-based telescopes in Africa and an Indian Ocean island led by SETI Institute astronomer Ariel Graykowski found it took the asteroid more than 23 days to return to its pre-impact levels of brightness in the night sky.

The analysis also found that ejecta appeared reddish at the time of impact, which is somewhat mysterious. “Typically, active bodies appear bluer in color on average than their inactive counterparts,” the researchers write in the paper, giving the examples of active comets versus inactive Kuiper Belt objects. “Some of these redder observed surface colors may be due to irradiation of organics,” they add, noting that lab experiments have shown space radiation can cause redden some of the same minerals probably found in asteroids like Dimorphos.

[Related: ‘Phantom’ mannequins will help us understand how cosmic radiation affects female bodies in space]

The five studies are just the first wave of an ongoing campaign to analyze the DART mission from different angles. The European Space Agency’s HERA mission, for instance, will rendezvous with Dimorphos sometime in 2026 to better assess the aftermath of DART’s impact in detail. Until then, NASA and other collaborators can continue to celebrate a major milestone in humanity’s relationship with the space around us.

“I cheered when DART slammed head on into the asteroid for the world’s first planetary defense technology demonstration, and that was just the start,” NASA administrator for its Science Mission Directorate, Nicola Fox, said in a statement on March 1. ”These findings add to our fundamental understanding of asteroids and build a foundation for how humanity can defend Earth.”

The post 5 ways we know DART crushed that asteroid (but not literally) appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Black hole collisions could possibly send waves cresting through space-time https://www.popsci.com/science/black-hole-ringdown-simulations/ Wed, 01 Mar 2023 11:00:00 +0000 https://www.popsci.com/?p=516113
An artist's conception of a supermassive black hole.
Future detectors might be able to sense interacting waves from black holes, seen here in an artist's illustration. NASA/JPL-Caltech

These massive, violent mergers produce gravitational ripples that may dance like waves on the shore.

The post Black hole collisions could possibly send waves cresting through space-time appeared first on Popular Science.

]]>
An artist's conception of a supermassive black hole.
Future detectors might be able to sense interacting waves from black holes, seen here in an artist's illustration. NASA/JPL-Caltech

The fabric of space and time is wrinkly and warped. Gravity tugs on this fabric, causing indents and wiggles—some of which are observable to humans as gravitational waves. When two black holes, neutron stars, or other extremely massive objects smash into each other, they emit these waves, which were first heard by the revolutionary LIGO experiment in 2016.

After that first detection seven years ago, physicists thought their mathematical models described the data well enough. Now, physicists have just determined that gravitational waves released from collisions between two black holes are more complex than previously thought. Two new studies from Caltech and Johns Hopkins—concurrently published on February 22 in Physical Review Letters with matching results—use computer models to reveal so-called nonlinear effects in black hole collisions, in which gravitational ripples influence each other like waves on a shore.

“Nonlinear effects are what happens when waves on the beach crest and crash,” said Keefe Mitman, Caltech astronomer and lead author on one of the studies, in a press release. “The waves interact and influence each other rather than ride along by themselves. With something as violent as a black hole merger, we expected these effects but had not seen them in our models until now.”

[Related: ‘Rogue black holes’ might be neither ‘rogue’ nor ‘black holes’]

These new studies investigate a particular part of the black hole-black hole merger, known as ringdown because it resembles the vibrations of a struck bell. When black holes collide, they temporarily form one lumpy and unstable large black hole that needs to settle down into a simple, round shape. This settling and shifting releases the gravitational waves that make up the ringdown. Since the mathematics describing this process is unwieldy, prior work assumed gravitational waves don’t interact with each other. 

But this new work tackles those complicated events and discovered the waves in fact influence each other. In computer simulations, the Caltech group modeled what happens when two black holes collide in orbits that aren’t perfect circles, and the Johns Hopkins team smashed two black holes together head-on at almost the speed of light. Both these scenarios are particularly energetic, leading to the nonlinearities they expect to see. 

To explain why energetic collisions have this result, Mitman likens this to two people on a trampoline. Two jumpers who gently hop up and down shouldn’t affect each other that much, as he points out in the press release. “But if one person starts bouncing with more energy, then the trampoline will distort, and the other person will start to feel their influence,” Mitman said. “This is what we mean by nonlinear: the two people on the trampoline experience new oscillations because of the presence and influence of the other person.”

Without accounting for nonlinear effects, physicists may be wrong about the size and other properties of the black holes they detect—of which there have been many with LIGO over the past few years. Plus, these details are key for making sure our understanding of the laws of physics are fully correct, such as checking the intricacies of Albert Einstein’s theory of general relativity.

[Related: We’re still in the dark about a key black hole paradox]

“Black hole ringdowns offer a great playground to test Einstein’s theory of relativity,” says Sumeet Kulkarni, a University of Mississippi astronomer not affiliated with the study. “But to use ringdowns as a test, one must understand them completely. This study takes us a step closer to this understanding.”

For now, however, nonlinearities are only seen in the realm of supercomputers. Humanity’s best black hole detectors aren’t sensitive enough to spot these small effects. Future detector projects are already in the works, though, and researchers are already starting to plan for the future. 

“An obvious next step is to gauge whether these effects will be detectable in LIGO or next generation detectors,” says Mark Ho-Yeuk Cheung, physicist and lead author of the Johns Hopkins study. The Cosmic Explorer and the Einstein Telescopes are two upcoming gravitational wave experiments that may be able to do the job. “While the prospects are promising,” Cheung adds, “we still need to quantify more precisely how and when they will be detected.”

Not only do the pair of simulations shed new light on the mysteries of black holes, they also illustrate the beauty of the scientific process: two teams of scientists producing independent results, complementing and supporting the others’ findings. As Mitman tells Popular Science, “I’m just charmed that we have yet another beautiful example of theorists and numerical relativists coming together to discover something fascinating about the way black holes work.”

The post Black hole collisions could possibly send waves cresting through space-time appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
These 6 galaxies are so huge, they’ve been nicknamed ‘universe breakers’ https://www.popsci.com/science/universe-breaker-galaxies-james-webb-space-telescope/ Wed, 22 Feb 2023 16:00:00 +0000 https://www.popsci.com/?p=514086
Six faint circular object glow in space. These are images of six candidate massive galaxies, seen 500-800 million years after the Big Bang.
Images of six candidate massive galaxies, seen 500-800 million years after the Big Bang. One of the sources (bottom left) could contain as many stars as our present-day Milky Way, but is 30 times more compact. NASA, ESA, CSA, I. Labbe (Swinburne University of Technology). Image processing: G. Brammer (Niels Bohr Institute’s Cosmic Dawn Center at the University of Copenhagen)

The JWST findings could reshape what was thought to be settled science.

The post These 6 galaxies are so huge, they’ve been nicknamed ‘universe breakers’ appeared first on Popular Science.

]]>
Six faint circular object glow in space. These are images of six candidate massive galaxies, seen 500-800 million years after the Big Bang.
Images of six candidate massive galaxies, seen 500-800 million years after the Big Bang. One of the sources (bottom left) could contain as many stars as our present-day Milky Way, but is 30 times more compact. NASA, ESA, CSA, I. Labbe (Swinburne University of Technology). Image processing: G. Brammer (Niels Bohr Institute’s Cosmic Dawn Center at the University of Copenhagen)

Using the first dataset released by the James Webb Space Telescope (JWST), an international team of scientists have discovered something surprising– evidence of six massive galaxies that existed during the early days of our universe. 

“These objects are way more massive​ than anyone expected,” said Joel Leja, an astronomer and astrophysicist at Penn State University, in a statement. “We expected only to find tiny, young, baby galaxies at this point in time, but we’ve discovered galaxies as mature as our own in what was previously understood to be the dawn of the universe.”

[Related: Astronomers are already using James Webb Space Telescope data to hunt down cryptic galaxies.]

Leja is co-author of a study published February 22 in the journal Nature that could change some of our preconceived notions of how galaxies form. These newly discovered galaxies themselves date back to about 500 to 700 million years after the Big Bang. JWST has infrared-sensing instruments on board that can detect light that was emitted by the most ancient stars and galaxies, allowing astronomers to see roughly 13.5 billion years back in time. 

“This is our first glimpse back this far, so it’s important that we keep an open mind about what we are seeing,” Leja said. “While the data indicates they are likely galaxies, I think there is a real possibility that a few of these objects turn out to be obscured supermassive black holes. Regardless, the amount of mass we discovered means that the known mass in stars at this period of our universe is up to 100 times greater than we had previously thought. Even if we cut the sample in half, this is still an astounding change.”

Since these six galaxies were far more massive than anyone on the team expected them to be, they could upend previous notions about the galaxy formation at the very beginning of the universe.

“The revelation that massive galaxy formation began extremely early in the history of the universe upends what many of us had thought was settled science,” said Leja. “We’ve been informally calling these objects ‘universe breakers’ — and they have been living up to their name so far.”

The authors argue that the “universe breakers” are so large, that almost all modern cosmological models fail to explain how these star systems could have formed.

[Related: Our universe mastered the art of making galaxies while it was still young.]

“We looked into the very early universe for the first time and had no idea what we were going to find,” Leja said. “It turns out we found something so unexpected it actually creates problems for science. It calls the whole picture of early galaxy formation into question.”

One way that the team can confirm their new findings is with a spectrum image that could  provide data on the true distances between us and the mysterious galaxies, as well as  the gasses and other elements present. It would also paint a more clear picture of what these galaxies looked like billions of years ago.

“A spectrum will immediately tell us whether or not these things are real,” Leja said. “It will show us how big they are, how far away they are. What’s funny is we have all these things we hope to learn from James Webb and this was nowhere near the top of the list. We’ve found something we never thought to ask the universe — and it happened way faster than I thought, but here we are.”

NASA released JWST’s first full-color images and spectroscopic data on July 12, 2022. One of JWST’s primary goals this year is to better map and create a timeline of the earliest days of the universe with its high resolution and infrared spotting capabilities.  

The post These 6 galaxies are so huge, they’ve been nicknamed ‘universe breakers’ appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Why is space cold if the sun is hot? https://www.popsci.com/why-is-space-cold-sun-hot/ Tue, 31 Aug 2021 13:04:12 +0000 https://www.popsci.com/uncategorized/why-is-space-cold-sun-hot/
Heat of sun radiating through cold of space
On July 23, 2012, a massive cloud of solar material erupted off the sun's right side, zooming out into space. NASA/STEREO

We live in a universe of extremes.

The post Why is space cold if the sun is hot? appeared first on Popular Science.

]]>
Heat of sun radiating through cold of space
On July 23, 2012, a massive cloud of solar material erupted off the sun's right side, zooming out into space. NASA/STEREO

How cold is space? And how hot is the sun? These are both excellent questions. Unlike our mild habitat here on Earth, our solar system is full of temperature extremes. The sun is a bolus of gas and fire measuring around 27 million degrees Fahrenheit at its core and 10,000 degrees at its surface. Meanwhile, the cosmic background temperature—the temperature of space once you get far enough away to escape Earth’s balmy atmosphere—hovers at -455 F.

But how can one part of our galactic neighborhood be freezing when another is searing? Scholars (and NFL players) have puzzled over this paradox for time eternal.

Well, there’s a reasonable explanation. Heat travels through the cosmos as radiation, an infrared wave of energy that migrates from hotter objects to cooler ones. The radiation waves excite molecules they come in contact with, causing them to heat up. This is how heat travels from the sun to Earth, but the catch is that radiation only heats molecules and matter that are directly in its path. Everything else stays chilly. Take Mercury: the nighttime temperature of the planet can be 1,000 degrees Fahrenheit lower than the radiation-exposed day-side, according to NASA.

Compare that to Earth, where the air around you stays warm even if you’re in the shade—and even, in some seasons, in the dark of night. That’s because heat travels throughout our beautiful blue planet by three methods instead of just one: conduction, convection, and radiation. When the sun’s radiation hits and warms up molecules in our atmosphere, they pass that extra energy to the molecules around them. Those molecules then bump into and heat up their own neighbors. This heat transfer from molecule to molecule is called conduction, and it’s a chain reaction that warms areas outside of the sun’s path.

[Related: What happens to your body when you die in space?]

Space, however, is a vacuum—meaning it’s basically empty. Gas molecules in space are too few and far apart to regularly collide with one another. So even when the sun heats them with infrared waves, transferring that heat via conduction isn’t possible. Similarly, convection—a form of heat transfer that happens in the presence of gravity—is important in dispersing warmth across the Earth, but doesn’t happen in zero-g space.

These are things Elisabeth Abel, a thermal engineer on NASA’s DART project, thinks about as she prepares vehicles and devices for long-term voyages through space. This is especially true when she was working on the Parker Solar Probe, she says.

As you can probably tell by its name, the Parker Solar Probe is part of NASA’s mission to study the sun. It zooms through the outermost layer of the star’s atmosphere, called the corona, collecting data. In April 2021, the probe got within 6.5 million miles of the inferno, the closest a spacecraft has ever been to the sun. The heat shield projected on one side of the probe makes this possible.

“The job of that heat shield,” Abel says, is to make sure “none of the solar radiation [will] touch anything on the spacecraft.” So, while the heat shield is experiencing the extreme heat (around 250 degrees F) of our host star, the spacecraft itself is much colder—around -238 degrees F, she says.

[Related: How worried should we be about solar flares and space weather?]

As the lead thermal engineer for DART—a small spacecraft designed to collide with an asteroid and nudge it off course—Abel takes practical steps to manage the temperatures of deep space. The extreme variation in temperature between the icy void and the boiling heat of the sun poses unique challenges. Some parts of the spacecraft needed help staying cool enough to avoid shorting out, while others required heating elements to keep them warm enough to function.

Preparing for temperature shifts of hundreds of degrees might sound wild, but it’s just how things are out in space. The real oddity is Earth: Amidst the extreme cold and fiery hot, our atmosphere keeps things surprisingly mild—at least for now.

This story has been updated. It was originally published on July 24, 2019.

The post Why is space cold if the sun is hot? appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
JWST’s latest new galaxy discoveries mirror the Milky Way https://www.popsci.com/science/james-webb-space-telescope-spiral-galaxies/ Mon, 13 Feb 2023 15:30:32 +0000 https://www.popsci.com/?p=511646
An image captured by the James Webb Space Telescope of stars and galaxies surrounding spiral galaxy LEDA 2046648.
An image captured by the James Webb Space Telescope of stars and galaxies surrounding spiral galaxy LEDA 2046648. ESA/Webb, NASA & CSA, A. Martel

One looks just like our own, and another can tell us more about our universe's cannibalistic early days.

The post JWST’s latest new galaxy discoveries mirror the Milky Way appeared first on Popular Science.

]]>
An image captured by the James Webb Space Telescope of stars and galaxies surrounding spiral galaxy LEDA 2046648.
An image captured by the James Webb Space Telescope of stars and galaxies surrounding spiral galaxy LEDA 2046648. ESA/Webb, NASA & CSA, A. Martel

Breathtaking visuals of the swirling arms of spiral galaxies are some of the awe-inspiring images our galaxy and others have to offer. 

In only its first Earth-year in space, the James Webb Space Telescope (JWST), has already captured some stunning images of these spinning wonders.

[Related: Our universe mastered the art of making galaxies while it was still young.]

In the constellation Hercules–named for the Roman spelling of the Greek demigod Heracles known for his strength–are trillions of stars that stretch back about 13 billion light-years. In the lower center of the constellation is a spiral galaxy known as LEDA 2046648. It’s a billion light-years away, but one of its defining characteristics is that it looks like our very own Milky Way galaxy. 

A new image from JWST is so clear that the spiral arms of the galaxy are visible—impressive for a sight so far away. It shows multiple galaxies and stars in six-pointed diffraction spikes that have become one of JWST’s signature observations. 

This image displays a wider view of the field of stars and galaxies surrounding the spiral galaxy LEDA 2046648. Webb’s NIRCam instrument has picked out a profusion of smaller, more distant galaxies and bright stars around this galaxy, demonstrating the telescope’s impressive resolution in infrared wavelengths. Calibration images such as this one were critical to verify the telescope’s capabilities as it was prepared for science operations, and this one doesn’t disappoint.  [Image description: Many stars and galaxies lie on a dark background, in a variety of colours but mostly shades of orange. Some galaxies are large enough to make out spiral arms. Along the bottom of the frame is a large, detailed spiral galaxy seen at an oblique angle, with another galaxy about one-quarter the size just beneath it. Both have a brightly glowing core, and areas of star formation which light up their spiral arms.]
This image displays a wider view of the field of stars and galaxies surrounding the spiral galaxy LEDA 2046648. Webb’s NIRCam instrument has picked out a profusion of smaller, more distant galaxies and bright stars around this galaxy, demonstrating the telescope’s impressive resolution in infrared wavelengths. CREDIT: ESA/Webb, NASA & CSA, A. Martel.

The image was taken with JWST’s Near-InfraRed Camera (NIRCam) which can detect infrared rays and see light on the infrared spectrum. This is an important part of one of Webb’s main missions of exploring the age of when stars and galaxies first began to light up the universe.

JWST also discovered a cannibal galaxy named “Sparkler,” for the dwarf galaxies and 12 globular clusters shining around it. In the results published towards the end of last year in the journal Monthly Notices of the Royal Astronomical Society, it appears to be a “very early” mirror image of the Milky Way. Studying Sparkler could help astronomers understand how our home galaxy took shape. 

[Related: The James Webb Space Telescope just identified its first exoplanet.]

According to the study team, the galaxy is a cannibal because it is gobbling up nearby celestial objects to grow ever larger. It’s believed that the Milky Way galaxy also grew this way. Astronomers spotted the star in JWST’s First Deep Field  released in July 2022. This image is the deepest and most detailed view of the universe ever captured and was Webb’s first full-color picture.

Space Telescope photo
An artist’s impression of the Milky Way galaxy in its youth. It is surrounded by globular clusters. CREDIT: James Josephides, Swinburne University.

The Sparkler galaxy is shown as a warped orange line surrounded by spots of light. 

“We appear to be witnessing, first hand, the assembly of this galaxy as it builds up its mass—in the form of a dwarf galaxy and several globular clusters,” said co-author Duncan Forbes, an astrophysicist at Swinburne University of Technology in Australia, in a statement. “We are excited by this unique opportunity to study both the formation of globular clusters, and an infant Milky Way, at a time when the universe was only one-third of its present age.”

The post JWST’s latest new galaxy discoveries mirror the Milky Way appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Hubble telescope spies Saturn’s rings in ‘spoke season’ https://www.popsci.com/science/hubble-saturn-spoke/ Fri, 10 Feb 2023 16:00:00 +0000 https://www.popsci.com/?p=511199
The planet Saturn on a dark background. Two smudgy spokes are seen in the B ring (left). The shape and shading of spokes can appear light or dark, depending on the viewing angle, and sometimes appear more like blobs than classic radial spoke shapes, as seen here.
Saturn’s “spoke season,” seen by NASA's Hubble Space Telescope’s Outer Planet Atmospheres Legacy (OPAL) program. Two smudgy spokes are seen in the B ring (left). The shape and shading of spokes can appear light or dark, depending on the viewing angle, and sometimes appear more like blobs than classic radial spoke shapes, as seen here. NASA, ESA, and Amy Simon (NASA-GSFC); Image Processing: Alyssa Pagan (STScI)

One season on Saturn lasts roughly seven Earth years.

The post Hubble telescope spies Saturn’s rings in ‘spoke season’ appeared first on Popular Science.

]]>
The planet Saturn on a dark background. Two smudgy spokes are seen in the B ring (left). The shape and shading of spokes can appear light or dark, depending on the viewing angle, and sometimes appear more like blobs than classic radial spoke shapes, as seen here.
Saturn’s “spoke season,” seen by NASA's Hubble Space Telescope’s Outer Planet Atmospheres Legacy (OPAL) program. Two smudgy spokes are seen in the B ring (left). The shape and shading of spokes can appear light or dark, depending on the viewing angle, and sometimes appear more like blobs than classic radial spoke shapes, as seen here. NASA, ESA, and Amy Simon (NASA-GSFC); Image Processing: Alyssa Pagan (STScI)

Happy “spoke” season, Saturnians! NASA’s Hubble Space Telescope captured new images of the spoke season during the planet’s equinox, when mysterious smudgy spokes appear around Saturn’s famed rings. Scientists still don’t have a full understanding of what causes these spokes and their seasonal variations. 

Saturn is tilted on its axis and has four seasons just like Earth. Since Saturn has a larger orbit around the sun, each season on Saturn lasts about seven Earth years. During this cycle, an equinox occurs when Saturn’s rings are tilted edge-on to the sun, and as Saturn approaches its summer and winter solstices, these spokes disappear. 

[Related: The origin of Saturn’s slanted rings may link back to a lost, ancient moon.]

The autumnal equinox for Saturn’s northern hemisphere is on May 6, 2025 and it gets closer, the spokes are expected to become more prominent and observable.

Astronomers believe that the spokes are caused by Saturn’s variable magnetic field. When a planet’s magnetic field interacts with solar wind, it creates an electrically charged environment. 

Scientists believe that the smallest, dust-sized icy ring particles can also become charged, and temporarily levitate those particles above the larger icy particles and boulders in the rings.

NASA’s Voyager mission first observed the ring spokes during the early 1980s. Depending on how much is illuminated and the viewing angle, the strange features can appear dark or light.

To learn more about Saturn and the other gas giants of our solar system (Jupiter, Uranus, and Neptune), Hubble’s Outer Planet Atmospheres Legacy (OPAL) is a project, is taking long time baseline observations of the outer planets to better understand their evolution and atmospheric dynamics. The measurements will be taken throughout the remainder of Hubble’s operation,  which could be into the 2030s.

“Thanks to Hubble’s OPAL program, which is building an archive of data on the outer solar system planets, we will have longer dedicated time to study Saturn’s spokes this season than ever before,” said NASA senior planetary scientist Amy Simon, head of the Hubble OPAL program, in a statement.

Saturn’s last equinox occurred in 2009 and NASA’s Cassini spacecraft was orbiting it for close-up reconnaissance. Hubble is now continuing the work of monitoring Saturn and other outer planets for long-term now that Cassini and Voyager have wrapped up their missions.

[Related: Is something burping methane on Saturn’s ocean moon?]

“Despite years of excellent observations by the Cassini mission, the precise beginning and duration of the spoke season is still unpredictable, rather like predicting the first storm during hurricane season,” said Simon.

While other planets have ring systems, Saturn’s are the most prominent which makes them a good laboratory for studying spokes. “It’s a fascinating magic trick of nature we only see on Saturn – for now at least,” Simon said.

Next, Hubble’s OPAL program will add visual and spectroscopic data to Cassini’s archived observations. Putting these pieces together could paint a more complete picture of the spoke phenomenon and what it can tell us about the physics of planetary rings. 

The post Hubble telescope spies Saturn’s rings in ‘spoke season’ appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Cosmic cartographers release a more accurate map of the universe’s matter https://www.popsci.com/science/universe-matter-map/ Wed, 01 Feb 2023 14:00:00 +0000 https://www.popsci.com/?p=509007
Two giant, circular ground telescopes with an overlay of a starry night sky.
Scientists have released a new survey of all the matter in the universe, using data taken by the Dark Energy Survey in Chile and the South Pole Telescope. Andreas Papadopoulos

It’s another step in understanding our 13 billion year-old universe.

The post Cosmic cartographers release a more accurate map of the universe’s matter appeared first on Popular Science.

]]>
Two giant, circular ground telescopes with an overlay of a starry night sky.
Scientists have released a new survey of all the matter in the universe, using data taken by the Dark Energy Survey in Chile and the South Pole Telescope. Andreas Papadopoulos

When the universe first began about 13 billion years ago, all of the matter that eventually formed the galaxies, stars, and planets of today was flung around like paint splattering from a paintbrush. 

Now, an international group of over 150 scientists and researchers have released some of the most precise measurements ever made of how all of this matter is distributed across the universe. With a map of that matter in the present, scientists can try to understand the forces that shaped the evolution of the universe.

[Related: A key part of the Big Bang remains troublingly elusive.]

The team combined data from the Dark Energy Survey (DES) and the South Pole Telescope, which conducted two major telescope surveys of the present universe. The analysis was published in the journal Physical Review D as three articles on January 31.

In the analysis, the team found that matter isn’t as “clumpy” as previously believed, adding to a body of evidence that something might be missing from the existing standard model of the universe.

By tracing the path of this matter to see where everything ended up, scientists can try to recreate what happened during the Big Bang and what forces were needed for such a massive explosion. 

To create this map, an enormous amount of data was analyzed from the DES and South Pole Telescope. The DES surveyed the night sky for six years from atop a mountain in Chile, while the South Pole Telescope scoured the universe for faint traces of traveling radiation that date back to the first moments of our universe.

Deep Space photo
By overlaying maps of the sky from the Dark Energy Survey telescope (at left) and the South Pole Telescope (at right), the team could assemble a map of how the matter is distributed—crucial to understand the forces that shape the universe. CREDIT: Yuuki Omori

Scientists were able to infer where all of the universe’s matter ended up and are offering a more accurate matter map by rigorously analyzing both data sets. “It is more precise than previous measurements—that is, it narrows down the possibilities for where this matter wound up—compared to previous analyses,” the authors said.

Combining two different skygazing methods reduced the chance of a measurement error throwing off the results. “It functions like a cross-check, so it becomes a much more robust measurement than if you just used one or the other,” said co-author Chihway Chang, an astrophysicist from the University of Chicago, in a statement

The analyses looked at gravitational lensing, which occurs when some of the light traveling across the universe can be slightly bent when it passes objects like galaxies that contain a lot of gravity. 

Regular matter and dark matter can be caught by this method. Dark matter is an invisible form of matter that makes up most of the universe’s mass, but it is so mysterious that scientists know more about what it isn’t than what it is. It doesn’t emit light, so it can’t be a planet of stars, but it also isn’t a bunch of black holes. 

[Related: A key part of the Big Bang remains troublingly elusive.]

While most of the results fit perfectly with the currently accepted best theory of the universe, there are some signs of a crack in the theory.

“It seems like there are slightly less fluctuations in the current universe, than we would predict assuming our standard cosmological model anchored to the early universe,” said analysis coauthor and University of Hawaii astrophysicist Eric Baxter, in a statement.

Even if something is missing from today’s matter models, the team believes that using information from two different telescope surveys is a promising strategy for the future of astrophysics.

“I think this exercise showed both the challenges and benefits of doing these kinds of analyses,” Chang said. “There’s a lot of new things you can do when you combine these different angles of looking at the universe.”

The post Cosmic cartographers release a more accurate map of the universe’s matter appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A college student built an AI to help look for alien radio signals https://www.popsci.com/technology/ai-radio-signals-extraterrestrial/ Tue, 31 Jan 2023 16:30:00 +0000 https://www.popsci.com/?p=508799
OTC NASA Satellite Earth Station Carnarvon Western Australia
A third-year college student's AI could act as a valuable proofreader for SETI. Deposit Photos

The program already spotted potential evidence while combing through 150TB of data from 820 nearby stars.

The post A college student built an AI to help look for alien radio signals appeared first on Popular Science.

]]>
OTC NASA Satellite Earth Station Carnarvon Western Australia
A third-year college student's AI could act as a valuable proofreader for SETI. Deposit Photos

Enlisting advanced artificial intelligence to help humans search for signs of extraterrestrial life may sound like the premise to a sci-fi novel. Nevertheless, it’s a strategy that investigators are increasingly employing to help expedite and improve their ET detection methodologies. As a new paper published in Nature Astronomy reveals, one of the most promising advancements in the field may have arrived courtesy of a college undergrad.

Over the past few years, Peter Ma, a third-year math and physics student at the University of Toronto, has worked alongside mentors at SETI and Breakthrough Listen—an initiative tasked with finding “technosignatures” of extraterrestrial intelligence—to develop a new neural network technique capable of parsing through massive troves of galactic radio signals in the pursuit of alien life. Narrowband radio frequencies have been hypothesized as a potential indicator for ETs, given they require a “purposely built transmitter,” according to SETI’s FAQ.

[Related: Are we alone in the universe? Probably not.]

While prior search algorithms only identified anomalies as exactly defined by humans, Ma’s deep machine learning system allows for alternative modes of thinking that human-dictated algorithms often can’t replicate.

In an email to PopSci, Ma explains, “people have inserted components of machine learning or deep learning into search techniques to assist [emphasis theirs] with the search. Our technique is the search, meaning the entire process is effectively replaced by a neural network, it’s no longer just a component, but the entire thing.”

As Motherboard and elsewhere have recently noted, the results are already promising, to say the least—Ma’s system has found eight new signals of interest. What’s more, Ma’s deep learning program found the potential ET evidence while combing through 150TB of data from 820 nearby stars that were previously analyzed using classical techniques, but at the time determined to be devoid of anything worth further investigation.

According to Ma’s summary published on Monday, the college student previously found the standard supervised search models to be too restrictive, given that they only found candidates matching simulated signals they were trained on while unable to generalize arbitrary anomalies. Likewise, existing unsupervised methods were too “uncontrollable,” flagging anything with the slightest variation and “thus returning mostly junk.” By intermediately swapping weighted considerations during the deep learning program’s training, Ma found that he and his team could “balance the best of both worlds.”

[Related: ‘Historical’ AI chatbots aren’t just inaccurate—they are dangerous.]

The result is ostensibly an additional proofreader for potential signs of alien life able to highlight possible anomalies human eyes or even other AI programs might miss. That said, Ma explains that his program is far from hands-off, and required copious amounts of engineering to direct it to learn the properties researchers wanted. “We still need human verification at the end of the day. We can’t solely rely on, or trust, a black box tool like a neural network to conduct science,” he writes. “It’s a tool for scientists, not a replacement for scientists.”

Ma also cautions that the eight newly discovered signals of interest are statistically unlikely to yield any definitive proof of alien life. That said, his new AI advancements could soon prove an invaluable tool for more accurate searches of the stars. SETI, Breakthrough Listen, and Ma are already planning to soon help with 24/7 technosignature observations using South Africa’s MeerKAT telescope array, as well as “analysis that will allow us to search for similar signals across many petabytes of additional data.”

The post A college student built an AI to help look for alien radio signals appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A green comet is visiting us from the edge of the solar system, and astronomers are thrilled https://www.popsci.com/science/green-comet-flyby-explained/ Mon, 30 Jan 2023 15:17:53 +0000 https://www.popsci.com/?p=508496
Hale Telescope at Palomar Observatory in California at night was the first to discover the C/2022 E3 (ZTF) comet
The Zwicky Transient Facility's Hale Telescope first documented the C/2022 E3 (ZTF) comet in March 2022. Many more telescopes will be trained on the flying space body this week. Joe McNally/Getty Images

A little night sky geometry helped predict exactly when the comet would swing by on its 50,000-year trip.

The post A green comet is visiting us from the edge of the solar system, and astronomers are thrilled appeared first on Popular Science.

]]>
Hale Telescope at Palomar Observatory in California at night was the first to discover the C/2022 E3 (ZTF) comet
The Zwicky Transient Facility's Hale Telescope first documented the C/2022 E3 (ZTF) comet in March 2022. Many more telescopes will be trained on the flying space body this week. Joe McNally/Getty Images

The last time Comet C/2022 E3 (ZTF) passed by Earth, our human cousins the Neanderthals still roamed the Earth.      

Discovered in March 2022 by US-based astronomers, the comet, which sports an emerald green coma, is believed to have last passed through the inner solar system some 50,000 years ago. It made its closest pass by the sun on January 12 and will fly within a mere 27 million miles of Earth on February 1 on its way out of the solar system. This is why University of Maryland Astronomy graduate student Carrie Holt and US Naval Academy professor of astronomy Matthew Knight were in Flagstaff, Arizona, to observe the comet from Lowell Observatory last week.

“Because this comet travels fairly close to the Earth, we are presented with a great opportunity to study a more detailed view of the composition and structure of the coma, the cloud of gas and dust that surrounds the comet nucleus,” Holt says.

Comets consist of icy volatiles, such as water and carbon dioxide ice, around a nucleus of rocky material pulled from the protoplanetary disc that formed the planets billions of years ago. They can be difficult for astronomers to find until they get close enough to the sun for the volatiles to begin to sublimate, the process by which the off-gassing materials generate the comet’s coma and form its tail.

“They get really bright when they start evaporating water ice from their surface,” says Scott Sheppard, an astronomer at the Carnegie Institution for Science. He notes most comets don’t even get warm enough to begin off-gassing until they’re in Saturn’s orbit.

[Related: Scientists finally solved the mystery of why comets glow green]

The contents of a comet’s ice can also determine its appearance. The green hue of Comet C/2022 E3 (ZTF) is common among its kind, according to Holt, and is due to the presence of diatomic carbon, which “emits green light when it interacts with ultraviolet radiation from the sun,” she says.

While there was a time centuries ago when professionals and amateur comet hunters shared similar stargazing equipment, most comets today are discovered by professional digital sky surveys. Comet C/2022 E3 (ZTF) was discovered by the Zwicky Transient Facility in California, for instance, an observatory that scans the entire northern sky every two days looking for changes—such as the appearance of a suddenly brightening comet.

“The few comet discoveries outside of these surveys are usually found by amateur astronomers searching in regions of the sky where surveys don’t typically reach, like near the sun,” Holt explains. In 2020, amateur astronomer Michael Mattiazzo discovered C/2020 F8 (SWAN) by combing through data from the Solar and Heliospheric Observatory, or SOHO satellite, a joint project by NASA and the European Space Agency.

There are two main populations of comets in the solar system, according to Sheppard. There are the Jupiter family comets, which have short orbits of around 20 years or so and rarely travel much further out than the orbit of the gas giant. And then there are long period comets, a category that includes C/2022 E3 (ZTF).

“Their orbits take them beyond the orbit of Neptune,” Sheppard says. “They have these very elongated orbits” that can take thousands of years to traverse. Compared to short period comets, long period comets also travel much faster relative to Earth during their time in the inner solar system, reaching speeds of about 40 miles per second. Shorter period comets average closer to 10 miles per second.

Green comet C/2022 E3 (ZTF) with tail in northern sky
This fine telescopic image from December 19, 2022 does show the comet’s brighter greenish coma, short broad dust tail, and long faint ion tail stretching across a 2.5 degree wide field-of-view. Dan Bartlett

When a phenomenon like C/2022 E3 (ZTF) is discovered, the coordinates are submitted to the Minor Planet Center, an international organization dedicated to tracking comets, asteroids, and other small bodies in the solar system. The center uses software to take the location of the new comet and project an orbit path and length, or period, for it, according to Knight. This can also allow scientists to project when a comet will past closest to the sun and to Earth.

“It takes a good bit of data to reliably determine just how long the period is,” he says. “The length of data needed varies by object, but usually weeks or months are needed before we have a confident handle on the period.”

Having observed Comet C/2022 E3 (ZTF) since last March, astronomers are fairly confident it is a long period comet with an orbit period of about 50,000 years. This means it likely originated in the Oort Cloud, a far-off shell of icy bodies enveloping our solar system at a distance 2,000 times greater than that of the sun from the Earth.

“The Oort Cloud has never been observed directly, but it is thought to be made up of many comets on circular orbits,” Holt says. “Gravitational interactions of passing stars or galactic tides can perturb these comets inward into an elliptical orbit.”

[Related: Our universe mastered the art of making galaxies while it was still young]

And it’s this origin at the periphery of our solar system that makes comets an interesting focus of research, Holt explains. “We study comets because they are the leftover building blocks of planet formation, spending most of their lifetime relatively unprocessed in the cold, outer solar system. When a comet enters the inner solar system and begins to outgas, we are able to gain insight into the conditions that existed during planet formation. We want to understand how our solar system came to be.”

Should you be lucky enough to catch sight of comet C/2022 E3 (ZTF)—look for a greenish glow in the northern sky after sunset with binoculars or a small telescope—keep in mind you’re witness the slow unsealing of time capsule from before the Earth was formed.

The post A green comet is visiting us from the edge of the solar system, and astronomers are thrilled appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Our universe mastered the art of making galaxies while it was still young https://www.popsci.com/science/when-did-galaxies-form/ Mon, 16 Jan 2023 11:00:00 +0000 https://www.popsci.com/?p=505421
Milky Way galaxy stars in infrared by NASA Spitzer Space Telescope
Infrared images (like this one from the Spitzer Space Telescope of the Milky Way) can reveal the distance and age of galaxies outside our own. NASA/JPL-Caltech/S. Stolovy

New images from the James Webb Space Telescope reveal the ages of hundreds of galaxies surrounding ours.

The post Our universe mastered the art of making galaxies while it was still young appeared first on Popular Science.

]]>
Milky Way galaxy stars in infrared by NASA Spitzer Space Telescope
Infrared images (like this one from the Spitzer Space Telescope of the Milky Way) can reveal the distance and age of galaxies outside our own. NASA/JPL-Caltech/S. Stolovy

The lifetime of the universe is, unfortunately, so long that we can’t just wait and watch what happens to understand how it works. It’s a movie marathon that started billions of years before our species began, and will likely continue after us, too. But what if there was a recording, and we could wind back the tape?

Astronomers are doing just that with the famed James Webb Space Telescope (JWST), using the behemoth flying observatory to rewind through our universe’s history, searching for early galaxies. As a result, astronomers have found hundreds of galaxies from 11 to 13 billion years ago that also show a remarkable diversity of shapes: disks, bulges, clumps, lumps, and more. These star groupings emerged earlier in the universe’s timeline than previously thought, according to new research recently presented at the American Astronomical Society meeting and soon to be published in The Astrophysical Journal.

“It is amazing to be able to see the structures of these distant galaxies with such clarity for the first time,” said Jeyhan Kartaltepe, Rochester Institute of Technology astronomer and lead author on the new study. “They are anything but boring.”

To estimate the ages, Kartaltepe and her team used a well-established method in astronomy. Galaxies farther away from us in space also go back further in the universe’s history, thanks to the finite speed of light. Plus, given that the universe is expanding, galaxies farther away from us appear more red than they would if they were nearer, as their light gets stretched out while traveling the vast, lengthening cosmic distances to our telescopes. This gives astronomers an easy way to mark when something existed in the universe, known as redshift

But, this also means targets with a higher redshift literally appear red, or even shine mostly in the infrared. So, a galaxy that looked bright blue billions of years ago may appear bright in infrared light to our cameras. This is the distinct advantage of JWST—because it sees the universe in the infrared, it can spot these distant, red galaxies. The telescope is also quite simply bigger than past space tools, and in the world of telescopes, bigger really is better.

[Related: How the James Webb Space Telescope is hunting for ‘first light’]

With previous data from the Hubble Space Telescope, which sees in the visible and near-infrared, astronomers already knew there were interesting and diverse galaxies in our universe from 11 billion years ago. To find out when the sweeping spirals and rotund bulges (like those in our own Milky Way) first formed, though, researchers needed to rewind the tape a bit further. 

“We do not know what happened in the early universe to create disks and bulges, or when it happened, or where it happened, or how it happened—and we had no way of finding this out until JWST,” says University of Melbourne astronomer Benji Metha, a researcher not affiliated with the new findings. “We can use these [galactic] observations like a fossil record, to dig back through time and see what features existed in these galaxies while the universe was still under construction.”

The team gathered images of 850 galaxies with JWST, and classified them into the typical galaxy shapes: disks (like our own spiral galaxy), clumps, irregulars, or some combination of the three. The data was all analyzed by hand, with astronomers sifting through each and every file. “One thing I love about this paper is how human it is,” says Metha. He explains how a century ago, American astronomer Edwin Hubble used the Mount Wilson Observatory in California to sort different types of nearby galaxies, creating the classification system most astronomers use today. “At its core, this paper uses the exact same method that Hubble used: Look at some pictures, and write down what you see,” Metha adds.

Different-shaped galaxies from our universe seen in infrared by James Webb Space Telescope's NIRcam
This image—a mosaic of 690 individual frames taken with the Near Infrared Camera (NIRCam) on the James Webb Space Telescope—covers an area of sky about eight times as large as Webb’s First Deep Field Image released on July 12. It’s from a patch of sky near the handle of the Big Dipper. This is one of the first images obtained by the Cosmic Evolution Early Release Science Survey (CEERS) collaboration. It contains several examples of high redshift galaxies with various morphologies. NASA/STScI/CEERS/TACC/S. Finkelstein/M. Bagley/J. Kartaltepe

The international group of researchers found lots of disks, which may be precursors to galaxies like the Milky Way. They also spotted lots of irregulars, which are signs of two galaxies whose gravitational fields got a little too close and nudged each others’ stars around, or even merged completely.

“We see all sorts of structures across cosmic time less than a billion years after the Big Bang,” says Olivia Cooper, an astronomer at UT Austin. These new images, she said, “demonstrate what we are able to do with JWST and hint at a universe that hosted evolved galaxies earlier than we thought.”

The fact that there was such a variety of galaxies while the universe was still young is puzzling, and sure to keep astronomers busy as they build better models to learn how these cosmic entities formed and grew. The study also shows that to see the first galaxies, experts will need to keep rewinding that tape, and pushing the boundaries of how far back JWST can peer into the universe’s past.

The post Our universe mastered the art of making galaxies while it was still young appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Physicists figured out a recipe to make titanium stardust on Earth https://www.popsci.com/science/stardust-titanium-tools/ Fri, 13 Jan 2023 19:00:00 +0000 https://www.popsci.com/?p=505062
Cosmic dust on display in Messier 98 galaxy.
Spiral galaxy Messier 98 showcases its cosmic dust in this Hubble Space Telescope image. NASA / ESA / Hubble / V. Rubin et al

The essential ingredients are carbon atoms, titanium, and a good coating of graphite.

The post Physicists figured out a recipe to make titanium stardust on Earth appeared first on Popular Science.

]]>
Cosmic dust on display in Messier 98 galaxy.
Spiral galaxy Messier 98 showcases its cosmic dust in this Hubble Space Telescope image. NASA / ESA / Hubble / V. Rubin et al

Long ago—before humans, before Earth, before even the sun—there was stardust.

In time, the young worlds of the solar system would eat up much of that dust as those bodies ballooned into the sun, planets, and moons we know today. But some of the dust survived, pristine, in its original form, locked in places like ancient meteorites.

Scientists call this presolar dust, since it formed before the sun. Some grains of presolar dust contain tiny bits of carbon, like diamond or graphite; others contain a host of other elements such as silicon or titanium. One form contains a curious and particularly hardy material called titanium carbide, used in machine tools on Earth. 

Now, physicists and engineers think they have an idea of how those particular dust grains formed. In a study published today in the journal Science Advances, researchers believe they could use that knowledge to build better materials here on Earth.

These dust grains are extremely rare and extremely minuscule, often smaller than the width of a human hair. “They were present when the solar system formed, survived this process, and can now be found in primitive solar system materials,” such as meteorites, says Jens Barosch, an astrophysicist at the Carnegie Institution for Science in Washington, DC, who was not an author of the study.

[Related: See a spiral galaxy’s haunting ‘skeleton’ in a chilly new space telescope image]

The study authors peered into a unique kind of dust grain with a core of titanium carbide—titanium and carbon, combined into durable, ceramic-like material that’s nearly as hard as diamond—wrapped in a shell of graphite. Sometimes, tens or even hundreds of these carbon-coated cores clump together into larger grains.

But how did titanium carbide dust motes form in the first place? So far, scientists haven’t quite known for sure. Testing it on Earth is hard, because would-be dustbuilders have to deal with gravity—something that these grains didn’t have to contend with. But scientists can now go to a place where gravity is no object.

On June 24, 2019, a sounding rocket launched from Kiruna, a frigid Swedish town north of the Arctic circle. This rocket didn’t reach orbit. Like many rockets before and since, it streaked in an arc across the sky, peaking at an altitude of about 150 miles, before coming back down.

Still, that brief flight was enough for the rocket’s components to gain more than a taste of the microgravity that astronauts experience in orbit. One of those components was a contraption inside which scientists could incubate dust grains and record the process. 

“Microgravity experiments are essential to understanding dust formation,” says Yuki Kimura, a physicist at Hokkaido University in Japan, and one of the paper’s authors.

Deep Space photo
Titanium carbide grains, seen here magnified at a scale of several hundred nanometers. Yuki Kimura

Just over three hours after launch, including six and a half minutes of microgravity, the rocket landed about 46 miles away from its launch site. Kimura and his colleagues had the recovered dust grains sent back to Japan for analysis. From this shot and follow-up tests in an Earthbound lab, the group pieced together a recipe for a titanium carbide dust grain.

[Related: Black holes have a reputation as devourers. But they can help spawn stars, too.]

That recipe might look something like this: first, start with a core of carbon atoms, in graphite form; second, sprinkle the carbon core with titanium until the two sorts of atoms start to mix and create titanium carbide; third, fuse many of these cores together and drape them with graphite until you get a good-sized grain.

It’s interesting to get a glimpse of how such ancient things formed, but astronomers aren’t the only people who care. Kimura and his colleagues also believe that understanding the process could help engineers and builders craft better materials on Earth—because we already build particles not entirely unlike dust grains.

They’re called nanoparticles, and they’ve been around for decades. Scientists can insert them into polymers like plastic to strengthen them. Road-builders can use them to reinforce the asphalt under their feet. Doctors can even insert them into the human body to deliver drugs or help image hard-to-see body parts.

Typically, engineers craft nanoparticles by growing them within a liquid solution. “The large environmental impact of this method, such as liquid waste, has become an issue,” says Kimura. Stardust, then, could help reduce that waste.

Machinists already use tools strengthened by a coat of titanium carbide nanoparticles. Just like diamond, the titanium carbide helps the tools, often used to forge things like spacecraft, cut harder. One day, stardust-inspired machine coatings might help build the very vessels humans send to space.

The post Physicists figured out a recipe to make titanium stardust on Earth appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The James Webb Space Telescope just identified its first exoplanet https://www.popsci.com/science/james-webb-space-telescope-first-exoplanet/ Thu, 12 Jan 2023 12:00:00 +0000 https://www.popsci.com/?p=504748
Exoplanet LHS 475 b and its star detected by the James Webb Space Telescope in an artist's rendition
An illustration of Exoplanet LHS 475 b and its star. NASA, ESA, CSA, L. Hustak (STScI)

The near-Earth discovery is an 'impressive' find, astronomers say.

The post The James Webb Space Telescope just identified its first exoplanet appeared first on Popular Science.

]]>
Exoplanet LHS 475 b and its star detected by the James Webb Space Telescope in an artist's rendition
An illustration of Exoplanet LHS 475 b and its star. NASA, ESA, CSA, L. Hustak (STScI)

After launching on Christmas Day 2021, the James Webb Space Telescope (JWST) has continued to dazzle us with its data and discoveries. Now, the multi-mirrored space observatory has identified its first new exoplanet named LHS 475 b. At only 41 light years away from Earth in the constellation Octans, the exoplanet is about 99 percent of our world’s diameter.

After reviewing the targets of interest from NASA’s Transiting Exoplanet Survey Satellite, the team from Johns Hopkins University Applied Physics Laboratory (APL) in Maryland honed in on hints of the exoplanet’s existence with JWST. With only two transit observations (when an exoplanet passes in front of its star), JWST’s Near-Infrared Spectrograph (NIRSpec) captured the distant celestial body clearly. “There is no question that it’s there. Webb’s pristine data validate it,” said Jacob Lustig-Yaeger, an astronomer and astrobiologist at APL, in a statement.

[Related: James Webb Space Telescope reconstructed a ‘star party,’ and you’re invited.]

“The fact that it is also a small, rocky planet is impressive for the observatory,” Kevin Stevenson, an astronomer also from APL, added in the statement,

JWST can characterize the atmosphere of exoplanets that are close to Earth’s size. The team tried to assess LHS 475 b’s atmosphere by analyzing its transmission spectrum. According to NASA, “When starlight passes through the atmosphere of a planet some of the light is absorbed by the atmosphere and some is transmitted through it. The dark lines and dim bands of light in a transmission spectrum correspond to atoms and molecules in the planet’s atmosphere. The amount of light that is transmitted also depends on how dense the atmosphere is and how warm it is.”

Transmission spectrum graph from James Webb Space Telescope's first new confirmed exoplanet. Shows waves and dots built from NASA and Johns Hopkins data.
As this transmission spectrum shows, JWST did not observe a detectable quantity of any element or molecule on exoplanet LHS 475 b. The data (white dots) are consistent with a featureless spectrum representative of a planet that has no atmosphere (yellow line). The purple line represents a pure carbon dioxide atmosphere and is indistinguishable from a flat line at the current level of precision. The green line represents a pure methane atmosphere, which is not favored since if methane were present, it would be expected to block more starlight at 3.3 microns. Illustration: NASA, ESA, CSA, L. Hustak (STScI); Science: K. Stevenson, J. Lustig-Yaeger, E. May (Johns Hopkins University Applied Physics Laboratory), G. Fu (Johns Hopkins University), and S. Moran (University of Arizona).

The data shows that the exoplanet is an Earth-sized terrestrial (not water covered) world, but it is not known if it has an atmosphere.

“The observatory’s data are beautiful,” noted Erin May, an astrophysicist at APL, in a statement. “The telescope is so sensitive that it can easily detect a range of molecules, but we can’t yet make any definitive conclusions about LHS 475 b’s atmosphere.”

That said, the team can definitely say what is not present. “There are some terrestrial-type atmospheres that we can rule out,” explained Lustig-Yaeger. “It can’t have a thick methane-dominated atmosphere, similar to that of Saturn’s moon Titan.”

While it is possible that the exoplanet doesn’t have an atmosphere, some environmental conditions haven’t been ruled out. One of those conditions is a pure carbon dioxide atmosphere. “Counterintuitively, a 100-percent carbon dioxide atmosphere is so much more compact that it becomes very challenging to detect,” said Lustig-Yaeger. To distinguish a pure carbon dioxide atmosphere from no atmosphere at all will take even more precise measurements that the team is scheduled to receive this summer.

[Related on PopSci+: There is no Planet B.]

JWST also revealed that LHS 475 b is much warmer than Earth. If clouds are detected, it could be more like Venus, which does have a carbon dioxide atmosphere. It also completes an orbit in just two days, which the JWST’s precise light curve from the telescope’s NIRSpec was able to reveal.

Findings like JWST’s also open up possibilities of pinpointing Earth-sized exoplanets orbiting smaller red dwarf stars. “This confirmation highlights the precision of the mission’s instruments,” said Stevenson.

In addition to LHS 475 b, NASA has confirmed 5,000-plus exoplanets with its many deep-space searching tools. The roster is incredibly diverse, with some looking like Mars’s pebbly terrain and others like Jupiter-esque gas giants. Some of them orbit two stars at once, while others orbit long-dead stars. It is very likely that there are hundreds of billions of exoplanets in the Milky Way galaxy alone. JWST will be able to tell scientists even more about these other worlds.

“We have barely begun scratching the surface of what their atmospheres might be like. And it is only the first of many discoveries that it will make,” stated Lustig-Yaeger. “With this telescope, rocky exoplanets are the new frontier.”

Correction (January 19, 2023): The story initially said that when an exoplanet “transits,” it passes in front of its moon, which was incorrect. It passes in front of its star.

The post The James Webb Space Telescope just identified its first exoplanet appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Wiggly space waves show neutron stars on the edge of becoming black holes https://www.popsci.com/science/neutron-star-collisions-gamma-rays/ Mon, 09 Jan 2023 21:00:00 +0000 https://www.popsci.com/?p=504183
Two colliding neutron stars.
Two neutron stars are on a catastrophic collision course in this illustration. NASA

A new tool gives astronomers a split-second view of massive, merging stars.

The post Wiggly space waves show neutron stars on the edge of becoming black holes appeared first on Popular Science.

]]>
Two colliding neutron stars.
Two neutron stars are on a catastrophic collision course in this illustration. NASA

Far from our cozy home in the cosmos, stars are performing violent and extreme acts almost beyond our imagination. Neutron stars, the unbelievably dense remnants of huge stars—a teaspoon of their matter weighs as much as Mount Everest—are smashing into each other. This impact creates black holes and releases extremely energetic flashes of light known as gamma ray bursts (GRBs)

Astronomers have been interested in GRBs since the first one was spotted in 1967. But there’s still much to understand about exactly what goes on when two neutron stars collide. New research, recently published in the journal Nature, reveals helpful signals known as quasi-periodic oscillations (QPOs) in old observations of GRBs. QPOs provide a window for scientists to explore the brief time after the neutron stars collide but before they’ve collapsed into a black hole. They’re the fingerprints of how matter is swirling and mixing together in the merger.

Since the advent of gravitational wave detection in 2016, many astronomers have been focused on exploring neutron star mergers with LIGO and similar experiments. But, those observations provide half the picture, since current detectors are only sensitive to some of the gravitational waves created by the mergers. To detect the higher-frequency waves we’re currently missing, we’d have to wait years—maybe even decades—for new projects like the Einstein Telescope to come online. 

This new research shows that existing technology, using gamma-rays, may be an alternative to probe the same physics that creates higher-frequency waves. QPOs, which are wiggles in the observed gamma-rays that repeat semi-regularly, encode information about the physics of the merger. The study authors analyzed two events that produced QPOs of uncertain origin–they may have originated within our galaxy or far beyond it.

“We’re looking at what happens in the split second between the merger of the two stars and the launch of the gamma ray burst. It is almost frustrating that these signals will only be detectable in gravitational waves some 10 to 15 years from now,” says lead author Cecilia Chirenti, a research scientist at NASA Goddard Space Flight Center and the University of Maryland. “But I am impatient and don’t want to wait! It’s exciting that we’re able to start looking for and learning from them now using gamma-rays!”

[Related: Why are big neutron stars like Tootsie Pops?]

The collision of two neutron stars is an excellent laboratory for exploring the physics of these weird, dead orbs. Their ultimate fate depends on an important unknown in high-energy physics: the equation that describes what neutron stars are made of and how that material moves, flows, and interacts with the world around it. 

“The matter in the cores of neutron stars exists in a state seen nowhere else in the universe, including in laboratories on Earth,” says Cole Miller, astronomer at the University of Maryland and co-author on the study. “Measurements of neutron star properties can give us insights into an otherwise inaccessible physical realm.”

In their search for QPOs, the research team explored archives of data from multiple NASA space telescopes: the Fermi Gamma-Ray Space Telescope, the Swift Observatory, and the Compton Gamma-Ray Observatory. Although these GRBs were identified years ago—as early as the 1990s—the enormous complexity of GRB signals has kept these QPO signals hidden from astronomers until now. “One of my colleagues wryly noted that ‘If you’ve seen one gamma-ray burst, you’ve seen one gamma-ray burst,’” says Miller. “This makes it difficult to tell whether there is some signal of oscillation, or whether that’s just GRBs being GRBs.”

[Related: Black holes can gobble up neutron stars whole]

In both events, the QPOs suggest that a mega-sized neutron star may have formed before collapsing into a black hole. Itai Linial, a Columbia and Princeton astronomer not involved with the study, says it is still unclear in general whether a black hole forms immediately or a neutron star appears for a fraction of a second before the collapse to a black hole during a GRB, but agrees these new signals “may be the result of a rapidly rotating neutron star remnant.” 

With the detection of these gamma-ray signals, astronomers now have a new tool to explore some of the weirdest and wildest phenomena in the universe. With a treasure trove of old data to explore, the team now hopes to use this tool to find more examples of these curious mergers.

The post Wiggly space waves show neutron stars on the edge of becoming black holes appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Dark matter, Jupiter’s moons, and more: What to expect from space exploration in 2023 https://www.popsci.com/science/space-launch-schedule-2023/ Thu, 05 Jan 2023 22:00:00 +0000 https://www.popsci.com/?p=503496
Boeing Starliner and SpaceX Crew Dragon NASA space capsules flying over Earth
2023 may be the year we see Boeing's Starliner and SpaceX's Crew Dragon in full swing on NASA missions. NASA

India also plans to revisit the lunar surface, while private companies aim to send more rich people to space.

The post Dark matter, Jupiter’s moons, and more: What to expect from space exploration in 2023 appeared first on Popular Science.

]]>
Boeing Starliner and SpaceX Crew Dragon NASA space capsules flying over Earth
2023 may be the year we see Boeing's Starliner and SpaceX's Crew Dragon in full swing on NASA missions. NASA

The past few years have been a space launch boom: Late 2021 saw the long-awaited arrival of the James Webb Space Telescope (JWST), and in 2022 NASA finally launched its massive new Space Launch System Moon rocket. This year will continue that trend, as several scientific and commercial craft zoom off our world to orbit and beyond.

This year’s historic flights include missions to Jupiter and the asteroid belt, robotic moon landings, and the maiden flight of a new spacecraft to take astronauts to and from the aging International Space Station (ISS). Here are some of the major launches to look forward to in 2023.

Asteroids and icy moons

Both NASA and the European Space Agency (ESA) have big plans for studying celestial bodies beyond the orbit of Mars that kick off in 2023.

ESA’s JUpiter ICy moons Explorer, or JUICE mission, will study the icy Galilean moons of Jupiter, Europa, Callisto and Ganymede. Of the three moons, Europa has so far garnered the lion’s share of scientific interest due to the global liquid water ocean beneath the moon’s icy crust, an environment that could host alien life. But evidence now suggests Callisto and Ganymede may also host subsurface liquid water oceans. JUICE, which is scheduled to launch atop an Ariane 5 rocket from French Guiana sometime in April and will arrive at Jupiter in 2031, will fly by each of the three moons to compare the three icy worlds.

[Related: Jupiter’s moons are about to get JUICE’d for signs of life]

The JUICE spacecraft will enter orbit around Ganymede in 2034, the first time a spacecraft has circled a moon other than Earth’s, where it will spend roughly a year studying the satellite in greater detail. Ganymede, in addition to its potential subsurface ocean and potential habitability, is the only moon in the solar system with its own magnetic field. JUICE will study how this field interacts with Jupiter’s even  larger one.

NASA’s Psyche mission, meanwhile, will blast off no earlier than October 10 on a mission to rendezvous with its namesake asteroid, when it arrives in the belt between Mars and Jupiter in August 2029. The Psyche mission was originally scheduled to launch in August 2022, but was delayed due to problems developing mission-critical software at NASA’s Jet Propulsion Laboratory.

The asteroid 16 Psyche is a largely metallic space rock that scientists believe could be the exposed core of a protoplanet that formed in the early solar system. If that theory bears out, the Psyche spacecraft could end up traveling millions of miles to give scientists a better understanding of the Earth’s iron core far beneath their feet.

India returns to the moon

The Indian Space Research Organization, ISRO, is going back to the moon with its Chandrayaan-3 mission, which is scheduled to launch over the summer. The space agency’s Chandrayaan-2 mission carried an orbiter and lander to the moon in 2019, but a software glitch caused the lander to crash on the lunar surface. The Chandrayaan-3 mission is ditching the orbiter in favor of a redesigned lander and rover intended for the lunar South Pole. Carrying a seismometer and spectrographs, among other instruments, the lander and rover will study the chemical composition and geology of the polar region. 

[Related: 10 incredible lunar missions that paved the way for Artemis]

The hunt for dark matter

Astrophysicists believe dark matter and dark energy shape the structures of entire universes—and drive the accelerated expansion of ours. But experts don’t understand much about these enigmatic phenomena. ESA’s Euclid space telescope, scheduled to launch sometime in 2023, will measure the effects of these dark forces on the cosmos over time to try and discern their properties.

After launch, Euclid will make its way to the same operational location as JWST, entering an orbit around Lagrangian Point 2, about 1 million miles behind Earth. From there, Euclid will use its nearly 4-foot diameter mirror, visible light imaging system, and near-infrared spectrometer to survey a third of the sky out to a distance of about 15 billion light years. That will give a view  some 10 billion years into the past. By studying how galaxies and galaxy clusters change over eons and across much of the sky, Euclid scientists hope to grasp how dark matter and dark energy shape galactic formation and the evolution of the entire universe.

Boeing catches up to SpaceX

Boeing will finally launch a crewed test flight of its Starliner spacecraft sometime in April 2023. Boeing developed the Starliner, a capsule that holds up to seven people, as a competitor to the SpaceX Crew Dragon spacecraft. Like Dragon, Starliner will ferry astronauts and cargo to and from the ISS as part of NASA’s Commercial Crew Program.

[Related: ISS astronauts are building objects that couldn’t exist on Earth]

But while Crew Dragon began flying astronauts to the ISS in November 2020, the Starliner ran into many delay-causing problems, beginning with a software glitch that kept the spacecraft from rendezvousing with the ISS during an uncrewed test flight in December 2020. Boeing kept at it, however, and completed a second attempt at an uncrewed rendezvous with the ISS in May 2022, paving the way for the coming crewed test flight.

If all goes well, NASA will integrate Starliner flights alongside Crew Dragon launches within the Commercial Crew program, providing the space agency some redundancy in case of problems with either type of spacecraft.

The (private) enterprise

As NASA becomes more and more reliant on Boeing, SpaceX, and other contractors for flights to the ISS, private space operators have big plans of their own for 2023.

Axiom Space plans to send a crew of private citizens for a two-week stay on the ISS in the  summer, following the company’s first mission in April 2022 when four private astronauts spent more than two weeks aboard the space station. Axiom Space plans to build a new habitat—first connected to the ISS, then separated to create a free-flying space station when NASA retires the ISS in 2031.

[Related: SpaceX’s all-civilian moon trip has a crew]

Jared Isaacman, the billionaire who funded the first ever all-private orbital space flight in September 2021 with the Inspiration 4 mission, will also be back at it in 2023. The Polaris Dawn mission is scheduled to launch no sooner than March and will once again see Isaacman fly aboard a chartered SpaceX Crew Dragon spacecraft along with three crewmates. Unlike Inspiration 4, at least two of the Polaris Dawn crew plan to conduct the first-ever private astronaut spacewalks outside a spacecraft.

The Jeff Bezos-founded Blue Origin, meanwhile, will attempt to launch the first test flight of its orbital rocket, known as New Glenn, sometime in 2023. While the company has flown celebrities such as Bezos and William Shatner to the edge of space aboard its suborbital New Shepard rocket, the company has yet to make an orbital flight. This year, it’s aiming higher.

The post Dark matter, Jupiter’s moons, and more: What to expect from space exploration in 2023 appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The spy agency origins of NASA’s next powerful planet-hunting observatory https://www.popsci.com/science/roman-space-telescope-spy-satellite/ Mon, 02 Jan 2023 20:00:00 +0000 https://www.popsci.com/?p=496463
An artist's illustration of the Nancy Grace Roman Space Telescope.
The Nancy Grace Roman Space Telescope, seen in this artist's illustration, will have a wider field of view than the Hubble. GSFC/SVS

A Defense Department agency gifted NASA with mirrors to look for worlds beyond our solar system.

The post The spy agency origins of NASA’s next powerful planet-hunting observatory appeared first on Popular Science.

]]>
An artist's illustration of the Nancy Grace Roman Space Telescope.
The Nancy Grace Roman Space Telescope, seen in this artist's illustration, will have a wider field of view than the Hubble. GSFC/SVS

A former spy satellite is now being overhauled by NASA to search for planets beyond the solar system. Once operational—the space agency plans to launch the craft within the next five years—it could reveal the origins of life itself by hunting for planets in the distant reaches of their solar systems.

Now that the James Webb Space Telescope has finally launched and is in full science operation mode, the astronomical community is looking with eager anticipation to the next major launch, the Nancy Grace Roman Space Telescope. Among other directives, the Roman will be an exoplanet hunter extraordinaire, revealing key information about the formation of solar systems and planets like our own.

But, initially, it looked like the mission would never happen. In the early 2000s, scientists at NASA and the Department of Energy both proposed a new satellite to study the farthest reaches of the cosmos, hoping to understand the cause behind dark energy, the name given to the mysterious accelerated expansion of the universe. However, with political and financial capital shifting to the development of what would become the JWST, the proposal faltered.

And then in 2011 came an unexpected gift. The National Reconnaissance Office, the organization within the US government tasked with building and operating spy satellites for the NSA, CIA, and other three-letter agencies, apparently had some…extras. Sitting in a warehouse in upstate New York were two mirrors, similar to the one on the Hubble Space Telescope, that the NRO seemingly had no use for. The agency offered the mirrors to NASA free of charge.

[Related: In NASA’s new video game, you are a telescope hunting for dark matter]

To give you a sense of just how surreal this is, imagine all of the time, money, and engineering that went into designing and launching the JWST. Now imagine that a spy agency not only had two more JWST-class instruments, but didn’t even need them anymore.

Although the actual cost of the mirror represents only a relatively small fraction of the overall budget for a space mission like this, the unexpected gift galvanized support for the satellite, and the mission got its first official name: the Wide-Field Infrared Space Telescope, or WFIRST.

Now expected to launch in 2026 in 2027 (although likely later, as its development was already pushed back by the delays in getting the JWST to space), WFIRST has received its new monniker, in honor of the first female executive at NASA, Nancy Roman, who also served as the agency’s first Chief of Astronomy in the 1960s and 70s.

The Roman has the same size of mirror as the Hubble’s, but it will boast a much wider field of view. Equipped with a big enough camera, it can essentially act as “a hundred Hubbles” at a time. According to Scott Gaudi, a professor of astronomy at The Ohio State University and one of the leaders of the Roman mission, the team hopes to find around 1,500 exoplanets during its planned primary 5-year mission. However, it’s difficult to pin down the exact number, because figuring out how many planets orbit other stars is “exactly what Roman is trying to find out,” he says.

Among other science goals, one of the primary missions of the Roman Space Telescope will be to hunt down new populations of exoplanets using an innovative trick known as gravitational microlensing.

Microlensing is when “light from distant background stars is temporarily magnified when a planetary system passes close to our line of sight,” Gaudi says. Microlensing relies on sheer coincidence: While staring at one star, if another object passes through the line of sight to that star, that background light will briefly increase in brightness due to the bending of the light around the object.

[Related: See the first image of an exoplanet caught by the James Webb Space Telescope]

The interloping object could be an entire planetary system, or it could be a wandering, “rogue” exoplanet, detached from any star. Astronomers know of only a couple dozen of these lost souls, but they estimate that our galaxy could be swarming with hundreds of billions of them. The Roman can find wandering exoplanets as small as Mars, and could potentially expand our catalog to a few hundred. That will give astronomers critical information as to how chaotic solar system formation is, which will help fine-tune models of the development of Earth-like planets. 

Since the microlensing technique has trouble identifying planets orbiting close to their parent stars, the Roman Space Telescope won’t be able to pick out an Earth 2.0, though. Instead, it will focus on planets orbiting far away from their suns, analogous to the gas and ice giants of our solar system. Astronomers don’t know if our solar system, dominated by Jupiter and Saturn, is typical, or if ice giants like Neptune and Uranus are more common. Or maybe even something smaller: Unlike any other exoplanet-hunting telescope, the Roman will be able to detect planets as small as a few times the mass of the moon.

Creating the first-ever survey of planets orbiting far from their stars is crucial to understanding the origins of life on planets like Earth. “Since we think all of the water on Earth-like planets was delivered from the outer regions of planetary systems,” Gaudi says, ”by surveying these regions we can begin to understand how common potentially habitable planets are.”

If that weren’t enough, the Roman has one more planet-hunting trick up its sleeve. It will carry a coronagraph, a device that allows it to block out the light from nearby stars and directly image any exoplanets around it—a feat not even the JWST is capable of.

Taken altogether, Gaudi had a simple reaction to what he was most excited for with this upcoming super-telescope: “the unexpected!”

The post The spy agency origins of NASA’s next powerful planet-hunting observatory appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
JWST has changed the speed of discovery, for better or for worse https://www.popsci.com/science/james-webb-space-telescope-public-access/ Fri, 23 Dec 2022 11:00:00 +0000 https://www.popsci.com/?p=501520
James Webb Space Telescope life-size NASA model in front of Austin skyline
JWST's incredible download speed means more accessibility for the public, but it also puts extra stress on the astronomers analyzing the data. NASA/Chris Gunn

Astronomers are working at a furious pace to analyze and test whopping amounts of JWST data.

The post JWST has changed the speed of discovery, for better or for worse appeared first on Popular Science.

]]>
James Webb Space Telescope life-size NASA model in front of Austin skyline
JWST's incredible download speed means more accessibility for the public, but it also puts extra stress on the astronomers analyzing the data. NASA/Chris Gunn

The James Webb Space Telescope, NASA’s newest and biggest off-world observatory, has been collecting jaw-dropping images of the cosmos since June. Astronomers quickly shared their results online, even before the telescope’s calibrations were finished. Some of these findings were record-breaking, including observations of the most distant galaxies yet found. Significant debate and discussion ensued among researchers—was science moving too quickly by publishing observations before peer review, forsaking rigor for the glory of being first to a new discovery?

As the dust has settled, many astronomers think the early results remain informative. But, in the rush to work with a groundbreaking new observatory and sift through its mountains of data, they report stressful working conditions. That’s a scenario they hope to improve upon in 2023 and beyond, finding a balance between quickly offering exciting results to the public and taking the time needed for rigorous, sustainable science.

“I was actually quite excited to see science happening very fast,” says Klaus Pontoppidan, JWST project scientist at the Space Telescope Science Institute. “This is the way science works … if there are issues with calibration, that gets tested by other teams, and any errors get corrected later.”

[Related: A fierce competition will decide James Webb Space Telescope’s next views of the cosmos]

Every day JWST returns around 60 gigabytes of data to Earth, about the amount of information a basic iPhone can hold. This may not seem like much, but the steady stream of data amounts to a whopping 12,000 gigabytes so far—enough to fill a roomful of laptops—with much more to come. Each bit of this valuable data will be subject to the intense scrutiny of astronomers, who are trying to glean as much information as they can about the cosmos with JWST’s new view.

Some of that analysis started almost as soon as the telescope was operational, with programs known as Early Release Science (ERS), which made JWST data publicly available this June and July. 

Hannah Wakeford, an astronomer at the University of Bristol, worked on some of these early release science programs. Although she is excited about the scientific breakthroughs, she also experienced an extremely intense work environment—she hasn’t taken a break since mid-July. She criticizes this initial period of rushed results, saying that usually “fast science results in poorer or incomplete work. This is not necessarily the scientists themselves at fault for this, but the enormous external pressure to get publications.”

On the other hand, Ryan Trainor, an astrophysicist at Franklin & Marshall College, considers this frenzy as just “part of the modern scientific process, particularly given the pressure to be first to any big discovery.” Wakeford and Trainor’s statements are not mutually exclusive—the race to publish is both an accepted part of science and a possible hazard. For those trying to make astronomy their career, publishing an idea first and getting the credit for it is a necessary evil.

James Webb Space Telescope NASA engineer looking at a model on a computer screen in mission control room
Engineering teams at NASA’s James Webb Space Telescope Mission Operations Center at the Space Telescope Science Institute in Baltimore monitor progress as the observatory’s second primary mirror wing rotates into position a few days after its launch. NASA/Bill Ingalls

As we approach the one year anniversary of JWST’s launch on Christmas Day, the debate about the speed of astronomy has resurfaced again, now in the context of observations proposed by teams of scientists. NASA reportedly planned to make all data available from the telescope immediately, removing so-called proprietary periods that allow astronomers time to work with data they planned and designed. There isn’t currently a clear deadline for this change, but it may fall in line with the White House’s call for open access science by 2026.

Those in favor of removing proprietary periods claim that public access to the data will be more equitable, allowing anyone a chance to explore the wonders of the new telescope. Many astronomers disagree, though, explaining that their field will become impossibly competitive without proprietary periods to protect scientists’ ideas. The rush to publish would undermine work-life balance, and disadvantage those who can’t work as fast: parents who have to contend with childcare, astronomers at smaller schools with fewer resources, early career students who are still learning, and others.

[Related: James Webb Space Telescope reconstructed a ‘star party,’ and you’re invited]

“JWST will produce ground-breaking, paradigm-shifting science over the next 20 years of its observing time,” says Wakeford. “Why not cut the scientists a break and give them time to make sure we can do the work with rigor, while not destroying our mental and physical health at the same time?” 

Lafayette College astronomer Stephanie Douglas agrees, explaining that “this is an equity issue. We need to protect the more vulnerable members of our community.”

The situation is not so simple for the NASA scientists in charge of the telescope, though. They have a responsibility to both scientists and the general public, whose taxpayer money funds the entire program. “I think it’s a balance,” says Pontoppidan. “You’re balancing public programs and proprietary time, and both things you need to do for equity.” The future of proprietary periods is yet undecided, but no matter the outcome it will surely affect the process of science in JWST’s second year. Astronomers are currently preparing for the second round of proposals to use JWST, due just after the holidays in January. “I’m hoping that we’ll see some really ambitious proposals,” says Pontoppidan. The first year of JWST observations explored what the observatory could do—and now astronomers can start pushing the limits of those capabilities.

The post JWST has changed the speed of discovery, for better or for worse appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
JWST’s new image unveils a field of glittery galaxies https://www.popsci.com/science/webb-telescope-thousands-galaxies/ Thu, 15 Dec 2022 16:30:00 +0000 https://www.popsci.com/?p=498902
Thousands of galaxies over an enormous range in distance and time are seen in exquisite detail, many for the first time
Thousands of galaxies over an enormous range in distance and time are seen in exquisite detail, many for the first time. SCIENCE: NASA, ESA, CSA, Rolf A. Jansen (ASU), Jake Summers (ASU), Rosalia O'Brien (ASU), Rogier Windhorst (ASU), Aaron Robotham (UWA), Anton M. Koekemoer (STScI), Christopher Willmer (University of Arizona), JWST PEARLS Team. IMAGE PROCESSING: Rolf A. Jansen (ASU), Alyssa Pagan (STScI)

Some of the light in this stellar capture traveled almost 13.5 billion years for the group portrait.

The post JWST’s new image unveils a field of glittery galaxies appeared first on Popular Science.

]]>
Thousands of galaxies over an enormous range in distance and time are seen in exquisite detail, many for the first time
Thousands of galaxies over an enormous range in distance and time are seen in exquisite detail, many for the first time. SCIENCE: NASA, ESA, CSA, Rolf A. Jansen (ASU), Jake Summers (ASU), Rosalia O'Brien (ASU), Rogier Windhorst (ASU), Aaron Robotham (UWA), Anton M. Koekemoer (STScI), Christopher Willmer (University of Arizona), JWST PEARLS Team. IMAGE PROCESSING: Rolf A. Jansen (ASU), Alyssa Pagan (STScI)

The James Webb Space Telescope (JWST) proves yet again that its gorgeous images are the gift that keeps on giving in 2022.

A dazzling new image is one of the first medium-deep wide-field images of the cosmos and accompanies a paper published Wednesday in the Astronomical Journal. It features a region of the sky called the North Ecliptic Pole and comes from the Prime Extragalactic Areas for Reionization and Lensing Science (PEARLS) program. PEARLS’ main goal is to study, “galaxy assembly, AGN growth, and First Light,” using the data from JWST.

[Related: The James Webb Space Telescope is about to beam us monster amounts of cosmic data.]

The term medium-deep refers to the faintest objects that can be seen within this image, and they are roughly 29th magnitude (1 billion times more faint than the unaided eye can see). Wide-field refers to the total area that will be covered by the PEARLS program, about one-twelfth the area of the full moon.

The new image uses data collected from the JWST and the dependable Hubble Space Telescope. It’s made up of eight different colors of near-infrared light captured by Webb’s Near-Infrared Camera (NIRCam), and is also boosted with three colors of ultraviolet and visible light from the Hubble.

The colors show off in stellar detail the depth of a universe that’s chock full of galaxies, many of which were previously unseen by Hubble or even the largest and most sophisticated land-based telescopes. The image includes thousands of galaxies and some of the light in the image traveled roughly 13.5 billion years. These far ranging stars are shown alongside an assortment of stars within our own Milky Way galaxy, giving it an all-inclusive vibe.

Space Telescope photo
A swath of sky measuring 2 percent of the area covered by the full moon. This representative-color image was created using Hubble filters F275W (purple), F435W (blue), and F606W (blue); and Webb filters F090W (cyan), F115W (green), F150W (green), F200W (green), F277W (yellow), F356W (yellow), F410M (orange), and F444W (red). NASA, ESA, CSA, A. Pagan (STScI) & R. Jansen (ASU). Science: R. Jansen, J. Summers, R. O’Brien, and R. Windhorst (Arizona State University); A. Robotham (ICRAR/UWA); A. Koekemoer (STScI); C. Willmer (UofA); and the PEARLS team.

“The stunning image quality of Webb is truly out of this world,” said co-author Anton Koekemoer, research astronomer at STScI, who assembled the PEARLS images into very large mosaics, in a statement. “To catch a glimpse of very rare galaxies at the dawn of cosmic time, we need deep imaging over a large area, which this PEARLS field provides.”

[Related: The most awesome aerospace innovations of 2022.]

Some of the pinpricks of light within the image show the range of stars that are present in our home Milky Way galaxy and is a useful tool in understanding the universe’s past.

“The diffuse light that I measured in front of and behind stars and galaxies has cosmological significance, encoding the history of the universe,” said co-author Rosalia O’Brien, a graduate research assistant at Arizona State University (ASU), in a statement. “I feel very lucky to start my career right now. Webb’s data is like nothing we have ever seen, and I’m really excited about the opportunities and challenges it offers.”

The NIRCam observations will also be combined with data from another instrument on JWST, the Near-Infrared Imager and Slitless Spectrograph (NIRISS), allowing the team to search for faint objects with spectral emission lines, which can then be used to estimate their distances more accurately.

The new image shows just a portion of the full PEARLS field, which will eventually be about four times larger. However, this huge panel of stars exceeded scientists’ expectations from the simulations they ran they ran before JWST began making scientific observations (and sending us gorgeous images) in July.

“There are many objects that I never thought we would actually be able to see, including individual globular clusters around distant elliptical galaxies, knots of star formation within spiral galaxies, and thousands of faint galaxies in the background,” said co-author Jake Summers, a research assistant at ASU, in a statement.

In the future, the PEARLS team hopes to catch a glimpse of more space objects in this region, such as the varying flares of light around black holes or distant exploding stars.

“This unique field is designed to be observable with Webb 365 days per year, so its time-domain legacy, area covered, and depth reached can only get better with time,” said lead study author Rogier Windhorst, from ASU and PEARLS principal investigator, in a statement.

The post JWST’s new image unveils a field of glittery galaxies appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
James Webb Space Telescope reconstructed a ‘star party,’ and you’re invited https://www.popsci.com/science/james-webb-space-telescope-star-party/ Fri, 09 Dec 2022 14:00:00 +0000 https://www.popsci.com/?p=496806
An image of the Southern Ring Nebula (NGC 3132), captured by Webb’s Near-Infrared Camera (NIRCam) and Mid-Infrared Instrument (MIRI).
An image of the Southern Ring Nebula (NGC 3132), captured by Webb’s Near-Infrared Camera (NIRCam) and Mid-Infrared Instrument (MIRI). SCIENCE: NASA, ESA, CSA, STScI, Orsola De Marco (Macquarie University). IMAGE PROCESSING: Joseph DePasquale (STScI)

Researchers rebuilt an image of stellar festivities in the Southern Ring Nebula.

The post James Webb Space Telescope reconstructed a ‘star party,’ and you’re invited appeared first on Popular Science.

]]>
An image of the Southern Ring Nebula (NGC 3132), captured by Webb’s Near-Infrared Camera (NIRCam) and Mid-Infrared Instrument (MIRI).
An image of the Southern Ring Nebula (NGC 3132), captured by Webb’s Near-Infrared Camera (NIRCam) and Mid-Infrared Instrument (MIRI). SCIENCE: NASA, ESA, CSA, STScI, Orsola De Marco (Macquarie University). IMAGE PROCESSING: Joseph DePasquale (STScI)

When the James Webb Space Telescope (JWST) began sending back its incredible images in July, some of the first data showed that there were at least two, and possibly three more unseen stars in the oblong, curvy shapes of the Southern Ring Nebula.

The Southern Ring Nebula is a planetary nebula, which actually doesn’t have anything to do with planets. Instead, it is the result of the implosion of a star called a red giant. According to the European Space Agency (ESA), a star swells into a red giant when a star that is a bit bigger than our sun runs out of hydrogen fuel at its core and red giants can even be hundreds of times wider than the original star. The red giant eventually sheds its outer layers, which then forms the nebula, and contracts into the cooling remnants called a white dwarf.

[Related: The James Webb Space Telescope’s first glimpses into deep space reveal 4 mind-blowing finds.]

Now, researchers have reconstructed an image of this particular nebula roughly 2,000 light years away from Earth , that shows there were up to five stars at this ‘star party,’ but only two partying stars appear there now.

The team of almost 70 researchers led by Orsola De Marco of Macquarie University in Sydney, Australia details the findings in a study published yesterday in the journal Nature Astronomy. They began by analyzing Webb’s 10 highly detailed exposures of the Southern Ring Nebula to reconstruct the “party scene.” According to NASA, it’s common for small groups of stars that span a range of masses to form together and continue to orbit one another as they get older. The team used this principle to travel back in time thousands of years to figure out what might explain the shapes of the colorful clouds of gas and dust in this nebula.

Space Telescope photo
This image of the Southern Ring Nebula (NGC 3132), captured by Webb’s Near-Infrared Camera (NIRCam) and Mid-Infrared Instrument (MIRI), shows compass arrows, scale bar, and color key for reference. CREDITS: SCIENCE- NASA, ESA, CSA, STScI, Orsola De Marco (Macquarie University). IMAGE PROCESSING- Joseph DePasquale (STScI).

They found that possibly more than one star in the nebula interacted with the dimmer of the two central partying stars (shown in red), before that star created this planetary nebula. “The first star that ‘danced’ with the party’s host created a light show, sending out jets of material in opposite directions. Before retiring, it gave the dim star a cloak of dust. Now much smaller, the same dancer might have merged with the dying star – or is now hidden in its glare,” writes the team at NASA.

Adding to the mix, a third partygoer may have gotten close to the central star several times. That star then stirred up the jets ejected by the first companion, which helped form the wavy shapes at the edges of the gas and dust in the nebula. The fourth star didn’t want to be left out, and contributed to the celebration with its wider orbit. It then circled the scene, stirring up the gas and dust, creating the big system of rings on the outside the nebula. The fifth star is the best known and life of the party. It’s the bright white-blue star that continues to orbit the gathering “predictably and calmly.”

[Related: The 100 greatest innovations of 2022.]

In addition to taking a peek at the star party, the team also accurately measured the mass that the central star had before it shed layers of gas and dust. They estimate that the star was about about three times the mass of the sun before it created this specific planetary nebula. After ejecting the dust and gas, it was about 60 percent of the sun’s mass.

According to NASA, this is some of the first published research regarding some of the first images taken by the JWST to be published, so more details and findings are likely to be released. It also shows the first time that images taken with JWST’s NIRCam and Mid-Infrared Instrument (MIRI), were paired with existing data from the ESA’s Gaia observatory. This data enabled the team to precisely pinpoint the mass of the central star before it created the nebula.

The post James Webb Space Telescope reconstructed a ‘star party,’ and you’re invited appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>